Медицинские растворы заводского производства. Интенсификация процесса растворения. Способы очистки

  • Вид работы:
    Курсовая работа (т)
  • Предмет:
    Медицина, физкультура, здравоохранение
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    29,6 Кб
  • Опубликовано:
    2015-09-28
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Медицинские растворы заводского производства. Интенсификация процесса растворения. Способы очистки

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Медицинские растворы заводского производства. Интенсификация процесса растворения. Способы очистки

 

Оглавление

 

Введение

Глава 1. Общая характеристика медицинских растворов

.1 Характеристика и классификация растворов

.2 Интенсификация процесса растворения

.3 Способы очистки

Глава 2. Экспериментальная часть

.1 Контроль качества раствора натрия бромида 6,0, магния сульфата 6,0, глюкозы 25,0, воды очищенной до 100,0 мл

.2 Контроль качества раствора новокаина (физиологический) состав: Новокаина 0,5, раствора кислоты хлороводородной 0,1 моль/л 0,4 мл, натрия хлорида 0,81, воды для инъекций до 100,0 мл

Выводы

Список использованной литературы

 

Введение


Жидкие лекарственные формы (ЖЛФ) аптек составляют более 60% от общего числа всех лекарственных препаратов, приготовляемых в аптеках.

Широкое применение ЖЛФ обусловлено целым рядом преимуществ перед другими лекарственными формами:

-       благодаря применению определённых технологических приёмов (растворение, пептизация, суспендирование или эмульгирование) лекарственное вещество, находящееся в любом агрегатном состоянии, может быть доведено до оптимальной степени дисперсности частиц, растворено или равномерно распределено в растворителе, что имеет большое значение для оказания лечебного действия лекарственного вещества на организм и подтверждено биофармацевтическими исследованиями;

-       жидкие лекарственные формы, отличаются большим разнообразием состава и способов применения;

-       в составе ЖЛФ возможно снижение раздражающего действия некоторых лекарственных веществ (бромидов, йодидов и т.д.);

-       данные лекарственные формы просты и удобны для применения;

-       в ЖЛФ возможна маскировка неприятного вкуса и запаха лекарственных веществ, что особенно важно в детской практике;

-       при приёме внутрь они всасываются и действуют быстрее, чем твёрдые лекарственные формы (порошки, таблетки и др.), действие которых проявляется после растворения их в организме;

-       мягчительное и обволакивающее действие ряда лекарственных веществ наиболее полно проявляется в виде жидких лекарств.

Вместе с тем, жидкие лекарства имеют ряд недостатков:

-       они менее стабильны при хранении, так как в растворенном виде вещества более реакционноспособны;

-       растворы быстрее подвергаются микробиологической порче, соответственно у них ограниченный срок хранения - не более 3-х суток;

-       ЖЛФ требуют достаточно большого времени и специальной посуды для приготовления, неудобны при транспортировке;

-       жидкие лекарства уступают по точности дозирования другим лекарственным формам, так как дозируются ложками, каплями.

Таким образом, ЖЛФ широко распространенная сегодня лекарственная форма. Благодаря своим достоинствам жидкие лекарства и в будущем имеют большие перспективы при создании новых лекарственных препаратов, поэтому изучение данной темы весьма целесообразно.

Кроме того, такой недостаток ЖЛФ, как нестабильность при хранении, не позволяет сократить количество экстемпоральных лекарственных препаратов и увеличить количество готовых жидких лекарств, поэтому остается весьма актуальным изучение технологии ЖЛФ.

Целью и задачами данной работы является изучение медицинского раствора заводского производства.

 

Глава 1. Общая характеристика медицинских растворов

 

.1 Характеристика и классификация растворов


Растворы - это жидкие гомогенные системы, состоящие из растворителя и одного или нескольких компонентов, распределенных в нем в виде ионов или молекул.

Медицинские растворы отличаются большим разнообразием свойств, состава, способов получения и назначения. Отдельные растворы, изготовление которых предусматривает проведение химических реакций, получают на химико-фармацевтических заводах.

