Основы биологии

  • Вид работы:
    Реферат
  • Предмет:
    Биология
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    710,14 Кб
  • Опубликовано:
    2015-02-20
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Основы биологии

1.      Онтогенез организма. Эмбриональный и постэмбриональный периоды

Онтогене́з - индивидуальное развитие организма от оплодотворения <#"791561.files/image001.gif">

Рис.1 Онтогенез животных


Сравнение зародышей позвоночных на разных стадиях эмбрионального развития. Печально знаменитая иллюстрация из работы Эрнста Геккеля <#"791561.files/image002.gif">

Рис.2 Гаструляция


Один из механизмов гаструляции - инвагинация (впячивание части стенки бластулы внутрь зародыша)1 - бластула, 2 - гаструла.

Гаструляция <#"791561.files/image003.gif">

К органическим веществам относятся все соединения углерода за исключением его оксидов и нитридов. В наибольшем количестве образуются при фотосинтезе такие органические вещества, как углеводы (в первую очередь сахара и крахмал), аминокислоты (из которых строятся белки) и, наконец, жирные кислоты (которые в сочетании с глицерофосфатом служат материалом для синтеза жиров). Из неорганических веществ для синтеза всех этих соединений требуются вода (Н2О) и диоксид углерода (СО2). Для аминокислот требуются, кроме того, азот и сера. Растения могут поглощать эти элементы в форме их оксидов, нитрата (NO3-) и сульфата (SO42-) или в других, более восстановленных формах, таких, как аммиак (NH3) или сероводород (сульфид водорода H2S). В состав органических соединений может включаться при фотосинтезе также фосфор (растения поглощают его в виде фосфата) и ионы металлов - железа и магния. Марганец и некоторые другие элементы тоже необходимы для фотосинтеза, но лишь в следовых количествах. У наземных растений все эти неорганические соединения, за исключением СО2, поступают через корни. СО2 растения получают из атмосферного воздуха, в котором средняя его концентрация составляет 0,03%. СО2 поступает в листья, а О2 выделяется из них через небольшие отверстия в эпидермисе, называемые устьицами. Открывание и закрывание устьиц регулируют особые клетки - их называют замыкающими - тоже зеленые и способные осуществлять фотосинтез. Когда на замыкающие клетки падает свет, в них начинается фотосинтез. Накопление его продуктов вынуждает эти клетки растягиваться. При этом устьичное отверстие открывается шире, и СО2 проникает к нижележащим слоям листа, клетки которых могут теперь продолжать фотосинтез. Устьица регулируют и испарение воды листьями, т.н. транспирацию, поскольку большая часть водяных паров проходит именно через эти отверстия. Водные растения добывают все необходимые им питательные вещества из воды, в которой живут. СО2 и ион бикарбоната (HCO3-) тоже содержатся и в морской, и в пресной воде. Водоросли и другие водные растения получают их непосредственно из воды. Свет в фотосинтезе играет роль не только катализатора, но и одного из реагентов. Значительная часть световой энергии, используемой растениями при фотосинтезе, запасается в виде химической потенциальной энергии в продуктах фотосинтеза. Для фотосинтеза, идущего с выделением кислорода, в той или иной мере пригоден любой видимый свет от фиолетового (длина волны 400 нм) до среднего красного (700 нм). При некоторых видах бактериального фотосинтеза, не сопровождающегося выделением O2, может эффективно использоваться свет с большей длиной волны, вплоть до дальнего красного (900 нм). Выяснение природы фотосинтеза началось еще во времена зарождения современной химии. Работы Дж.Пристли (1772), Я.Ингенхауза (1780), Ж. Сенебье (1782), а также химические исследования А.Лавуазье (1775, 1781) позволили сделать вывод, что растения превращают диоксид углерода в кислород и для этого процесса необходим свет. Роль воды оставалась неизвестной до тех пор, пока на нее не указал в 1808 Н.Соссюр. В своих очень точных экспериментах он измерял прирост сухого веса растения, растущего в горшке с землей, а также определял объем поглощенного диоксида углерода и выделенного кислорода. Соссюр подтвердил, что весь углерод, включенный растением в органические вещества, происходит из диоксида углерода. В то же время он обнаружил, что прирост сухого вещества растения был больше, чем разность между весом поглощенного диоксида углерода и весом выделенного кислорода. Поскольку вес почвы в горшке существенно не изменялся, единственным возможным источником увеличения веса следовало считать воду. Так было показано, что одним из реагентов в фотосинтезе является вода. Значение фотосинтеза как одного из процессов превращения энергии не могло быть оценено до тех пор, пока не возникло само представление о химической энергии. В 1845 Р.Майер пришел к выводу, что при фотосинтезе световая энергия переходит в химическую потенциальную энергию, запасаемую в его продуктах.

Рис. 3

ФОТОСИНТЕЗ - это процесс, от которого зависит вся жизнь на Земле. Он происходит только в растениях. В ходе фотосинтеза растение вырабатывает из неорганических веществ необходимые для всего живого органические вещества. Диоксид углерода, содержащийся в воздухе, проникает в лист через особые отверстия в эпидермисе листа, которые называют устьицами; вода и минеральные вещества поступают из почвы в корни и отсюда транспортируются к листьям по проводящей системе растения. Энергию, необходимую для синтеза органических веществ из неорганических, поставляет Солнце; эта энергия поглощается пигментами растений, главным образом хлорофиллом. В клетке синтез органических веществ протекает в хлоропластах, которые содержат хлорофилл. Свободный кислород, также образующийся в процессе фотосинтеза, выделяется в атмосферу.

Рис.4 Схема фотосинтеза

В ходе световой стадии фотосинтеза образуются высокоэнергетические продукты: АТФ, служащий в клетке источником энергии, и НАДФН, использующийся как восстановитель. В качестве побочного продукта выделяется кислород. В общем роль световых реакций фотосинтеза заключается в том, что в световую фазу синтезируются молекула АТФ и молекулы-переносчики протонов, то есть НАДФ Н2.

Фотосинтез является основным источником биологической энергии, фотосинтезирующие автотрофы используют её для синтеза органических веществ из неорганических, гетеротрофы существуют за счёт энергии, запасённой автотрофами в виде химических связей, высвобождая её в процессах дыхания <#"791561.files/image006.gif"> - мужcкая особь;

 - женская особь.

Возвратное скрещивание - скрещивание потомков с одним из родителей. Иногда оно может оказаться также анализирующим

Механизм наследственности

Клетки, через которые осуществляется преемственность поколений, - специализированные половые при половом размножении и неспециализированный (соматические) клетки тела при бесполом несут в себе не сами признаки и свойства будущих организмов, а только задатки их развития. Эти задатки и являются генами. Ген - это участок молекулы ДНК (или участок хромосомы), определяющий возможность развития отдельного элементарного признака. Молекула ДНК состоит из двух полинуклеотидных цепей, закрученных одна вокруг другой в спираль. Цепи построены из большого числа мономеров 4 типов - нуклеотидов, специфичность которых определяется одним из 4 азотистых оснований. Сочетание трех рядом стоящих нуклеотидов в цепи ДНК составляют генетический код. ДНК точно воспроизводится при делении клеток, что обеспечивает в ряду поколений клеток и организмов передачу наследственных признаков и специфических форм обмена веществ.

