The production of 2H-labeled amino acids by a new mutant of RuMP fucultative methylotroph Вrevibacte...
The production of 2H-labeled
amino acids by a new mutant of RuMP fucultative methylotroph Вrevibacterium methylicum
Oleg V. Mosin1
1 Department of
Biotechnology, M. V. Lomonosov State Academy of Fine Chemical Technology,
Vernadskogo Prospekt 86, 117571, Moscow, Russia
Summary
The biosynthesis of 2H-labeled
phenylalanine was done by converse of low molecular weight substrates ([U- 2H]methanol
and 2H2O) in a new RuMP facultative methylotrophic mutant
Brevibacterium methylicum. To make the process work, adapted cells with
improved growth characteristics were used on minimal medium M9 with the maximum
content of 2H-labeled substrates. Alanine, valine, and
leucine/isoleucine were produced and accumulated exogeneously in addition to the main
product of biosynthesis. Electron impact mass spectrometry of methyl esters of
the N-Dns-amino acid mixture obtained after the chemical derivatization
of growth medium with dansyl chloride and diazomethane, was done to calculate
the deuterium enrichment of the amino acids synthesized. The experimental data
testified to the character of labeling of amino acid molecules as
heterogeneous; however, high levels of deuterium enrichment were detected in
all presented molecules - for phenylalanine the enrichment was six, leucine/isoleucine
- 5.1, valine - 4.7, and alanine - 3.1 deuterium atoms.
Keywords: Brevibacterium
methylicum - Heavy water - Biosynthesis - 2H-Labeled amino acids -
Phenylalanine - EIMS
Abbreviations: EI MS: electron impact
mass spectrometry; TLC: thin layer chromatography; DNSCl: dansylchloride; DZM:
diazomethane; N-NMU: N-nitroso-methylurea; RuMP: rybolose monophosphate; PenP:
pentose phosphate; PEP: phosphoenolpyruvate; ERP: erythrose-4-phosphate.
Introduction
Labeling of amino acid
molecules with deuterium is becoming an essential part for various biochemical
studies with 2H-labeled molecules and investigation of certain
aspects of their biosynthesis(LeMaster, 1990).
For
introduction of deuterium into amino acid molecules either chemical or biosynthetical
methods may be used. Chemical synthesis of these compounds has one significant
limitation; it is a very laborious and costly multistep process resulting in a
mixture of dl-racemates. This major disadvantage, however essentially
delaying its development is a difficulty in preparing the appropriate 2H-labeled
amino acids. Chemical synthesis usually results in obtaining a mixture of d,l-racemates
(Daub, 1979). Although chemomicrobiological synthesis overcomes this problem
(Walker, 1986), the amount of purified enzymes required is prohibitive (Faleev,
1989). By growing algae on media with 96% (v/v) 2H2O, the
desired 2H-labeled biochemicals can be produced both at high yields
and enrichments (Cox, 1988), but the process involves algae is limited by the
expense of a mixture of 2H-labeled amino acids isolated from
hydrolysates of biomass (Daboll, 1962). The using for this purpose a certain
methylotrophs which assimilates MetOH as a source of carbon and energy via RuMP
cycle has a great practical advantage because their ability to produce and
acumulate a gram quantities of 2H-labeled amino acids during the
growth on media with 2H2O and [U -2H]MetOH and
the comparatively low price of [U -2H]MetOH (Karnaukhova, 1994).
The
biosynthesis of 2H-labeled amino acids usually involves growth of an
organism on selective media containing the labeled substrates: e.g.,
growth of algae autotrophically on media with content of 2H2O
90% and more, is a well established method for biosynthesis of numerous highly
deuterated molecules. But this method, while being generally applicable, is
limited by the low resistance of plant cells to 2H2O and
expense of 2H-labeled amino acids isolated from algae hydrolysates.