Растворы имеют ряд преимуществ перед другими лекарственными формами, так как значительно быстрее всасываются в желудочно-кишечном тракте. Недостаток растворов - их большой объем, возможные гидролитические и микробиологические процессы, которые вызывают быстрое разрушение готового продукта.

Знания технологии растворов важны и при изготовлении почти всех других лекарственных форм, где растворы являются полупродуктами или вспомогательными компонентами при изготовлении конкретной лекарственной формы.

Растворы занимают промежуточное положение между химическими соединениями и механическими смесями. От химических соединений растворы отличаются переменностью состава, а от механических смесей - однородностью. Вот почему растворами называют однофазные системы переменного состава, образованные не менее чем двумя независимыми компонентами. Важнейшая особенность процесса растворения - его самопроизвольность (спонтанность). Достаточно простого соприкосновения растворяемого вещества с растворителем, чтобы через некоторое время образовалась однородная система - раствор.

Растворители могут быть полярными и неполярными веществами. К первым относятся жидкости, сочетающие большую диэлектрическую постоянную, большой дипольный момент с наличием функциональных групп, обеспечивающих образование координационных (большей частью водородных) связей: вода, кислоты, низшие спирты и гликоли, амины и т. д. Неполярными растворителями являются жидкости с малым дипольным моментом, не имеющие активных функциональных групп, например углеводороды, галоидоалкилы и др.

При выборе растворителя приходится пользоваться преимущественно эмпирическими правилами, поскольку предложенные теории растворимости не всегда могут объяснить сложные, как правило, соотношения между составом и свойствами растворов.

Чаще всего руководствуются старинным правилом: "Подобное растворяется в подобном" ("Similia similibus solventur"). Практически это означает, что для растворения какого-либо вещества наиболее пригодны те растворители, которые структурно сходны и, следовательно, обладают близкими или аналогичными химическими свойствами.

Растворимость жидкостей в жидкостях колеблется в широких пределах. Известны жидкости, неограниченно растворяющиеся друг в друге (спирт и вода), т. е, жидкости, сходные по типу межмолекулярного воздействия. Имеются жидкости, ограниченно растворимые друг в друге (эфир и вода), и, наконец, жидкости, практически нерастворимые друг в друге (бензол и вода).

Ограниченная растворимость наблюдается в смесях ряда полярных и неполярных жидкостей, поляризуемость молекул которых, а следовательно, и энергия межмолекулярных дисперсионных взаимодействий, резко различаются. При отсутствии химических взаимодействий растворимость максимальна в тех растворителях, межмолекулярное поле которых по интенсивности близко к молекулярному полю растворенного вещества. Для полярных жидких веществ интенсивность поля частиц пропорциональна диэлектрической постоянной.

Диэлектрическая постоянная воды равна 80,4 (при 20°С). Следовательно, вещества, имеющие высокие диэлектрические постоянные, будут в большей или меньшей степени растворимы в воде. Например, хорошо смешивается с водой глицерин (диэлектрическая постоянная 56,2), этиловый спирт (26) и т.д. Наоборот, нерастворимы в воде петролейный эфир (1,8), четыреххлористый углерод (2,24) и т.д. Однако это правило не всегда действительно, особенно в применении к органическим соединениям. В этих случаях на растворимость веществ оказывают влияние различные конкурирующие функциональные группы, их число, относительная молекулярная масса, размер и формы молекулы и другие факторы. Например, дихлорэтан, диэлектрическая постоянная которого равна 10,4, практически нерастворим в воде, тогда как диэтиловый эфир, имеющий диэлектрическую постоянную 4,3, растворим в воде при 20°С в количестве 6,6%. По-видимому, объяснение этому нужно искать в способности эфирного атома кислорода образовывать с молекулами воды нестойкие комплексы типа оксониевых соединений.