Ген представляет собой группу рядом лежащих нуклеотидов, которыми закодирован один белок, определяющий один признак. Число генов очень велико: у человека их десятки тысяч. Один и тот же ген может оказывать влияние на развитие ряда признаков, так же, как и на формирование одного признака могут оказывать влияние несколько генов.

Каждому виду растений и животных свойствен свой количественный набор хромосом. У всех организмов одного и того же вида каждый ген расположен в одном и том же месте строго определенной хромосомы. Каждая клетка Человеческого тела содержит 46 хромосом. Почти все хромосомы в наборе представлены парами, в каждую из 22-х пар входят одинаковые по величине идентичные хромосомы, а 23-я пара является половыми хромосомами: у женщин она состоит из одинаковых хромосом XX, а у мужчин - XY. В галоидном наборе хромосом имеется только один ген, ответственный за развитие данного признака. В галоидном наборе хромосом (в соматических клетках) содержатся две гомологичные хромосомы и соответственно два гена, определяющие развитие одного какого-то признака.

Генетическая информация закодирована в последовательности азотистых оснований, содержащихся в молекуле ДНК. Азотистые основания можно рассматривать и качестве «букв» генетического алфавита. Последовательное и. оснований образует «слова».

Гены - это своего рода «предложения», записанные на генетическом языке Соответственно генетическое содержимое организма представляет собой как бы «книгу», составленную из генетических предложений. В отличие от строго определенного расположения азотистых оснований в двух комплементарных частях, нет никаких ограничений относительно того, в каком порядке должны следовать основания друг за другом вдоль одной цепи. Благодаря этому существует практически неограниченное число различных молекул ДНК. Число возможных генетических сообщений, кодируемых достаточно длинными цепями ДНК, практически не ограничено. За воспроизведение в поколениях растений, животных и человека наследственных свойств ответственны 3 эволюционно закрепленных универсальных процесса:

- размножение обычных (соматических) клеток - митоз - простое деление, перед которым количество хромосом в клетке удваивается путем самовоспроизведения;

размножение половых клеток - мейоз;

оплодотворение.

Гены управляют развитием и обменом веществ организма. Наследственная передача признаков от родителей потомству - консервативный процесс, но эта консервативность не является абсолютной, так как иначе была бы невозможна эволюция. Информация, закодированная в нуклеотидной последовательности ДНК, обычно в точности воспроизводится в процессе репликации.

Каждый новорожденный несет в себе комплекс генов не только своих родителей, но и отдаленных предков, т.е. свой, только ему присущий богатейший наследственный фонд или наследственно предопределенную биологическую программу, благодаря которой и возникают его индивидуальные качества. Эта программа закономерно и гармонично претворяется в жизнь, если:

- в основе биологических процессов лежат достаточно качественные наследственные факторы;

- внешняя среда обеспечивает растущий организм всем необходимым для реализации наследственного начала.

Приобретенные в жизни навыки и свойства не передаются по наследству, однако каждый родившейся ребенок обладает громадным арсеналом задатков, развитие которых зависит от:

- условий воспитания и обучения;

- социальной структуры общества,

- забот и усилий родителей;

желаний самого ребенка.

Внешней средой для ребенка являются прежде всего те условия, которые создадут его родители или окружающие его люди, различные климатические, геофизические и другие факторы, воздействие которых может существенно изменить характер наследственной информации. И она может реализоваться частично или полностью.

Формы изменчивости

Как уже отмечалось, весь комплекс наследственных свойств организма называется генотипом, а комплекс признаков, сформировавшихся во время взаимодействия генотипа и факторов внешней среды, - фенотипом. В соответствии с этим в генетике различают наследственную и ненаследственную изменчивость. Ненаследственная связана с изменением фенотипа, наследственная генотипа. Генотипическая изменчивость затрагивает генотип и подразделяется На несколько групп.

Рассмотрим две из них:

- мутационную;

комбинативиую.

Мутацией называется изменение структуры или количества ДНК данного организма. Мутации приводят к изменениям генотипа. Если мутации затрагивают половые клетки, то они передаются следующим поколениям, а если мутации возникают в соматических клетках, то они не передаются следующим поколениям. Генные мутации затрагивают структуру самого гена: изменяются различные по длине участки ДНК. Большинство мутаций, с которыми связана эволюция органического мира и селекция,- генная мутация.

В особую группу можно выделить ряд процессов, приводящих к возникновению комбинативной изменчивости.

Она включает:

- случайное расхождение хромосом;

случайное сочетание хромосом при оплодотворении;

рекомбинацию генов.

Обычно сами наследственные гены при этом не изменяются, но новые их сочетания между собой приводят к появлению организмов с новым фенотипом.

Мутации

Главнейшая особенность природных популяций, как показали эксперименты, - это генетическая гетерогенность (разнородность). Она поддерживается за счет мутаций и процесса рекомбинаций. Генетическая гетерогенность позволяет популяции использовать для приспособления не только вновь возникающие наследственные изменения, но и те, которые возникли очень давно и существуют в популяции в скрытом виде.

Любые мутации имеют неопределенный, случайный характер по отношению к вызывающим их изменениям внешней среды. Наибольшие шансы на выживание имеют мутации малого масштаба, не нарушающие существенно интеграции целостного организма и не производящие значительных изменений в фенотипе. Крупные мутации почти всегда имеют летальный исход. В результате сколько-нибудь существенные эволюционные преобразования организмов не могут быть достигнуты посредством одной мутации, а достигаются серией малых мутаций. Таким образом, нелетальные и не снижающие значительно жизнедеятельность организма мутации входят в состав генофонда. Мутации позволяют выживать виду при значительных изменениях окружающей среды, когда необходима перестройка нормы реакции. Мутации - это элементарный мутационный материал.

Если численность какой-нибудь популяции резко идет на убыль, а затем следует новый подъем численности, то при этом некоторые ранее присутствовавшие в малых концентрациях мутации могут совершенно исчезнуть из популяции, а концентрация других может существенно повыситься. Это явление называется дрейф генов.

Темп возникновения мутаций у различных организмов различен. Темп мутаций у бактерий и других микроорганизмов обычно ниже, чем у многоклеточных. Новые мутации, хотя и довольно редко, но постоянно появляются в природе, так как существует множество особей каждого вида.

Воздействие извне радиоактивными, ультрафиолетовыми лучами, а также химическими веществами может значительно изменить «запись» наследственной информации; Происходит нарушение генетического кода и имеете нормального развития живого организма, предначертанного природой, наступает отступление от нормы - мутация. Количество мутаций среди животных чрезвычайно велико в связи с радиационно-химическим заражением окружающей среды. Необычайно велика, полна появления животных-чудовищ после аварии на Чернобыльской АЭС. Сегодня наука разгадала причины появления мутантов, но повлиять на управление этим процессом, чтобы предотвратить его, не в силах. Более тою, современная наука, техника, производство создают все новые условия для ускорения процесса мутации. И если не остановить рост радиационно-химического загрязнения среды, последующее влияние его на будущее скажется на многих поколениях.

Становление генетической памяти резко интенсифицировало весь процесс эволюции. Это принципы самоорганизации материи, и особую роль здесь играет развитие центральной нервной системы (ЦНС). Благодаря споим функциям, ЦНС способна не только определять свое отношение к гомеостазу, но и компенсировать нежелательные отклонения от нормы.