Alternative and relatively inexpensive objects for biosynthesis of 2H-labeled
amino acids seem certain auxotrophic mutants of methylotrophic bacteria using
methanol as a main source of carbon and energy via the
ribulose-5-monophosphate (RuMP) and the serine cycle of carbon assimilation.
These bacteria have a big advantage because of their ability to produce and
accumulate gram quantities of highly enriched, 2H-labeled amino
acids during growth on minimal salt media with [U- 2H]methanol and 2H2O
and the comparatively low price of [U- 2H]methanol. It is only in
recent years that some progress was made in the isolation of a number of
versatile the RuMP cycle methylotrophic bacteria, suitable for such studies,
though the research that has been done with methylotrophs was limited and
suffered from low growth characteristics on 2H2O-containing
media. Although the production of 2H-labeled amino acids by obligate
methylotroph Methylobacillus flagellatum described by Karnaukhova
involves the growth on media with approximately 75% (v/v) 2H2O.
We have recently selected a new mutant of facultative methylotroph Brevibacterium
methylicum, realizing the NAD+ dependent methanol gehydrogenase
(EC 1.6.99.3) variant of RuMP cycle of carbon assimilation, which seems more
convinient for the preparation of 2H-labeled amino acids than M.
flagellatum because its ability to grow on liquid M9 with 98% (v/v) 2H2O
(Mosin, 1995).
Thus, we have
previously studied the applicability of the RuMP cycle obligate methylotrophic
bacterium Methylobacillus flagellatum for biosynthesis of 2H-labeled
leucine 8). This approach is not yet practical for the biosynthesis
of 2H-labeled phenylalanine, mainly because of the absence of
suitable methylotrophic producer of this amino acid. After selecting a new the
RuMP cycle methylotrophic producer of phenylalanine, leucine auxotroph Brevibacterium
methylicum, we have used this strain for this research.
Material and methods
2H2O (99.9 at.% 2H)
was purchased from Russian Scientific Enterprises, Sankt Petersburg. [U -2H]MetOH
(97.5 at.% 2H) was from Biophysic Center, Pushino. DNSCl of
sequential grade was from Sigma Chemicals Corp., USA. DZM was prepared from
N-NMU, Pierce Chemicals, Corp., USA. A gram-positive parental strain of RuMP
facultative methylotroph Brevibacterium methylicum # 5662 was obtained
from Russian State Scientific Center for Genetics and Selection of Industrial
Microorganisms GNIIGENETIKA (Nesvera, 1991).
Basal salt medium M9
(Miller, 1976) with MetOH as a carbon and energy source (2%, v/v) and
supplemented with Leu (100 mg/l) was used for bacterial growth. For isotopic
experiments M9 was enriched with [U -2H]MetOH and 2H2O
of various content (see Table below). The bacterial growth was carried out
under batch conditions (Karnaukhova, 1994). The exponentially growing cells
(cell density 2.0 at absorbance 540 nm) were pelleted by centrifugation (1200 g
for 15 min), the supernatant was lyophilized and used for chemical
derivatization.
The amount of Phe was
determined for 10 ml aliquotes of liquid M9 by TLC with solvent of
iso-PrOH-ammonia (7:3, v/v) using pure commercial available Phe as a standard.
The spots were detected by 0.1% ninhydrine solution in acetone, eluted by 0.5%
CdCl2 solution in 50% EtOH (2 ml). The absorbance of the eluates was
measured at 540 nm, the concentration was calculated using a standard curve.
The samples of
lyophilized M9 were dansylated in 1 M sodium hydrohycarbonate-acetone (1:2, v/v) solution
(pH 10-11) with tenfold excess of DNSCl, and treated according to Devenyi
(1976). The derivatization to methyl esters of N-DNS-amino acids was performed
in a standard procedure with DZM (Greenstein, 1976).
EI MS was performed on
Hitachi MB 80 spectrometer at ionizing energy 70 eV and an ion source
temperature of 180oC.