С увеличением температуры взаимная растворимость ограниченно растворимых жидкостей в большинстве случаев возрастает и часто при достижении определенной для каждой пары жидкостей температуры, называемой критической, жидкости полностью смешиваются друг с другом (фенол и вода при критической температуре 68,8°С и более высокой растворяются друг в друге в любых пропорциях). При изменении давления взаимная растворимость меняется незначительно.

Растворимость газов в жидкостях принято выражать коэффициентом поглощения, который указывает, сколько объемов данного газа, приведенных к нормальным условиям (температура 0°С, давление 1 атм), растворяется в одном объеме жидкости при данной температуре и парциальном давлении газа 1 атм. Растворимость газа в жидкостях зависит от природы жидкостей и газа, давления и температуры. Зависимость растворимости газа от давления выражается законом Генри, согласно которому растворимость газа в жидкости прямо пропорциональна его давлению над раствором при неизменной температуре, однако при высоких давлениях, особенно для газов, химически взаимодействующих с растворителем, наблюдается отклонение от закона Генри. С повышением же температуры растворимость газа в жидкости уменьшается.

Любая жидкость обладает ограниченной растворяющей способностью. Это означает, что данное количество растворителя может растворить лекарственное вещество в количествах, не превышающих определенного предела. Растворимостью, вещества называется его способность образовывать с другими веществами растворы. Сведения о растворимости лекарственных веществ приведены в фармакопейных статьях. Для удобства в ГФ XI указывается количество частей растворителя, необходимое для растворения 1 части лекарственного вещества при 20°С. По степени растворимости различают вещества:

.        Очень легко растворимые, требующие для своего растворения не более 1 части растворителя.

.        Легкорастворимые - от 1 до 10 частей растворителя.

.        Растворимые - от 10 до 20 частей растворителя.

.        Труднорастворимые - от 30 до 100 частей растворителя.

.        Малорастворимые - от 100 до 1000 частей растворителя.

.        Очень мало растворимые (почти нерастворимые) - от 1000 до 10 000 частей растворителя.

.        Практически нерастворимые - более чем 10 000 частей растворителя.

Растворимость данного лекарственного вещества в воде (и в другом растворителе) зависит от температуры. Для подавляющего большинства твердых веществ растворимость их с увеличением температуры повышается. Однако бывают исключения (например, соли кальция).

Некоторые лекарственные вещества могут растворяться медленно (хотя и растворяются в значительных концентрациях). С целью ускорения растворения таких веществ прибегают к нагреванию, предварительному измельчению растворяемого вещества, перемешиванию смеси.

Растворы, применяемые в фармации, отличаются большим разнообразием. В зависимости от применяемого растворителя все многообразие растворов можно подразделить на следующие группы.

-        Водные. Solutiones aquosae seu Liquores.

         Спиртовые. Solutiones spirituosae.

         Глицериновые. Solutiones glycerinatae.

         Масляные. Solutiones oleosae seu olea medicata.

По агрегатному состоянию растворимых в них лекарственных веществ:

         Растворы твердых веществ.

         Растворы жидких веществ.

         Растворы с газообразными лекарственными средствами.