Полученная информация принимается и оценивается. Именно принятие решения ответственно за образование обратных связей. В процессе эволюции живые организмы обеспечивают собственную стабильность и дальнейшее развитие с помощью механизма обратных связей. Носителями обратных связей являются все управляющие системы живого существа и в первую очередь нервная и гормональная системы. По мере эволюции и усложнения ЦНС превратилась в систему, содержащую блоки переработки информации, систему выработки команд исполнительными органами.

По мере совершенствования организма и появления зачатков интеллекта на ЦНС возлагается ответственность за совершенствование механизмов использования внешней материи и энергии.

С развитием нервной системы постепенно возник мозг, но мозг и интеллект - не синонимы. Появление интеллекта - еще один важнейший этап развития нервной системы. Это начало нового периода саморазвития материи, в котором материя начинает познавать себя. Самое главное в интеллекте - это способность к отвлеченному мышлению, абстрагированию, благодаря которому и возникают самосознание и рефлексия. Появление на Земле человека означает, что Природа начала с его помощью познавать себя, возникло сознание.

Генотип - совокупность наследственных признаков и свойств, полученных особью от родителей, а также новых свойств, появившихся в результате мутаций генов, которых не было у родителей. Генотип складывается при взаимодействии двух геномов (яйцеклетки и сперматозоида) и представляет собой наследственную программу развития.

Возможность и форма проявления гена зависят от условий среды. Среда здесь - это: условия, окружающие клетку, и присутствие других генов. Гены взаимодействуют друг с другом и, оказавшись в одном генотипе, могут сильно влиять на проявление действия соседних генов.

Фенотип - совокупность всех признаков и свойств организма, сложившихся в процессе индивидуального развития генотипа.

Признаки:

внешние (цвет кожи, волос, форма уха или нома, окраска цветков);

внутренние:

анатомические (строение тела и взаимное расположение органов),
физиологические (форма и размеры клеток, строение тканей и органов),
биохимические (структура белка, активность фермента, концентрация гормонов в крови).

Каждая особь имеет свои особенности внешнего вида, внутреннего строения, характера обмена веществ, функционирования органов, т.е. свой фенотип, который сформировался в определенных условиях среды.

Фенотип формируется под влиянием генотипа и условий внешней среды.

Генотип отражается в фенотипе, а фенотип наиболее полно проявляется в определенных условиях среды.

4. Системы пищеварения, кровообращения и кроветворения человека.

Система органов пищеварения

Система органов пищеварения включает ряд органов, отвечающих за поступление, переработку, усвоение и выделение непереваренных продуктов. Она включает ротовую полость, пищевод, желудок, двенадцатиперстную кишку, печень, желчный пузырь, поджелудочную железу, тонкий и толстый кишечник, прямую кишку, а также слюнные железы и железы внутренней секреции.

Пищеварение - сложный комплекс физико-химических процессов усвоения пищи. В нем принимают участие все органы пищеварения.

Поверхность кишечника имеет множество ворсинок. Совокупность этих ворсинок обеспечивает превращение пищевых продуктов, состоящих из мертвой материи, в живые крупинки клеточной цитоплазмы. Длина каждой ворсинки равна 2-5 мкм, диаметр - 1 мкм. Допуская, что площадь наружной оболочки кишечника у человека исчисляется 43 кв.м, внутренняя поглощающая поверхность их со всем объемом ворсинок должна равняться 602 кв.м. Здоровый организм должен выделять в сутки 100-150 г кала.

Печень производит за 24 часа от 1 до 1,5 л желчи. Желчь необходима для расщепления жиров на глицерин и жирные кислоты. В клетках кишечника молекулы глицерина и жирных кислот опять соединяются и проникают в кровь. В крови они снова распадаются, освобождая энергию. И так до углекислого газа и воды с постоянным выделением энергии. Известно приблизительно 30 биохимических функций печени и это только начало. Это уникальная биохимическая лаборатория жизни. Очистка организма происходит преимущественно ночью. Если она протекает некачественно, человек просыпается усталым.

Объем крови, проходящей через печень за 1 час - 100 л (если положить грелку на 1 час на область печени, можно согреть 100 л крови). Поверхность обмена печени очень велика. Печень на 75% состоит из воды, она похожа на огромную всасывающую губку.

Поджелудочная железа начинает функционировать через 1-3 минуты после начала еды. Наибольшее количество желудочного сока выделяется при приеме хлеба. Одновременно она является железой эндокринной системы, выделяющей гормон инсулин, регулирующий концентрацию сахара в крови. На секреторную деятельность поджелудочной железы оказывают влияние гормоны гипофиза, щитовидной железы, надпочечников и коры больших полушарий. В состоянии стресса резко снижается ферментативная активность поджелудочного сока.

Система органов кровообращения

Система органов кровообращения выполняет в организме очень важную функцию - обеспечивает транспорт энергетических и питательных веществ в клетку и освобождает ее от отходов жизнедеятельности. Она включает сердце, систему артериальных и венозных сосудов, капилляры. Сосуды человека, как транспортные магистрали. Движение в них не прекращается ни на секунду. Остановка кровообращения - это смерть для клетки. От слаженной работы системы органов кровообращения зависит работа всех систем.

По артериям кровь, обогащенная кислородом, направляется в клетки. По венам кровь с углекислотой от клетки поступает в легкие. В течение минуты здоровое сердце выбрасывает в аорту 6л крови, за 1 час - 420л, за 24 часа - 10000л. Этот подсчет дает возможность представить себе сердечную нагрузку. Непосредственно к клетке подходят мельчайшие кровеносные сосуды - капилляры. Кровь в них осуществляет свои основные функции: отдает тканям кислород, питательные вещества, гормоны и уносит углекислый газ и другие продукты обмена, подлежащие выделению. Благодаря происходящему в капиллярах обмену веществ поддерживается постоянство физико-химических свойств тканевой жидкости, омывающей клетки и, следовательно, постоянство условий их жизнедеятельности. Капилляры - это конечные разветвления артериальной системы и одновременно начало венозной. Жизнь клетки напрямую зависит от качества капиллярного кровообращения.

Поверхность клеток всех кровеносных капилляров у взрослого человека - 7300м2. Общее количество крови и лимфы - 7,3л. Каждая сердечная систола здорового человека выбрасывает в поток крови от 80 до 100мл. Общее количество крови 5л. Общее количество циркулирующей жидкости - 28л. Сердце на 71% состоит из воды. Общая длина капилляров у взрослого человека достигает 100 тысяч км. Диаметр капилляров варьирует между 6 и 30мкм. Давление крови в капиллярах колеблется от 10 до 20мм рт ст. При гиперемии давление поднимается до 40мм. Не все капилляры постоянно открыты. При покое органов функционирует примерно их десятая часть - "дежурные капилляры". В отличие от артерий и вен капилляры могут вновь образовываться и исчезать.

Ни одно заболевание не обходится без вовлечения в патологический процесс капиллярного русла. Любое психическое и физическое напряжение сопровождается усилением капиллярного кровотока. Именно с помощью микроциркуляторных реакций осуществляются процессы адаптации организма к изменениям внутренней и внешней среды.

Система органов кроветворения

Кроветворная система отвечает в организме за функцию обеспечения постоянного состава крови. Она включает костный мозг, селезенку, лимфатические железы. Кровь имеет очень важное значение для функционирования организма. Она переносит кислород и другие важные вещества к тканям и клеткам, а взамен выводит углекислоту и другие отработанные продукты. Кровь состоит из бесцветной жидкости, называемой плазмой, в которой находятся эритроциты, лейкоциты, тромбоциты и лимфоциты.