Results and discussion
Phe is
synthesized in most bacteria via shikimic acid pathway (Conn, 1986). The
precursors for the biosynthesis of Phe are PEP and ERP. The latter compound is
an intermediate in the PenP pathway and, in some methylotrophs, the RuMP cycle
of carbon assimilation (Antony, 1982; Kletsova, 1988). It is widely accepted,
that the native bacterial strains can not to be a strong producers of Phe owing
to the effective mechanisms of its metabolic regulation, although certain
bacterial mutants with mutations of prephenate dehydrogenase (EC 1.3.1.12),
prephenate hydratase (EC 4.2.1.51), chorismate mutase (EC 5.4.99.5) and a
number of other several enzymes are proved to be an active producers of this
amino acid (Umbarger, 1978). That is why the best Phe producing strains once
selected were the mutants partially or completely dependent on Tyr or Trp for
growth. The reports about the other regulative mechanisms of Phe biosynthesis
in bacterial cell are quite uncommon, though today it is known a large number
of RuMP cycle auxotrophic mutants of methylotrophs, covering numerious steps in
aromatic amino acid biosynthesis (Dijkhuizen, 1996). The selection of new
producers of Phe has a big importance for studies of their regulating pathways
and possible production of 2H-labeled Phe.
For our studies we have
used a new non-traditional producer of phenylalanine: a leucine auxotroph of
the facultative methylotrophic bacterium Brevibacterium methylicum obtaining
the NAD+ dependent methanol dehydrogenase (EC 1.6.99.3) variant of
the RuMP cycle of carbon assimilation, with maximum productivity of
phenylalanine on protonated medium M9 - 0.95 gram per liter of growth medium.
According to experiments, various compositions of [U- 2H]methanol
and 2H2O were added to the growth media as hydrogen
(deuterium) atoms could be assimilated both from methanol and H2O.
The growth characteristics of the non-adapted bacteria and production of phenylalanine
in the presence of increasing content of 2H2O are given
in Table (Expts. 3-10) relative to the control (1) on protonated medium and to
the adapted bacteria (Expt. 10’). The odd numbers of experiment were chosen to
investigate whether the replacement of [U -2H]methanol of its
protonated analogue has a positive effect on growth characteristics in the
presence of 2H2O. The maximum deuterium content was
reached under conditions (10) and (10’) in which we used 98% (v/v) 2H2O
and 2% (v/v) [U -2H]methanol. In the control, the duration of a lag-phase
did not exeed twenty hours, the yield of microbial biomass (wet weight) and
production of phenylalanine were 150 and 0.95 gram per 1 liter of growth medium
(see relative values in Table, Expt. 1). The results suggested, that below 49%
(v/v) of 2H2O (Table, Expts. 2-4) there was a small
inhibition of growth indicators compared with the control (1), above 49% (v/v)
of 2H2O (Table, Expts. 5-8), however growth was markedly
reduced, while at the upper content of 2H2O (Table,
Expts. 9-10) growth was extremely small. With increasing content of 2H2O
in the media there was a simultaneous increase both of the lag-phase and
generation time. Thus, under experimental conditions (10) where we used 98%
(v/v) 2H2O and 2% (v/v) [U -2H]methanol, the
lag-phase was more than three and the generation time - 2.2 times that on
ordinary protonated medium (1). The production of phenylalanine and yield of
biomass were decreased on medium with 98% (v/v) 2H2O and
2% (v/v) [U -2H]methanol by 2.7 and 3.3 times respectively; in
contrast to the adapted bacteria (10’), the growth characteristics of
non-adapted bacteria on maximally deuterated medium were strongly inhibited
(Table, Expt. 10). The replacement of protonated methanol by [U- 2H]methanol
caused small alterations in growth characteristics (Table, Expts. 2, 4, 6, 8,
10) relative to experiments, where we used protonated methanol (Table, Expts.