1.2 Интенсификация процесса растворения


Для ускорения процесса растворения можно использовать нагревание или увеличение поверхности контакта растворяемого вещества и растворителя, что достигается предварительным измельчением растворяемого вещества, а также взбалтыванием раствора. Как правило, чем выше температура растворителя, тем больше растворимость твердого вещества, однако иногда при повышении температуры растворимость твердого вещества снижается (например, кальция глицерофосфата и цитрата, эфиров целлюлозы). Увеличение скорости растворения связано с тем, что при нагревании уменьшается прочность кристаллической решетки, увеличивается скорость диффузии, уменьшается вязкость растворителей. В данном случае сила диффузии действует положительно, особенно в неполярных растворителях, где диффузионные силы имеют основное значение (при этом не происходит образования сольватов). Необходимо отметить, что с повышением температуры растворимость отдельных веществ в воде увеличивается резко (кислоты борной, фенацетина, хинина сульфата), а других - незначительно (аммония хлорида, натрия барбитала). Максимальная степень нагревания в значительной степени определяется свойствами растворяемых веществ: одни переносят без изменений нагревание в жидкости до 100°С, а другие разлагаются уже при слегка повышенной температуре (например, водные растворы некоторых антибиотиков, витаминов и т.д.). Нельзя забывать также, что повышение температуры может вызвать потери летучих веществ (ментола, камфоры и др.). Как уже упоминалось, растворимость твердого вещества повышается также по мере увеличения поверхности контакта между растворяемым веществом и растворителем. В большинстве случаев увеличение поверхности контакта достигается путем измельчения твердого вещества (например, кристаллы винно-каменной кислоты растворяются труднее, чем порошок). Помимо этого, для увеличения поверхности контакта твердого вещества с растворителем в аптечной практике часто пользуются приемом взбалтывания. Перемешивание облегчает доступ растворителя к веществу, способствует изменению концентрации раствора у его поверхности, создает благоприятные условия для растворения.

 

.3 Способы очистки


Фильтрование - процесс разделения гетерогенных систем с твердой дисперсной фазой при помощи пористой перегородки, которая пропускает жидкость (фильтрат) и задерживает взвешенные твердые частицы (осадок). Процесс этот осуществляется не только за счет задерживания частиц, крупнее диаметра капилляров перегородки, но и за счет адсорбции частиц пористой перегородкой, и за счет слоя образовавшегося осадка ( шламовый тип фильтрования).

Движение жидкости через пористую фильтрующую перегородку имеет, в основном, ламинарный характер.

Если допустить, что капилляры перегородки имеют круглое сечение и одинаковую длину, то зависимость объема фильтрата от различных факторов подчиняется закону Пуазеля:

Q=F·z·π·r ·ΔP·τ/8·ŋ·l·α,

гдеповерхность фильтра, м²;число капилляров на 1 м²;

r- средний радиус капилляров, м;

ΔP- разность давлений по обе стороны фильтрующей перегородки (или перепад давлении на концах капилляров), н/м²;

τ- длительность фильтрования, сек;

ŋ- абсолютная вязкость жидкой фазы в н/с·м²;

l-средняя длина капилляров, м²;

α- поправочный коэффициент на кривизну капилляров;объем фильтрата, м³.

Иначе, объем профильтрованной жидкости прямо пропорционален поверхности фильтра (F), пористости (r,z), перепаду давлений (ΔР), длительности фильтрования (τ) и обратно пропорционален вязкости жидкости, толщине фильтрующей перегородки и кривизны капилляров. Из уравнения Пуазеля выводится уравнение скорости фильтрования (V), которая определяется количеством жидкости, прошедшей через единицу поверхности за единицу времени.

V = Q / F·τ

После преобразования уравнения Пуазеля оно приобретает вид:

V = ΔP/Rосадка + Rперегородки

где R - сопротивление движению жидкости. Из этого уравнения следует ряд практических рекомендаций для рационального проведения процесса фильтрования. А именно, для увеличения разности давлений над и под перегородкой создают либо повышенное давление над фильтрующей перегородкой, либо разрежение под ней.

Отделение твердых частиц от жидкости при помощи фильтровальной перегородки является сложным процессом. Для такого отделения нет необходимости применять перегородку с порами, средний размер которых меньше среднего размера твердых частиц.

Установлено, что твердые частицы успешно задерживаются порами большего размера, чем средний размер задерживаемых частиц. Твердые частицы, увлекаемые потоком жидкости к фильтровальной перегородке, попадают в различные условия.

Наиболее простой случай, когда частица задерживается на поверхности перегородки, имея размер больше, чем начальное сечение пор. Если размер частицы меньше размера капилляра в самом узком сечение, то:

-       частица может пройти через перегородку вместе с фильтратом;

-       частица может задержаться за счет механического торможения на месте извилины поры.