Плазма содержит огромное количество химических веществ, необходимых для жизни организма: белки, углеводы, жиры, минеральные соли, ферменты, гормоны, витамины и др. Важной составной частью плазмы являются белки: альбумины и глобулины. Альбумины удерживают воду, не позволяя крови превратиться в желе. Глобулины выступают в роли антител при попадании инфекции.

Эритроциты - безъядерные клетки крови животных и человека. Они содержат гемоглобин, который легко соединяется с кислородом. В капиллярах гемоглобин отдает кислород тканям (выделяет в межклеточную жидкость) и присоединяет к себе углекислый газ. После гибели эритроцит распадается на белковую часть - глобин и красящее вещество - гем. От молекулы гема отсоединяется желчный пигмент - билирубин, который выводится из организма. Остатки эритроцита с током крови переносятся в костный мозг и используются для образования новых эритроцитов. Это происходит в костном мозгу грудины, ребер, позвонков, в диафизах трубчатых костей, в лимфатических железах и селезенке.

Масса костного мозга составляет 2 кг. Он ежедневно производит 300 млрд. эритроцитов. Каждые 2 месяца общее количество эритроцитов обновляется. Жизнь 1 эритроцита длится от 42 до 127 дней. Ежедневно умирает более 200 млрд. эритроцитов, 2 млн. почечных нефронов обеспечивает выведение остатков эритроцитов. При анемии умирает до 300-500 млрд эритроцитов и проблема их эвакуации встает очень остро.

Лейкоциты - белые кровяные клетки. Они защищают организм от различных чужеродных частиц и болезнетворных микробов. Лейкоциты чувствительны к веществам, выделяемым бактериями. В очагах повреждения погибшие лейкоциты скапливаются в виде гноя.

Лимфоциты играют жизненно важную роль в организме, обеспечивая ему естественный иммунитет к заболеваниям. Лимфоциты вырабатывают антитоксины и антитела, которые не позволяют клеткам организма погибнуть от натиска бактерий.

Тромбоциты. Основная функция этих клеток - создание сгустков крови, необходимых для остановки кровотечения. При повреждении сосудистой стенки тромбоциты мгновенно разрушаются, образуя сгусток белка - фибрина, который закупоривает сосуд. Адреналин ускоряет свертываемость крови. С этим связана опасность тромбозов при хронических стрессах.

5.      Понятие о предельно-допустимых концентрациях (ПДК) и классах опасности загрязняющих веществ. Ксенобиотики, кумулятивный эффект

Предельно допустимая концентрация (далее ПДК) - утверждённый в законодательном порядке санитарно-гигиенический <#"791561.files/image008.gif">

Рис. 5. Сущность образования металлической струи

В результате концентрации энергии взрыва и создания уплотнённой газово-металлической струи в области кумулятивной выемки (рис. 1), частицы наружного слоя металла воронки под действием упругого удара получают движение, отрываются от воронки и летят с большей скоростью (до 12-15 км/с), образуя иглу кумулятивной струи. Кумулятивная энергия струи переходит в энергию давления равную Р=1-2 млн. кг/см2 в результате чего металл брони течёт не нагреваясь до температуры плавления (температура кумулятивной струи составляет 200-600 % С). Кумулятивный эффект открыл в 1864 году русский военный инженер генерал М. М. Андриевский, который использовал это явление при создании капсюля-детонатора. Значительный вклад в теорию кумулятивного эффекта внесли русские учёные М. Я. Сухаревский, М. А. Лаврентьев, Е. И. Забабахин, Г. И. Покровский, Ф. А. Баум и другие. Кумулятивный эффект нашёл широкое использование не только в, военном деле, но и в строительстве и горнорудной промышленности, в исследованиях свойств веществ при высоких давлениях.

Ксенобиотики - условная категория для обозначения чужеродных для живых организмов химических веществ, естественно не входящих в биотический круговорот. Как правило, повышение концентрации ксенобиотиков в окружающей среде прямо или косвенно связано с хозяйственной деятельностью человека. К ним в ряде случаев относят: пестициды <http://ru.wikipedia.org/wiki/%D0%9F%D0%B5%D1%81%D1%82%D0%B8%D1%86%D0%B8%D0%B4%D1%8B>, некоторые моющие средства (детергенты <http://ru.wikipedia.org/wiki/%D0%94%D0%B5%D1%82%D0%B5%D1%80%D0%B3%D0%B5%D0%BD%D1%82>), радионуклиды, синтетические красители, полиароматические углеводороды и др. Попадая в окружающую природную среду, они могут вызвать повышение частоты аллергических <http://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%BB%D0%B5%D1%80%D0%B3%D0%B8%D1%8F> реакций, гибель организмов, изменить наследственные признаки, снизить иммунитет <http://ru.wikipedia.org/wiki/%D0%98%D0%BC%D0%BC%D1%83%D0%BD%D0%B8%D1%82%D0%B5%D1%82>, нарушить обмен веществ, нарушить ход процессов в естественных экосистемах вплоть до уровня биосферы в целом.

Изучение превращений ксенобиотиков путём детоксикации и деградации в живых организмах и во внешней среде важно для организации санитарно-гигиенических мероприятий по охране природы.

Действие ксенобиотиков. Ксенобиотики - любые чуждые для организма вещества (пестициды, ​токсины, др. поллютанты), способные вызвать нарушение биологических ​процессов, не обязательно яды или токсины. Однако в большинстве случаев ксенобиотики, попадая в живые организмы, могут вызывать различные прямые нежелательные эффекты <http://ru.wikipedia.org/wiki/%CA%F1%E5%ED%EE%E1%E8%EE%F2%E8%EA>, либо вследствие биотрансформации образовывать токсичные метаболиты:

- токсические или аллергические реакции

изменения наследственности

снижение иммунитета

- специфические заболевания (болезнь минамата <http://ru.wikipedia.org/wiki/%D0%9C%D0%B8%D0%BD%D0%B0%D0%BC%D0%B0%D1%82%D0%B0_(%D0%B1%D0%BE%D0%BB%D0%B5%D0%B7%D0%BD%D1%8C)>, болезнь итай-итай <http://ru.wikipedia.org/wiki/%D0%91%D0%BE%D0%BB%D0%B5%D0%B7%D0%BD%D1%8C_%D0%B8%D1%82%D0%B0%D0%B9-%D0%B8%D1%82%D0%B0%D0%B9>, рак <http://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D0%BA_(%D0%B7%D0%B0%D0%B1%D0%BE%D0%BB%D0%B5%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5)>)

искажение обмена веществ, нарушение естественного хода природных процессов в экосистемах, вплоть до уровня биосферы в целом.

Примеры ксенобиотиков

тяжёлые металлы (кадмий <http://ru.wikipedia.org/wiki/%D0%9A%D0%B0%D0%B4%D0%BC%D0%B8%D0%B9>, свинец <http://ru.wikipedia.org/wiki/%D0%A1%D0%B2%D0%B8%D0%BD%D0%B5%D1%86>, ртуть <http://ru.wikipedia.org/wiki/%D0%A0%D1%82%D1%83%D1%82%D1%8C> и другие)

фреоны

нефтепродукты

пластмассы <http://ru.wikipedia.org/wiki/%D0%9F%D0%BB%D0%B0%D1%81%D1%82%D0%BC%D0%B0%D1%81%D1%81%D1%8B>, особенно это относится к пластиковой упаковке (полиэтиленовые пакеты, пластиковые ПЭТФ-бутылки и т.д.)