3, 5, 7, 9).
Table. Isotope components of growth media
and characteristics of bacterial growth
|
Media components, % (v/v)
H2O 2H2O MetOH
[U -2H]
MetOH
|
Lag-phase (h)
|
Yield of
biomass (%)
|
Generation time (h)
|
Production of phenylalanine (%)
|
(a)
|
98
|
0
|
2
|
0
|
20
|
100.0
|
2.2
|
100.0
|
(b)
|
73.5
|
24.5
|
0
|
2
|
34
|
85.9
|
2.6
|
97.1
|
(c)
|
49.0
|
49.0
|
0
|
2
|
44
|
60.5
|
3.2
|
98.8
|
(d)
|
24.5
|
73.5
|
0
|
2
|
49
|
47.2
|
3.8
|
87.6
|
(e)
|
98.0
|
0
|
2
|
60
|
30.1
|
4.9
|
37.0
|
The production
of L-phenylalanine was linear with respect to the time up to exponentaly growth
cells (see Fig.1). During the fermentation the formation rate of
L-phenylalanine was about 5 mmol/day. As shown in Fig. 1, the substitution by
deuterium atoms pronons of water and methanol caused the decreasing both the
production of L-phenylalanine and the yieald of biomass. Hawever, the
decreasing of L-phenylalanine production (up to 0,5 g\L) was observed in those
experiments (10) (Fig.1) when using non adapted cells on media with 98 % (v/v) 2H2O.
The growth rate and generation time for adapted cells were found to be the same
as in control in ordinary water despite of small increasing of lag-phase. In
contrast to adapted cells, the growth of non-adapted species on maximal
deuterated media was strongly inhibited by deuterium. These data are shown in
Fig. 2.
A smart
attempt was made to intensificate the growth and biosynthetic parameteres of
cells to grow on media containing highly concentration of deuterated substrates.
We employed a "step by
step" adaptation method,
combined with the selection of clones resistent to deuterium using agaric media
supplemented with C2H3O2H 2% (v/v) and with
increasing 2H2O content starting from pure water up to 98
% (v/v) 2H2O. The degree of cell survive on maximum
deuterated medium (10), containing 98 v/v.% 2H2O and 2
v/v.% C2H3O2H was about 40%. Figure 1 shows
characteristic growth and biosynthesis curves for adapted to 2H2O
(10’’) and non-adapted (10) cells in conditions compared with the
control (1) in H2O. The transfer of fully deuterated cells to
ordinary protonated medium results eventually in normal growth.
The results on
adaptation testified, that the generation time for adapted bacteria was
approximately the same as in the control (1) despite the two-fold increase of
the lag-phase (Table, Expt. 10’). The yield of microbial biomass and level of
phenylalanine production for adapted bacteria on maximally deuterated medium
(Table, Expt. 10’) were decreased relative to the control (1) by 13 and 5.3%
respectively. Figure 1 shows growth (Expts. 1a, 2 a, 3 a) and production of
phenylalanine (Expts. 1 b, 2 b, 3 b) for non-adapted (2) and adapted (3) bacteria
on maximally deuterated medium under conditions like the control (1) on
protonated medium. As shown from Fig. 1, the curves of phenylalanine production
were close to a linear extrapolation with respect to the exponential phase of
growth dynamics. The level of phenylalanine production of non-adapted bacteria
on maximally deuterated medium was 0.39 g/liter after 80 hours of growth (Fig.