Мутность фильтра в начале фильтрования объясняется прониканием твердых частиц через поры фильтровальной перегородки. Фильтрат становится прозрачным, когда перегородка приобретает достаточную задерживающую способность.

Таким образом, фильтрование происходит по двум механизмам:

-       за счет образования осадка, так как твердые частицы почти не проникают внутрь пор и остаются на поверхности перегородки (шламовый тип фильтрования);

-       за счет закупоривания пор (закупорочный тип фильтрования); при этом осадок почти не образуется, так как частицы задерживаются внутри пор.

На практике эти два типа фильтрования сочетаются (смешанный тип фильтрования).

Факторы, влияющие на объем фильтрата и, следовательно, на скорость фильтрования разделяются на:

гидродинамические;

физико-химические.

Гидродинамические факторы - это пористость фильтрующей перегородки, площадь её поверхности, разность давлений по обе стороны перегородки и другие факторы, учитывающиеся в уравнение Пуазеля.

Физико-химические факторы - это степень коагуляции или пептизации взвешенных частиц; содержание в твердой фазе смолистых, коллоидных примесей; влияние двойного электрического слоя, возникающего на границе твердой и жидкой фаз; наличие сольватной оболочки вокруг твердых частиц и т.д. Влияние физико-химических факторов, тесно связанных с поверхностными явлениями на границе раздела фаз, становится заметно при небольших размерах твердых частиц, что как раз и наблюдается в фармацевтических растворах, подлежащих фильтрованию.

В зависимости от размера удаляемых частиц и цели фильтрования различают следующие методы фильтрования:

. Грубая фильтрация - для отделения частиц размером 50 мкм и более;

. Тонкая фильтрация - обеспечивает удаление частиц размером  1-50 мкм.

. Стерильная фильтрация (микрофильтрация) применяется ля удаления частиц и микробов размеров 5-0,05 мкм. В этой разновидности иногда выделяют ультрафильтрацию для удаления пирогенов и других частиц размером 0,1-0,001 мкм. Речь о стерильной фильтрации пойдет в теме: "Инъекционные лекарственные формы".

Все аппараты для фильтрования в промышленности называются фильтрами; основная рабочая часть их - фильтровальные перегородки.

Фильтры, работающие под разрежением - нутч-фильтры.

Нутч - фильтры удобны в тех случаях, когда необходимо получить чистые промытые осадки. Нецелесообразно применять эти фильтры для жидкостей со слизистыми осадками, эфирные и спиртовые извлечения и растворы, так как эфир и этанол при разрежении быстрее испаряются, отсасываются в вакуумную линию и попадают в атмосферу.

Фильтры, работающие под избыточным давлением - друк-фильтры. Перепад давлений значительно больше, чем в нутч-фильтрах и может составлять от 2 до 12 атм. Эти фильтры простые по устройству, высоко производительны, позволяют фильтровать вязкие, легколетучие и с большим удельным сопротивлением осадка жидкости. Однако для выгрузки осадка необходимо снимать верхнюю часть фильтра и собирать его вручную.

Рамный фильтр - пресс состоит из ряда чередующихся пустотелых рам и плит, имеющих с обеих сторон рифления и желоба. Каждые рама и плита разделены фильтровальной тканью. Число рам и плит подбирают, исходя из производительности, количества и назначения осадка, в пределах 10-60 шт. Фильтрование проводят под давлением 12 атм. Фильтр-прессы обладают высокой производительностью, в них получают хорошо промытые осадки и осветленный фильтрат, имеют все преимущества друк-фильтров. Однако для фильтрования следует применять очень прочные материалы.

Фильтр-"Грибок" может работать и под вакуумом и при избыточном давлении. Фильтровальная установка состоит из емкости для фильтруемой жидкости; фильтра "Грибок" в виде воронки, на которую закрепляется фильтрующая ткань (вата, марля, бумага, бельтинг и др.); ресивера, сборника фильтрата, вакуумного насоса.