полициклические и галогенированные ароматические углеводороды

пестициды

синтетические поверхностно-активные вещества

Некоторые вещества, относимые к ксенобиотикам, могут быть найдены в природе. Так, диоксины <http://ru.wikipedia.org/wiki/%D0%94%D0%B8%D0%BE%D0%BA%D1%81%D0%B8%D0%BD%D1%8B> образуются в результате естественных процессов, таких как извержения вулканов <http://ru.wikipedia.org/wiki/%D0%98%D0%B7%D0%B2%D0%B5%D1%80%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5_%D0%B2%D1%83%D0%BB%D0%BA%D0%B0%D0%BD%D0%B0> и лесные пожары <http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%B6%D0%B0%D1%80><http://ru.wikipedia.org/wiki/%CA%F1%E5%ED%EE%E1%E8%EE%F2%E8%EA>. Многие вещества, например ксилол <http://ru.wikipedia.org/wiki/%D0%9A%D1%81%D0%B8%D0%BB%D0%BE%D0%BB>, стирол <http://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%B8%D1%80%D0%BE%D0%BB>, толуол <http://ru.wikipedia.org/wiki/%D0%A2%D0%BE%D0%BB%D1%83%D0%BE%D0%BB>, ацетон <http://ru.wikipedia.org/wiki/%D0%90%D1%86%D0%B5%D1%82%D0%BE%D0%BD>, бензол <http://ru.wikipedia.org/wiki/%D0%91%D0%B5%D0%BD%D0%B7%D0%BE%D0%BB>, парыбензина <http://ru.wikipedia.org/wiki/%D0%91%D0%B5%D0%BD%D0%B7%D0%B8%D0%BD> или хлороводорода <http://ru.wikipedia.org/wiki/%D0%A5%D0%BB%D0%BE%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BE%D1%80%D0%BE%D0%B4>, могут быть отнесены к ксенобиотикам, если они накопятся в окружающей среде <http://ru.wikipedia.org/wiki/%D0%9E%D0%BA%D1%80%D1%83%D0%B6%D0%B0%D1%8E%D1%89%D0%B0%D1%8F_%D1%81%D1%80%D0%B5%D0%B4%D0%B0> в неестественно высоких концентрациях в процессе промышленного производства <http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D0%BC%D1%8B%D1%88%D0%BB%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C>.

Липофильные <http://ru.wikipedia.org/wiki/%D0%9B%D0%B8%D0%BF%D0%BE%D1%84%D0%B8%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C> ксенобиотики в настоящее время вызывают особенное внимание экологов и токсикологов, так как, накапливаясь в жировых тканях, способны переходить по пищевой цепи <http://ru.wikipedia.org/wiki/%D0%9F%D0%B8%D1%89%D0%B5%D0%B2%D0%B0%D1%8F_%D1%86%D0%B5%D0%BF%D1%8C> в организмы животных и человека, превращаясь в более полярные и, следовательно, более легко усваиваемые или экскретируемые вещества.

6. Ксенобиотики (тяжелые металлы, диоксины, бенз(а)пирены), загрязняющие продукты питания и корма. Источники загрязнения, меры по снижению их негативного действия

Чужеродные вещества, поступающие в человеческий организм с пищевыми продуктами и имеющие высокую токсичность, называют ксенобиотиками, или загрязнителями.

"Под токсичностью веществ понимается их способность наносить вред живому организму. Любое химическое соединение может быть токсичным. По мнению токсикологов, следует говорить о безвредности химических веществ при предлагаемом способе их применения. Решающую роль при этом играют: доза (количество вещества, поступающего в организм в сутки); длительность потребления; режим поступления; пути поступления химических веществ в организм человека".

При оценке безопасности пищевой продукции базисными регламентами являются предельно допустимая концентрация (далее ПДК), допустимая суточная доза (далее ДСД), допустимое суточное потребление (далее ДСП) веществ, содержащихся в пище.

ПДК ксенобиотика в продуктах питания измеряется в миллиграммах на килограмм продукта (мг/кг) и указывает на то что, более высокая его концентрация несёт опасность для организма человека.

ДСД ксенобиотика - максимальная доза (в мг на 1 кг веса человека) ксенобиотика, ежедневное пероральное поступление которой на протяжении всей жизни безвредно, т.е. не оказывает неблагоприятного воздействия на жизнедеятельность, здоровье настоящего и будущих поколений.

ДСП ксенобиотика - максимально возможное для потребления количество ксенобиотика для конкретного человека в сутки (в мг в сутки). Определяется умножением допустимой суточной дозы на массу человека в килограммах. Поэтому ДСП ксенобиотика индивидуально для каждого конкретного человека, и очевидно, что для детей этот показатель значительно ниже, чем для взрослых.

Наиболее распространённая в современной науке классификация загрязнителей продовольственного сырья и продуктов питания сводится к следующим группам:

) химические элементы (ртуть, свинец, кадмий, др.);

) радионуклиды;

) пестициды;

) нитраты, нитриты и нитрозосоединения;

) вещества, применяемые в животноводстве;

) полициклические ароматические и хлорсодержащие углеводороды;

) диоксины и диоксинподобные вещества;

) метаболиты микроорганизмов.

Основные источники загрязнения продовольственного сырья и продуктов питания.

Атмосферный воздух, почва, воды, загрязнённые отходами жизнедеятельности человека.

Загрязнение растительного и животноводческого сырья пестицидами и веществами, которые являются продуктами их биохимических превращений.

Нарушение технологических и санитарно-гигиенических правил использования удобрений и оросительных вод в сельском хозяйстве.

Нарушение правил использования в животноводстве и птицеводстве кормовых добавок, стимуляторов роста, медикаментов.

Технологический процесс производства продукции.

Использование неразрешённых пищевых, биологически активных и технологических добавок.

Использование разрешённых пищевых, биологически активных и технологических добавок, но в повышенных дозах.

Внедрение новых плохо проверенных технологий, основанных на химическом или микробиологическом синтезе.

Образование в пищевых продуктах токсических соединений в процессе варки, жарки, облучения, консервирования и проч.

Несоблюдение санитарно-гигиенических правил производства продукции.

Пищевое оборудование, посуда, инвентарь, тара, упаковка, содержащие вредные химические вещества и элементы.

Несоблюдение технологических и санитарно-гигиенических правил хранения и транспортировки продовольственного сырья и продуктов питания.

Рассматриваемые ниже химические элементы широко распространены в природе, они могут попадать в пищевые продукты, например, из почвы, атмосферного воздуха, подземных и поверхностных вод, сельскохозяйственного сырья, а через пищу - в организм человека. Они накапливаются в растительном и животном сырье, что обусловливает их высокое содержание в пищевых продуктах и продовольственном сырье.

Большинство макро - и микроэлементов жизненно необходимы человеку, при этом для одних установлена определенная роль в организме, для других эту роль еще предстоит определить.

Таким образом, большинство химических элементов в строго определённых количествах являются необходимыми для нормального функционирования организма человека, но избыточное их поступление вызывает отравление.