1, Expt. 2 b). The level of phenylalanine production for adapted bacteria under
those growth conditions was 0.9 g/liter (Fig. 1, Expt. 3 b). Thus, the use of
adapted bacteria in growth conditions to be the same as in the control (1),
enabled us to improve the level of phenylalanine production on maximally
deuterated medium by 2.3 times. However, phenylalanine is not the only product
of biosynthesis; other metabolically related amino acids (alanine, valine, and
leucine/isoleucine) were also produced and accumulated in the growth medium
in amounts of 5-6 mmol in addition to phenylalanine. This fact required, for the
future prospects of the production of labeling molecules of amino acids with
deuterium, an efficient separation of 2H-labeled phenylalanine from
other amino acids of growth medium. Recently such separation was done using a
reversed-phase HPLC method developed for methyl esters of N-Dns-
and Bzl-amino acids with chromatographic purity of 96-98 and yield of 67-89%.
For evaluation of
deuterium enrichment methyl esters of N-DNS-amino acids were applied because
the peaks of molecular ions (M+) allow to monitor the enrichment of
multicomponential mixtures of amino acids being in composition with growth
media metabolites, therefore EI MS allows to detect samples with amino acids of
10-9-10-12 mol (Karnaukhova, 1994). N-DNS-amino acids
were obtained through the derivatization of lyophilized M9 with DNSCl. To increase
the volatality of N-DNS-amino acids, the methylation with DZM was made to
prevent the possible isotopic (1H-2H) exchange in
molecule of Phe. With DZM treatment it occured the derivatization on aNH2 group in
the molecule, so that its N-methylated derivative was formed to the addition of
methyl ester of N-DNS-Phe.
Mass spectra EI MS of
methyl esters of N-DNS-amino acid mixtures, obtained from M9 where used 0; 73.5
and 98% (v/v) of 2H2O (Table, Expts. (a), (d), (e)) are
shown in consecutive order in Figs. 1-3. The fragmentation pathways of methyl
esters of N-Dns-amino acids by EI MS leads to the formation of the
molecular ions (M+) from whom the fragments with smaller m/z
ratio further are formed. Since the value of (M+) for Leu is as the
same as for Ile, these two amino acids could not be clearly estimated by EI MS.
A right region of mass spectra EI MS contains four peaks of molecular ions (M+)
of methyl esters of N-DNS-amino acids: Phe with m/z 412; Leu/Ile with m/z
378.5; Val with m/z 364.5; Ala with m/z 336.4 (see Fig. 1 as an
example). A high continuous left background region at m/z 80 - 311 is
associated with the numerious peaks of concominant metabolites and fragments of
further decay of methyl esters of N-DNS-amino acids.
The results,
firmly established the labeling of amino acids as heterogenious, juging by the
presence of clasters of adduct peaks at their molecular ions (M+);
the species of molecules with different numbers of deuterium atoms were
visualised. The most aboundant peak (M+) in each claster
was registered by mass spectrometer as a peak with average m/z ratio,
from whom the enrichment of each individual amino acid was calculated. Thus, in
experiment (d) shown in Fig. 2 where used 73.5% (v/v) 2H2O
the enrichment of Phe was 4.1, calculated at (M+) with m/z
416.1 (instead of m/z 412 (M+) for non-labeled compound);
Leu/Ile - 4.6 (M+) with m/z 383.1 instead of m/z with
378.5 (M+)); Val - 3.5 (M+ with m/z 368 instead of
m/z (M+) with 364.5); Ala - 2.5 deuterium atoms ((M+)
with m/z 338.9 instead of m/z with 336.4 (M+)).
With increasing of 2H2O
content in liquid M9, the levels of amino acid enrichment varried propotionaly.
As seen in Fig. 3 in experiment (e) where used 98% (v/v) 2H2O
the enrichment of Phe was six ((M+) with m/z 418 instead of m/z
412 (M+)); Leu/Ile - 5.1 ((M+) with m/z 383.6
instead of m/z with 378.5 (M+)); Val - 4.7 ((M+)
with m/z 369.2 instead of m/z (M+) with 364.5); Ala -
3.1 deuterium atoms (M+) with m/z 339.5 instead of m/z
with 336.4 (M+)). The label was distributed uniformely among the
amino acid molecules, in experiment (e) the enrichment of 2H-labeled
amino acids was nevertheless less than we estimated theoretically, because Leu
was added in growth medium in protonated form. This effect should be seriously
scrutinised before the applying this mutant for the preparation of 2H-labeled
amino acids.