Таким образом, фильтрование является важным в технологическом смысле процессом. Оно используется или самостоятельно, или может быть неотъемлемой частью схемы производства такой фармацевтической продукции как растворы, экстракционные препараты, очищенные осадки и др. Качество указанной продукции зависит от правильно подобранных аппаратов для фильтрования, фильтровальных материалов, скорости фильтрования, соотношения твердой и жидкой фаз, структуры твердой фазы и ее поверхностных свойств.

медицинский раствор новокаин глюкоза

Глава 2. Экспериментальная часть


2.1 Контроль качества раствора натрия бромида 6,0, магния сульфата 6,0, глюкозы 25,0, воды очищенной до 100,0 мл


Особенности химического контроля. Качественный и количественный анализы проводят без предварительного разделения ингредиентов.

Наиболее экспрессным методом определения глюкозы в жидких лекарственных формах является метод рефрактометрии.

Органолептический контроль. Бесцветная прозрачная жидкость, без запаха.

Определение подлинности

Натрия бромид

.        К 0,5 мл лекарственной формы прибавляют 0,1 мл кислоты хлороводородной разведенной, 0,2 мл раствора хлорамина, 1 мл хлороформа, и взбалтывают. Хлороформный слой окрашивается в жёлтый цвет (бромид-ион).

.        Помещают 0,1 мл раствора в фарфоровую чашку и выпаривают на водяной бане. К сухому остатку прибавляют 0,1 мл раствора меди сульфата и 0,1 мл кислоты серной концентрированной. Появляется черное окрашивание, исчезающее при добавлении 0,2 мл воды (бромид-ион).

NaBr + CuSO4 → CuBr2↓ + Na2SO4

.        Часть раствора на графитовой палочке вносят в бесцветное пламя. Пламя окрашивается в жёлтый цвет (натрий).

.        К 0,1 мл лекарственной формы на предметном стекле прибавляют 0,1 мл раствора кислоты пикриновой, выпаривают досуха. Жёлтые кристаллы специфической формы рассматривают под микроскопом (натрий).

Магния сульфат

.        К 0,5 мл лекарственной формы прибавляют по 0,3 мл раствора аммония хлорида, натрия фосфата и 0,2 мл раствора аммиака. Образуется белый кристаллический осадок, растворимый в кислоте уксусной разведённой (магний).

.        К 0,5 мл лекарственной формы прибавляют 0,3 мл раствора бария хлорида. Образуется белый осадок, нерастворимый в разведённых минеральных кислотах (сульфаты).

Глюкоза. К 0,5 мл лекарственной формы прибавляют 1-2 мл реактива Фелинга и нагревают до кипения. Образуется кирпично-красный осадок.

Количественное определение.

Натрия бромид. 1. Аргентометрический метод. К 0,5 мл микстуры прибавляют 10 мл воды, 0,1 мл бромфенолового синего, по каплям кислоту уксусную разведённую до зеленовато-жёлтого окрашивания, и титруют 0,1 моль/л раствором серебра нитрата до фиолетового окрашивания.

мл 0,1 моль/л раствора серебра нитрата соответствует 0,01029 г натрия бромида.

Магния сульфат. Комплексонометрический метод. К 0,5 мл микстуры прибавляют 20 мл воды, 5 мл аммиачного буферного раствора, 0,05 г индикаторной смеси кислотного хром черного специального (или кислотного хром темно-синего) и титруют 0,05 моль/л раствором трилона Б до синего окрашивания.

мл 0,05 моль/л раствора трилона Б соответствует 0,01232 г магния сульфата.

Глюкоза. Определение проводят рефрактометрически.