Согласно решению объединенной комиссии Продовольственной и сельскохозяйственной организации ООН (далее ФАО) и Всемирной организации здравоохранения (далее ВОЗ) по Пищевому кодексу, в число компонентов, содержание которых контролируется при международной торговле продуктами питания, включено восемь химических элементов: ртуть, кадмий, свинец, мышьяк, медь, цинк, железо, стронций. Список этих элементов в настоящее время дополняется. В России медико-биологическими требованиями определены критерии безопасности для следующих химических элементов: ртуть, кадмий, свинец, мышьяк, медь, цинк, железо, олово.

Токсиколого-гигиеническая характеристика химических элементов

Свинец. Один из самых распространенных и опасных токсикантов. В земной коре содержится в незначительных количествах. Вместе с тем только в атмосферу поступает в переработанном и мелкодисперсном состоянии 4,5·105 т свинца в год.

Среднее содержание свинца по отдельным группам продуктов, мг/кг: фрукты - 0,1, овощи - 0, 19, крупы - 0,21, хлебобулочные изделия - 0,16, мясо и рыба - 0,16, молоко - 0,027.

Предусматривается содержание свинца в водопроводной воде не выше 0,03 мг/кг. Следует отметить активное накопление свинца в растениях и мясе сельскохозяйственных животных вблизи промышленных центров, крупных автомагистралей. Взрослый человек получает ежедневно с пищей 0,1-0,5 мг свинца, с водой - около 0,02 мг. Общее его содержание в организме составляет 120 мг. Из крови свинец поступает в мягкие ткани и кости.90% поступившего свинца выводится из организма с фекалиями, остальное с мочой и другими биологическими жидкостями. Биологический период полувыведения свинца из мягких тканей и органов составляет около 20 дней, из костей - до 20 лет.

Основными мишенями при воздействии свинца являются кроветворная, нервная, пищеварительная системы и почки. Отмечено отрицательное влияние на половую функцию организма.

Мероприятия по профилактике загрязнения свинцом пищевых продуктов должны включать государственный и ведомственный контроль за промышленными выбросами свинца в атмосферу, водоемы, почву. Необходимо снизить или полностью исключить применение соединений свинца в бензине, стабилизаторах, изделиях из поливинилхлорида, красителях, упаковочных материалах. Немаловажное значение имеет гигиенический контроль за использованием луженой пищевой посуды, а также глазурованной керамической посуды, недоброкачественное изготовление которых ведет к загрязнению пищевых продуктов свинцом.

Кадмий. В природе в чистом виде не встречается. Земная кора содержит около 0,05 мг/кг кадмия, морская вода - 0,3 мкг/кг.

Кадмий широко применяется при производстве пластмасс, полупроводников. В некоторых странах соли кадмия используются в ветеринарии. Фосфатные удобрения и навоз также содержат кадмий.

Все это определяет основные пути загрязнения окружающей среды, а, следовательно, продовольственного сырья и пищевых продуктов. В нормальных геохимических регионах с относительно чистой экологией содержание кадмия в растительных продуктов составляет, мкг/кг: зерновые - 28-95; горох - 15-19; фасоль - 5-12; картофель - 12-50; капуста - 2-26; помидоры - 10-30; салат - 17-23; фрукты - 9-42; растительное масло - 10-50; сахар - 5-31; грибы - 100-500. В продуктах животного происхождения, в среднем, мкг/кг: молоко - 2,4; творог - 6; яйца - 23-250.

Установлено, что примерно 80% кадмия поступает в организм человека с пищей, 20% - через легкие из атмосферы и при курении.

С рационом взрослый человек получает в сутки до 150 и более мкг кадмия на 1 кг массы тела. В одной сигарете содержится 1,5-2,0 мкг кадмия, поэтому его уровень в крови и почках у курящих в 1,5-2,0 раза выше по сравнению с некурящими.

-94% кадмия, попавшего в организм с пищей, выводится с мочой, калом и желчью. Остальная часть находится в органах и тканях в ионной форме или в комплексе с белковыми молекулами. В виде этого соединения кадмий не токсичен, поэтому синтез таких молекул - защитная реакция организма при поступлении небольших количеств кадмия. Здоровый организм человека содержит около 50 мг кадмия. Кадмий, как и свинец, не является необходимым элементом для организма млекопитающих.

Попадая в организм в больших дозах, кадмий проявляет сильные токсические свойства. Главной мишенью биологического действия являются почки. Известна способность кадмия в больших дозах нарушать обмен железа и кальция. Все это приводит к возникновению широкого спектра заболеваний: гипертоническая болезнь, анемия, снижение иммунитета и др. Отмечены тератогенный, мутагенный и канцерогенный эффекты кадмия.

ДСП кадмия составляет 70 мкг/сутки, ДСД - 1 мкг/кг. ПДК кадмия в питьевой воде - 0,01 мг/л. Концентрация кадмия в сточных водах, попадающих в водоемы, не должна превышать 0,1 мг/л. Учитывая ДСП кадмия, его содержание в 1 кг суточного набора продуктов не должно превышать 30-35 мкг.

Важное значение в профилактике интоксикации кадмием имеет правильное питание: преобладание в рационе растительных белков, богатое содержание серосодержащих аминокислот, аскорбиновой кислоты, железа, цинка, меди, селена, кальция. Необходимо профилактическое УФ-облучение. Целесообразно исключить из рациона продукты, богатые кадмием. Белки молока способствуют накоплению кадмия в организме и проявлению его токсических свойств.

Мышьяк. Содержится во всех объектах биосферы: морской воде - около 5 мкг/кг, земной коре - 2 мг/кг, рыбах и ракообразных - в наибольших количествах. Фоновый уровень мышьяка в продуктах питания из нормальных геохимических регионов составляет в среднем 0,5-1 мг/кг. Высокая концентрация мышьяка, как и других химических элементов, отмечается в печени, пищевых гидробионтах, в частности морских. В организме человека обнаруживается около 1,8 мг мышьяка.

ФАО/ВОЗ установила ДСД мышьяка 0,05 мг/кг массы тела, что составляет для взрослого человека около 3 мг/сутки.

Мышьяк, в зависимости от дозы, может вызывать острое и хроническое отравление. Хроническая интоксикация возникает при длительном употреблении питьевой воды с 0,3-2,2 мг мышьяка на 1 л воды. Разовая доза мышьяка в 30 мг смертельна для человека. Специфическими симптомами интоксикации считают утолщение рогового слоя кожи ладоней и подошв. Неорганические соединения мышьяка более токсичны, чем органические. После ртути мышьяк является вторым по токсичности элементом, содержащимся в пищевых продуктах. Соединения мышьяка хорошо всасываются в пищевом тракте.90% поступившего в организм мышьяка выделяется с мочой. Биологическая ПДК мышьяка в моче равна 1 мг/л, а концентрация 2-4 мг/л свидетельствует об интоксикации. В организме он накапливается в волосах, ногтях, коже, что учитывается при биологическом мониторинге. Необходимость мышьяка для жизнедеятельности организма человека не доказана, за исключением его стимулирующего действия на процесс кроветворения.

Загрязнение продуктов питания мышьяком обусловлено его использованием в сельском хозяйстве. Мышьяк находит применение в производстве полупроводников, стекла, красителей. Бесконтрольное использование мышьяка и его соединений приводит к его накоплению в продовольственном сырье и пищевых продуктах, что обусловливает риск возможных интоксикаций и определяет пути профилактики.