References
1. Antony C (1982) Bacterial
Oxidation of Methane and Methanol, The Biochemistry of Methylotrophs, 2 nd edn.
Academic Press, London, p 78
2. Boer L de, Harder W, Dijkhuizen L
(1988) Phenylalanine and Tyrosine Metabolism in the Facultative Methylotroph
Nocardia sp. 239. Arch Microbiol 149: 459-465
3. Conn EE (1986) Recent Advances in
Phytochemistry, The Shikimic Acid Pathway, 2 nd edn. Plenum Press, New
York, p 20
4. Cox J, Kyli D, Radmer (1988)
Stable Isotope Labeled Biochemicals from Microalgae. Trends
Biotechnol 6: 279-282
5. Daboll HF, Crespi HL, Katz JJ
(1962) Mass Cultivation of Algae in Pure Heavy Water. Biotechnol and
Bioengineering 4: 281-297
6. Daub GM (1979) Syntheses with
Stable Isotopes. In: Daub GM Stable Isotopes. Proceedings of the 3d Inter Conf,
1979, Academic Press, NY 1979, pp 31-44
7. Devenyi T, Gergely J (1976) Amino
Acids, peptides and proteins, 3 d edn. Mir Publishers, Moscow, p 281
8. Dijkhuizen L (1996) Metabolic
Regulation in the Actinomycete Amycolatopsi Methanolica, a Facultative
Methylotroph Employing the RuMP Cycle for Formaldehyde Assimilation. Microbial
Growth on C1 Compounds Kluwer Academic Publishers, London, pp 9-15
9. Faleev NG, Ruvinov SB,
Saporovskaya MB, Belikov VM, Zakomyrdina LN (1989) Preparation of a-Deuterated Amino Acids by
E. coli Cells Containing Tryptophanase. Izv Akad Nauk USSR Ser Khim (in
Russian) 10: 2341-2343
10. Greenstein JP, Winitz M (1976)
Chemistry of amino acids, 3 d edn. Mir Publishers, Moscow, p 396
Karnaukhova EN, Reshetova OS, Semenov
SY, Skladnev DA, Tsygankov YD (1994) 2H- and 13C-Labeled
Amino Acids Generated by Obligate Methylotrophs Biosynthesis and MS Monitoring.
Amino Acids 6: 165-176
11. Kletsova LV, Chibisova ES,
Tsygankov YD (1988) Mutants of the Oligate Methylotroph Methylobacillus
flagellatum KT Defective in Genes of the Ribulose Monophosphate Cycle of
Formaldehyde fixation. Arch Microbiol 149: 441-446
12. LeMaster DM (1990) Deuterium
Labeling in NMR Structural Analysis of Larger Proteins. Quart Revs Biophys 23:
133-174
13. Miller JH (1976) Experiments in
Molecular Genetics. Cold Spring Harbor Laboratory Cold Spring Harbor, New
York p 393
14. Mosin OV, Skladnev DA, Tsygankov
YD Russian Patent 93055824/13 (Nov. 17, 1995)
15. Nesvera J, Patek M, Hochmannova
J, Chibisova E, Serebrijski I, Tsygankov Y, Netrusov A (1991) Transformation of
a New Gram-Positive Methylotroph, Brevibacterium methylicum,
by plasmid DNA. Appl Microbiol Biotechnol 35: 777-780
16. Umbarger HE (1978) Amino Acid
Biosynthesis and its regulation. Ann Rev Biochim 47, 533-606
17. Walker TE, Matheny C (1986) An
Efficient Chemomicrobiological Synthesis of Stable Isotope-Labeled
L-Tyrosine and L-Phenylalanine. J Org Chem 51: 1175-1179.