Содержание глюкозы в граммах (X) вычисляют по формуле:

,

Где:- показатель преломления анализируемого раствора при 200С; n0 - показатель преломления воды при 200С;- фактор прироста показателя преломления 1% раствора натрия бромида, равный 0,00134;- концентрация натрия бромида в растворе, найденная аргентометрическим или меркуриметрическим методом, в %;• 7Н2О - фактор прироста показателя преломления 2,5% раствора магния сульфата, равный 0,000953;• 7Н2О - концентрация магния сульфата в растворе, найденная трилонометрическим методом, в %;

,11 - коэффициент пересчета на глюкозу, содержащую 1 молекулу кристаллизационной воды;

РБЕЗВ.ГЛЮК. - фактор прироста показателя преломления раствора безводной глюкозы, равный 0,00142.

2.2 Контроль качества раствора новокаина (физиологический) состав: Новокаина 0,5, раствора кислоты хлороводородной 0,1 моль/л 0,4 мл, натрия хлорида 0,81, воды для инъекций до 100,0 мл


Особенности химического контроля. Новокаин представляет собой соль, образованную сильной кислотой и слабым основанием, поэтому при стерилизации может подвергаться гидролизу. Для предотвращения этого процесса в лекарственную форму добавляют кислоту хлороводородную.

При количественном определении кислоты хлороводородной методом нейтрализации в качестве индикатора используют метиловый красный (при этом титруется только свободная кислота хлороводородная и не титруется кислота хлороводородная, связанная с новокаином).

Органолептический контроль. Бесцветная, прозрачная жидкость, с характерным запахом.

Определение подлинности.

Новокаин. 1. К 0,3 мл лекарственной формы прибавляют 0,3 мл кислоты хлороводородной разведенной 0,2 мл 0,1 моль/л раствора натрия нитрита и 0,1-0,3 мл полученной смеси вливают в 1-2 мл свежеприготовленного щелочного раствора р-нафтола. Образуется оранжево-красный осадок. При добавлении 1-2 мл 96% этанола осадок растворяется и появляется вишнево-красное окрашивание.

. Помещают 0,1 мл лекарственной формы на полоску газетной бумаги и прибавляют 0,1 мл кислоты хлороводородной разведенной. На бумаге появляется оранжевое пятно.

Натрия хлорид. 1. Часть раствора на графитовой палочке вносят в бесцветное пламя. Пламя окрашивается в жёлтый цвет (натрий).

. К 0,1 мл раствора прибавляют 0,2 мл воды, 0,1 мл кислоты азотной разведенной и 0,1 мл раствора серебра нитрата. Образуются белый творожистый осадок (хлорид-ион).

Кислота хлороводородная. 1. К 1 мл лекарственной формы прибавляют 0,1 мл раствора метилового красного. Раствор окрашивается в красный цвет.

. Определение рН лекарственной формы проводят потенциометрически.

Количественное определение.

Новокаин. Нитритометрический метод. К 5 мл лекарственной формы прибавляют 2-3 мл воды, 1 мл кислоты хлороводородной разведенной, 0,2 г калия бромида, 0,1 мл раствора тропеолина 00, 0,1 мл раствора метиленового синего и при 18-20°С титруют по каплям 0,1 моль/л раствором натрия нитрита до перехода красно-фиолетовой окраски в голубую. Параллельно проводят контрольный опыт.

мл 0,1 моль/л раствора натрия нитрита соответствует 0,0272 г новокаина.

Кислота хлороводородная. Алкалиметрический метод. 10 мл лекарственной формы титруют 0,02 моль/л раствором натрия гидроксида до желтого окрашивания (индикатор - метиловый красный, 0,1 мл).

Количество миллилитров 0,1 моль/л кислоты хлороводородной вычисляют по формуле:

,

где

,0007292 - титр 0,02 моль/л раствора натрия гидроксида по кислоте хлороводородной;

,3646 - содержание хлористого водорода (г) в 100 мл 0,1 моль/л хлороводородной кислоты.

Новокаин, кислота хлороводородная, натрия хлорид.

Аргентометрия - метод Фаянса. К 1 мл лекарственной формы прибавляют 0,1 мл раствора бромфенолового синего, по каплям кислоту уксусную разведенную до зеленовато-желтого окрашивания и титруют 0,1 моль/л раствором серебра нитрата до фиолетового окрашивания. Количество миллилитров серебра нитрата, израсходованное на взаимодействие с натрия хлоридом, рассчитывают по разности объёмов серебра нитрата и натрия нитрита.