Ртуть. Один из самых опасных и высокотоксичных элементов, обладающий способностью накапливаться в организме растений, животных и человека. Благодаря своим физико-химическим свойствам - растворимости, летучести - ртуть и ее соединения широко распространены в природе. В земной коре ее содержание составляет 0,5 мг/кг, морской воде - около 0,03 мкг/кг. В организме взрослого человека - около 13 мг, однако необходимость ее для процессов жизнедеятельности не доказана.

Загрязнение пищевых продуктов ртутью может происходить в результате:

естественного процесса испарения из земной коры в количестве 25-125 тыс. т ежегодно;

использования ртути в народном хозяйстве - производство хлора и щелочей, зеркал, электротехническая промышленность, медицина и стоматология, сельское хозяйство и ветеринария;

образование некоторыми группами микроорганизмов метилртути, диметилртути, других высокотоксичных соединений, поступающих в пищевые цепи.

Фоновое содержание ртути в съедобных частях сельскохозяйственных растений составляет от 2 до 20 мкг/кг, редко до 50-200 мкг/кг. Наибольшая концентрация ртути обнаружена в шляпочных грибах - 6-447 мкг/кг, в перезрелых - до 2000 мкг/кг. В отличие от растений, в грибах может синтезироваться метилртуть.

Фоновое содержание в продуктах животноводства составляет, мкг/кг: мясо - 6-20, печень - 20-35, почки - 20-70, молоко - 2-12, коровье масло - 2-5, яйца - 2-15. С увеличением количества ртути в корме и питьевой воде ее концентрация в органах и тканях существенно возрастает.

Мясо рыбы отличается наибольшей концентрацией ртути и ее соединений, которые активно аккумулируются в организме из воды и корма, содержащих другие гидробионты, богатые ртутью. В мясе хищных пресноводных рыб уровень ртути составляет 107-509 мкг/кг, нехищных - 79-200 мкг/кг, океанских - 300-600 мкг/кг. Организм рыб способен синтезировать метилртуть, которая накапливается в печени.

При варке рыбы и мяса концентрация ртути в них снижается, при аналогичной обработке грибов - остается без изменений.

Неорганические соединения ртути выделяются преимущественно с мочой, органические - с желчью и калом. Период полувыведения из организма неорганических соединений - 40 суток, органических - 76.

Защитным эффектом при воздействии ртути на организм человека обладают цинк и особенно селен. Токсичность неорганических соединений ртути снижают аскорбиновая кислота и медь при их повышенном поступлении в организм, органических - протеины, цистин, токоферолы.

Безопасным уровнем содержания ртути в крови считают 50-100 мкг/л, волосах - 30-40 мкг/г, моче - 5-10 мкг/сут. Человек получает с суточным рационом 0,045-0,060 мг ртути, что примерно соответствует рекомендуемой ФАО/ВОЗ норме по ДСП - 0,05 мг. ПДК ртути в водопроводной воде, идущей для приготовления пищи, составляет 0,005 мг/л, международный стандарт - 0,01 мг/л (ВОЗ, 1974 г).

Медь. Содержание в земной коре составляет 4,5 мг/кг, морской воде - 1-25 мкг/кг, организме взрослого человека - около 100 мг/кг.

Медь, в отличие от ртути и мышьяка, принимает активное участие в процессах жизнедеятельности, входя в состав ряда ферментных систем. Суточная потребность - 4-5 мг. Дефицит меди приводит к анемии, недостаточности роста, ряду других заболеваний, в отдельных случаях - к смертельному исходу.

Однако при длительном воздействии высоких доз меди наступает "поломка" механизмов адаптации, переходящая в интоксикацию и специфическое заболевание. В этой связи является актуальной проблема охраны окружающей среды и пищевой продукции от загрязнения медью и ее соединениями. Основная опасность исходит от промышленных выбросов, передозировки инсектицидами, другими токсичными солями меди, потребления напитков, пищевых продуктов, соприкасающихся в процессе производства с медными деталями оборудования или медной тарой.

Цинк. Содержится в земной коре в количестве 65 мг/кг, морской воде - 9-21 мкг/кг, организме взрослого человека - 1,4-2,3 г/кг.

Цинк входит в состав около 80 ферментов, участвуя тем самым в многочисленных реакциях обмена веществ. Типичными симптомами недостаточности цинка являются замедление роста у детей, половой инфантилизм у подростков, нарушение вкуса и обоняния и др.

Суточная потребность в цинке взрослого человека составляет 15 мг. Цинк, содержащийся в растительных продуктах, менее доступен для организма. Цинк из продуктов животного происхождения усваивается на 40%. Содержание цинка в пищевых продуктах составляет, мг/кг: мясо - 20-40, рыбопродукты - 15-30, устрицы - 60-1000, яйца - 15-20, фрукты и овощи - 5, картофель, морковь - около 10, орехи, зерновые - 25-30, мука высшего сорта - 5-8; молоко - 2-6 мг/л. В суточном рационе взрослого человека содержание цинка составляет 13-25 мг. Цинк и его соединения малотоксичны. Содержание цинка в воде в концентрации 40 мг/л безвредно для человека.

Вместе с тем возможны случаи интоксикации при нарушении использования пестицидов, небрежного терапевтического применения препаратов цинка. Признаками интоксикации являются тошнота, рвота, боль в животе, диарея. Отмечено, что цинк в присутствии сопутствующих мышьяка, кадмия, марганца, свинца в воздухе на цинковых предприятиях вызывает у рабочих "металлургическую" лихорадку.

Известны случаи отравления пищей или напитками, хранившимися в железной оцинкованной посуде. В этой связи приготовление и хранение пищевых продуктов в оцинкованной посуде запрещено. ПДК цинка в питьевой воде - 5 мг/л, для водоемов рыбохозяйственного назначения - 0,01 мг/л.

Олово. Необходимость олова для организма человека не доказана. Вместе с тем в организме взрослого человека около 17 мг олова, что указывает на возможность его участия в обменных процессах.

Количество олова в земной коре относительно невелико. При поступлении олова с пищей всасывается около 1%. Олово выводится из организма с мочой и желчью.

Неорганические соединения олова малотоксичны, органические - более токсичны. Основным источником загрязнения пищевых продуктов оловом являются консервные банки, фляги, железные и медные кухонные котлы, другая тара и оборудование, которые изготавливаются с применением лужения и гальванизации. Активность перехода олова в пищевой продукт возрастает при температуре хранения выше 20° С, высоком содержании в продукте органических кислот, нитратов и окислителей, которые усиливают растворимость олова.

Опасность отравления оловом увеличивается при постоянном присутствии его спутника - свинца. Не исключено взаимодействие олова с отдельными веществами пищи и образование более токсичных органических соединений. Повышенная концентрация олова в продуктах придает им неприятный металлический привкус, изменяет цвет. Имеются данные, что токсичная доза олова при его однократном поступлении - 5-7 мг/кг массы тела. Отравление оловом может вызвать признаки острого гастрита (тошнота, рвота и др.), отрицательно влияет на активность пищеварительных ферментов.

Действенной мерой предупреждения загрязнения пищи оловом является покрытие внутренней поверхности тары и оборудования стойким, гигиенически безопасным лаком или полимерным материалом, соблюдение сроков хранения баночных консервов, особенно продуктов детского питания, использование для некоторых консервов стеклянной тары.

Железо. Занимает четвертое место среди наиболее распространенных в земной коре элементов (5% земной коры по массе).

