Решение дифференциальных уравнений методом Эйлера в Excel

  • Вид работы:
    Реферат
  • Предмет:
    Информационное обеспечение, программирование
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    63,42 Кб
  • Опубликовано:
    2013-10-29
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Решение дифференциальных уравнений методом Эйлера в Excel

Решение дифференциальных уравнений методом Эйлера в Excel


В связи с интенсивным внедрением достаточно хороших персональных компьютеров с развитыми операционными системами возникла необходимость разработки методик применения универсальных приложений для решения практических задач. Семейство операционных систем Windows завоевало рынок операционных систем для персональных компьютеров. В состав Windows входит стандартный набор приложений, которые методически грамотный пользователь может приспособить для решения любой инженерной задачи. Все приложения Windows требуют от пользователя однотипных сенсомоторных и умственных навыков. Это дает возможность пользователю с наименьшими затратами осваивать новые средства и создавать методики для решения задач выбранного класса с помощью стандартных приложений. Для моделирования и исследования систем и технических объектов табличный редактор Excel имеет все необходимые средства для быстрого создания модели и получения наглядных результатов моделирования. Это создание табличных моделей с минимальными затратами времени за счет применения различных способов копирования и заполнения таблиц. Представление результатов решений в виде диаграммы. Работа с базами данных. Создание наглядных динамических моделей за счет «оживления» модели с помощью макросов. Внедрение и связывание таблиц с текстовыми документами, что упрощает ведение и написание отчетов.

Известны методики для решения экономических задач и задач статической оптимизации, а также для реализации некоторого набора численных методов [1,2]. Однако, фактически нет публикации о применении Excel для исследования технологических процессов. Технологические процессы, как правило, необходимо рассматривать как взаимодействие динамических объектов. Динамические объекты - это объекты, для которых нельзя пренебречь изменением состояния во времени - t. Динамические объекты описываются дифференциальными уравнениями. Для исследования и моделирования динамических объектов применяются известные численные методы: метод Эйлера и его модификации, методы Рунге-Кутта и Адамса [3].

Пусть требуется найти закон движения объекта y(t) на отрезке [t0, tk], которому принадлежит t. Заданно дифференциальное уравнение

 = ƒ (t, у, u(t)), (1)

начальные условия у(t0) = у0, (2)

функция управления u(t).

Допущение, принятое в вычислительной модели метода Эйлера, заключается в том, что на некотором достаточно малом интервале времени h предполагается допустимым пренебречь изменением производной . Задача решается в дискретном времени. Множество равноотстоящих моментов времени T = (t0, t1, t2,…, tk) и множество значений функции  в эти моменты времени определяют закон движения объекта. На основании (1) и (2) организуются рекуррентные вычисления (табл. 1), где h= ti - ti-1, i =1..k.

Таблица. Формулы метода Эйлера (объект 1-го порядка)

0

1

2

k

Перенос формул табл. на лист книги Excel с учетом правил ввода формул позволяет получить табличную модель процесса движения. Начальный момент времени () и начальные условия () вводятся как числовые константы. Формула вводится только в верхнюю ячейку каждого столбца. Остальные ячейки заполняются путем копирования с помощью перетаскивания маркера заполнения вниз по столбцу.

Метод Эйлера может быть применен к решению дифференциальных уравнений высоких порядков, а также к решению систем дифференциальных уравнений. При этом математическое описание объекта должно быть приведено к системе N дифференциальных уравнений первого порядка, где N - порядок исходного дифференциального уравнения или системы уравнений. Схемы приведения можно найти в [4].

Для дифференциального уравнения N-го порядка рекуррентные формулы будут иметь следующий вид

yi,q = уi-1,q + ∆уi-1,q, где ∆уi-1,q = hƒl (ti-1,q, yi-1,q zi-1,q), i = 0,1,2,…, k;

q=1,2,…, N. (6)

В табл. нужно добавить столбцы для представления всех переменных состояния yq, их производных уq×, и приращений значения функций ∆уq на интервале h.

В качестве примера на рис. представлены расчеты свободного движения объекта 2-го порядка. Закон движения объекта определяется параметрами: коэффициентом передачи K, постоянной времени T и коэффициентом затухания r. Точность расчетов определяется выбранным шагом дискретизации времени. Эти данные для выбранного объекта вводятся в 4 первых ячейки шестой строки листа. Для примера выбран приведенный объект, коэффициент передачи которого и постоянная времени равны 1.

Стандартная форма дифференциального уравнения:

, (3)

, (4)

Начальные условия и задающая функция:

. (5)

Рис. Результаты расчетов


В диапазоне ячеек J19:L19 вычисляются дискриминант и корни характеристического уравнения. Для исследования погрешности метода вычисляется Y1ф по формуле свободной составляющей переходного процесса.

Правые части (3) и (4) уравнений обозначены в таблице соответственно F1 и F2, используются для вычисления производных переменных состояния y1 и y2.

Предложенная методика легко распространяется на исследования движения объектов любых порядков, как линейных, так и нелинейных. Задающее воздействие u(t) может быть описано формулами либо представлено таблично. Для расчета переходных процессов в сложных системах следует применить прием, принятый в теории регулирования. Представить систему в виде структурного соединения типовых динамических звеньев. В таблице организовать расчеты переходных процессов типовых динамических звеньев, соединенных в соответствии со структурной схемой объекта. При этом ячейки, вычисляющие выходной сигнал первого звена, будут соответствовать входному сигналу второго. От пользователя не требуется умений использования специализированных программных систем. Предложенную методику рекомендуется использовать в учебном процессе в дисциплинах, освещающих переходные процессы в электрических цепях и системах управления, а также в дисциплинах, представляющих численные методы решения инженерных задач.


Библиографический список

2. Справочник по теории автоматического управления / Под ред. А.А. Красовского. - М.: «Наука», 1987. - 712 с.


Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!