мл 0,1 моль/л раствора серебра нитрата соответствует 0,005844 г натрия хлорида.

 

Выводы


Растворение - спонтанный, самопроизвольный диффузионно-кинетический процесс, протекающий при соприкосновении растворяемого вещества с растворителем.

.        Поверхность твердого тела контактирует с растворителем. Контакт сопровождается смачиванием, адсорбцией и проникновением растворителя в микропоры частиц твердого тела.

.        Молекулы растворителя взаимодействуют со слоями вещества на поверхности раздела фаз. При этом происходит сольватация молекул или ионов и отрыв их от поверхности раздела фаз.

.        Сольватированные молекулы или ионы переходят в жидкую фазу.

.        Выравнивание концентраций во всех слоях растворителя.

Длительность 1-й и 4-й стадий зависит преимущественно от скорости диффузионных процессов. 2-я и 3-я стадии часто протекают мгновенно или достаточно быстро и имеют кинетический характер (механизм химических реакций). Из этого следует, что в основном скорость растворения зависит от диффузионных процессов.

 

Список использованной литературы


1.      ГОСТ Р 52249-2004. Правила производства и контроля качества лекарственных средств.

.        Государственная фармакопея РФ. - 11-е изд. - М.: Медицина, 2008. - Вып. 1. - 336 с.; вып. 2. - 400 с.

.        Государственный реестр лекарственных средств / МЗ РФ; под ред. А.В. Катлинского. - М.: РЛС, 2011. - 1300 с.

.        Машковский М.Д. Лекарственные средства: в 2 т. / М.Д. Машковский. - 14-е изд. - М.: Новая Волна, 2011. - Т. 1. - 540 с.

.        Машковский М. Д. Лекарственные средства: в 2 т. / М.Д. Машковский. - 14-е изд. - М.: Новая Волна, 2011. - Т. 2. - 608 с.

.        Муравьев И.А. Технология лекарств: в 2 т. / И.А. Муравьев. - М.: Медицина, 2010. - Т. 1. - 391 с.

.        Муравьев И. А. Технология лекарств: в 2 т. / И.А. Муравьев. - М.: Медицина, 2010. - Т. 2. - 313 с.

.        ОСТ 42-503-95. Контрольно-аналитические и микробиологические лаборатории отделов технического контроля промышленных предприятий, производящих лекарственные средства. Требования и порядок аккредитации.

.        ОСТ 42-504-96. Контроль качества лекарственных средств на промышленных предприятиях и в организациях. Общие положения.

.        ОСТ 64-02-003-2002. Продукция медицинской промышленности. Технологические регламенты производства. Содержание, порядок разработки, согласования и утверждения.

.        ОСТ 91500.05.001-00. Стандарты качества лекарственных средств. Основные положения.

.        Практикум по технологии лекарственных форм заводского производства / Т.А. Брежнева [и др.]. - Воронеж: Изд-во Воронеж. гос. ун-та, 2010. - 335 с.

.        Промышленная технология лекарств: учеб. для вузов: в 2 т. / В.И. Чуешов [и др.]. - Харьков: НФАУ, 2012. - Т. 1. - 560 с.

.        Технология лекарственных форм: в 2 т. / под ред. Л.А. Ивановой. - М.: Медицина, 2011. - Т. 2. - 544 с.

.        Технология лекарственных форм: в 2 т. / под ред. Т.С. Кондратьевой. - М.: Медицина, 2011. - Т. 1. - 496 с.

.        Чуешов В.И. Промышленная технология лекарств: учеб. для вузов: в 2 т. / В.И. Чуешов [и др.]. - Харьков: НФАУ, 2012. - Т. 2. - 716 с.

Похожие работы на - Медицинские растворы заводского производства. Интенсификация процесса растворения. Способы очистки

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!