Этот элемент необходим для жизнедеятельности как растительного, так и животного организма. У растений дефицит железа проявляется в желтизне листьев и называется хлорозом, у человека вызывает железодефицитную анемию, поскольку железо участвует в образовании гемоглобина. Железо выполняет целый ряд других жизненно важных функций: перенос кислорода, образование эритроцитов и т.д.

В организме взрослого человека содержится около 4,5 г железа. Содержание железа в пищевых продуктах колеблется в пределах 0,07-4 мг в 100 г. Основным источником железа в питании являются печень, почки, бобовые культуры. Потребность взрослого человека в железе составляет около 14 мг/сут, у женщин в период беременности и лактации она возрастает.

Железо из мясных продуктов усваивается организмом на 30%, из растений на 10%.

Несмотря на активное участие железа в обмене веществ, этот элемент может оказывать токсическое действие при поступлении в организм в больших количествах. Так, у детей после случайного приема 0,5 г железа или 2,5 г сульфата железа наблюдали состояние шока. Широкое промышленное применение железа, распространение его в окружающей среде повышает вероятность хронической интоксикации. Загрязнение пищевых продуктов железом может происходить через сырье, при контакте с металлическим оборудованием и тарой, что определяет соответствующие меры профилактики.

7. Агроэкологическое значение альтернативных систем земледелия

Современное с/х России находится в такой ситуации, когда стало очевидно, что концепция традиционного развития АПК должны быть существенно пересмотрена с учетом эколого-экономических проблем. Ведение с/х в Р привело к тому, что при увеличивающихся энергозатратах на единицу продукции мы не стали получать больше. За последние 30 лет с/х угодья РФ сократились с 51 до 46 млн. га. Главный итог развития нашего аграрного сектора - это противоречие экономической политики и агроэкологических аспектов интенсификации с/х производства. Очевидно, что нормальное воспроизводство в аграрном секторе невозможно осуществить без затрат на экологию. Затраты на экологию подразделяют на плановые и неплановые. К первым относятся затраты, связанные с расходами на производство экологически безопасной продукции, повышение плодородия почв, предотвращение загрязнения и сохранение окружающей среды. К неплановым относятся убытки, связанные с невозможностью реализации продукции отраслей животноводства и растениеводства из-за нарушения медицинских нормативов. Также сюда относят расходы, связанные с компенсацией потерь при загрязнении АЭС. В условиях интенсивного ведения с/х производства АЭС, как правило, выходит из равновесия (сбой по биоэнергетическому потенциалу). В основу альтернативного земледелия входит задача сокращения до минимума негативного воздействия на АЭС и создание предпосылок для использования собственного (скрытого) биопотенциала. В ряде западных стран в 50-60-ые годы альтернативное земледелие (АЗ) получило название "с/х выживания". В начале 70-ых это направление приняло довольно большое распространение и в 1972г. в Версале состоялась первая международная конференция по АЗ. Решением этой конференции явилось образование международной организации по органическому земледелию (IFOAM). В 1997г. состоялось последнее собрание IFOAM, где была сформулирована генеральная задача: довести производство биологических продуктов питания до 10-20% от общего объема рыночного потенциала. Четко разграничить традиционное и альтернативное земледелие невозможно, поэтому между ними существуют перекликания.

Цели АЗ:

) Сохранение и повышение плодородия почв.

) Защита окружающей природной среды.

) Активизация круговорота веществ.

) Улучшение качества продукции.

) Производство гарантированного количества продукции.

) Экономия невосполнимой энергии.

Существует несколько типов АЗ.

) Органическое земледелие (США). Обеспечивает рациональное использование природных ресурсов, минимальное снижение или повышение урожаев при неблагоприятных почвенно-климатических условиях, эффективное вовлечение природной энергии при производстве пшеницы, картофеля, яблок. До 20% увеличиваются затраты рабочей силы, производительность труда в некоторых случаях снижается до 95% и возможно уменьшение урожая пшеницы до 45%, т.к. запрещено применение быстрорастворимых азотных удобрений, пестицидов и др. защита растений основывается на использовании биопрепаратов бактериального и грибного происхождения.

) Биодинамическое земледелие. Возникло в начале нашего столетия, основатель - Р. Штайнер. В этой системе рассматривается с/х предприятия как самостоятельный организм, который развивается и функционирует вместе с общими процессами развития в биосфере и космонавтике. В основе всех препаратов лежит применение молотого Si. По законам биодинамики приготовленные растворы хранят только в емкостях естественного происхождения. Применение элементов биодинамики в традиционном с/х целесообразно лишь при относительно низком уровне агроценоза.
3) Органобиологическое земледелие. Минеральные вещества из почвы поглощаются растениями не только в форме ионов, но и в виде макромолекул.

Список используемой литературы

1.  Агрономия с основами ботаники / Под ред. Н.А. Корлякова. - М.: Колос, 1980. - 432 с.

2.      Агроэкология / В.А. Черников, Р.М. Алексахин, А.В. Голубев и др. - М.: Колос, 2000. - 536 с.

.        Агроэкология: Методология, технология, экономика / В.А. Черников, И.Г. Грингоф, В.Т. Емцев и др. - М.: КолосС, 2004. - 400 с.

.        Акимова Т.А., Хаскин В.В. Экология. Человек - Экономика - Биота - Среда. - М.: ЮНИТИ-ДАНА, 2001. - 566 с.

.        Банников А.Г., Вакулин А.А., Рустамов А.К. Основы экологии и охрана окружающей среды. - М.: Колос, 1999. - 304 с.

.        Баранников В.Д., Кириллов Н.К. Экологическая безопасность сельскохозяйственной продукции. - М.: КолосС, 2005. - 352 с.

.        Биологическая защита растений / Под ред. М.В. Штерншиса. - М.: КолосС, 2004. - 264 с.

.        Вилли К. Биология / Пер. с англ. - М.: Мир, 1966. - 685 с.

.        Гарин В.М., Кленова И.А., Колесников В.И. Экология для технических вузов. - Ростов н/Д: Феникс, 2001. - 384 с.

.        Коробкин В.И., Передельский Л.В. Экология. - Ростов н/Д: Феникс, 2003. 576 с.

.        Лебедев С.И. Физиология растений. - М.: Агропромиздат, 1988. - 544 с.

.        Николайкин Н.И., Николайкина Н.Е., Мелехова О.П. Экология. - М.: Дрофа, 2003. - 624 с.

.        Об охране окружающей среды. Федеральный закон № 7-Ф3 Российской Федерации // Российская газета. - 2002. - 12 янв.

.        Пехов А.П. Биология с основами экологии. - СПб.: Лань, 2000. - 672 с.

.        Природопользование / Э.А. Арустамов, А.Е. Волощенко, Г.В. Гусков и др. М.: Дашков и КО, 2002. - 276 с.

.        Сельскохозяйственная экология / Н.А. Уразаев, А.А. Вакулин, А.В. Никитин и др. - М.: Колос, 2000. - 304 с.

.        Степановских А.С. Общая экология. - М.: ЮНИТИ-ДАНА, 2000. - 510 с.

.        Суворов В.В., Воронова И.Н. Ботаника с основами геоботаники. - Л.: Колос, 1979. - 560 с.

.        Физиология и биохимия сельскохозяйственных растений / Н.Н. Третьяков, Е.И. Кошкин, Н.М. Макрушин и др. - М.: Колос, 2000. - 640 с.

Похожие работы на - Основы биологии

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!