Информационно-вычислительная сеть

  • Вид работы:
    Курсовая работа (п)
  • Предмет:
    Информатика, ВТ, телекоммуникации
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    141,51 kb
  • Опубликовано:
    2009-01-12
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Информационно-вычислительная сеть

Оглавление.

1.   Введение                                                                 - 1  стр.

2.   Постановка задачи                                                  - 2  стр.

3.   Анализ методов решения задачи                           - 2  стр.

4.   Базовая модель OSI                                                            - 4  стр.

5.   Сетевые устройства и средства коммуникаций  - 7  стр.

6.   Топологии вычислительной сети                         - 10стр.

7.   Типы построения сетей                                         - 16стр.

8.   Сетевые операционные системы                          - 18стр.

9.   Техническое решение                                                         - 25стр.

10.Литература                                                              - 28стр.

11.Содержание                                                                        - 29стр.

 

Введение.

 

На сегодняшний день в мире существует более 130 миллионов ком­пьютеров и бо­лее 80 % из них объединены в различные информационно-вычислительные сети от малых локальных сетей в офисах до глобальных сетей типа Internet. Всемирная тенденция к объ­единению компьютеров в сети обусловлена рядом важных причин, таких как ускорение пе­редачи ин­формационных сообщений, возможность быстрого обмена информацией между пользователями, получение и передача сообщений ( факсов, E - Mail писем и прочего ) не отходя от рабочего места, возможность мгновенного получения любой информации из лю­бой точки земного шара, а так же об­мен информацией между компьютерами разных фирм производителей ра­бо­тающих под разным программным обеспечением.

Такие огромные потенциальные возможности которые несет в себе вычислитель­ная сеть и тот новый потенциальный подъем который при этом испытывает информацион­ный комплекс, а так же значительное ускорение производственного процесса  не дают нам право не принимать это к разра­ботке и не применять их на практике.

Поэтому необходимо разработать принципиальное решение вопроса по организа­ции ИВС ( информационно-вычислительной сети ) на базе уже существующего компьютер­ного парка и программного комплекса отвечаю­щего современным научно-техническим требованиям с учетом возрастаю­щих потребностей и возможностью дальнейшего посте­пенного развития сети в связи с появлением новых технических и программных решений.  

 

Постановка задачи.

 

На текущем этапе развития объединения сложилась ситуация когда :

      1. В объединении имеется большое количество компьютеров работаю­щих отдельно от всех остальных компьютеров и не имеющих возможность гибко обмениваться с другими компьютерами информацией.

      2. Невозможно создание общедоступной базы данных, накопление информации при сущест­вующих объемах и различных методах обработки и хранения ин­формации.

      3. Существующие ЛВС объединяют в себе небольшое количество ком­пьютеров и работают  только над конкретными и узкими задачами.

      4. Накопленное программное и информационное обеспечение не исполь­зуется в полном объеме и не имеет общего стандарта хранения.

      5. При имеющейся возможности подключения к глобальным вычисли­тельным сетям типа Internet необходимо осуществить подключение к ин­формационному каналу не одной группы пользователей, а всех пользовате­лей с помощью объединения в группы.

Анализ методов решения данной задачи.

Для решения данной проблемы предложено создать единую инфор­мационную сеть (ЕИС) предприятия. ЕИС предприятия должна выполнять следующие функции:

     1. Создание единого информационного пространства которое способно охватить и применять для всех пользователей информацию созданную в разное время и под разными типами хранения и обработки данных, распа­раллеливание и контроль выполне­ния работ и обработки данных по ним.

     2. Повышение достоверности информации и надежности ее хранения пу­тем создания устойчивой к сбоям и потери информации вычислительной системы, а так же создание архивов данных которые можно использовать, но на текущий момент необходимости в них нет.

     3. Обеспечения эффективной системы накопления, хранения и поиска технологической, технико-экономической и финансово-экономической ин­формации по текущей работе и проделанной некоторое время назад ( ин­формация архива) с помощью создания глобальной базы данных.

     4. Обработка документов и построения на базе этого действующей сис­темы анализа, прогнозирования и оценки обстановки с целью принятия оп­тимального решения и выработки глобальных отчетов.

     5. Обеспечивать прозрачный доступ к информации  авторизованному пользователю в соответствии с его правами и привилегиями.

   В данной работе на практике рассмотрено решение 1-го пункта “ За­дачи ” - Создание единого информационного пространства - путем рассмотрения и выбора лучшего из существующих способов или их комбинации.

Рассмотрим нашу ИВС. Упрощая задачу можно сказать, что это локальная вычислительная сеть ( ЛВС ).

Что такое ЛВС? Под ЛВС понимают совместное подключение нескольких отдельных компьютерных рабочих мест ( рабочих станций ) к еди­ному каналу передачи данных. Благодаря вычислительным сетям мы полу­чили возможность одновременного использо­вания программ и баз данных несколькими пользователями.

   Понятие локальная вычислительная сеть - ЛВС ( англ. LAN - Lokal Area Network ) относится к географически ограниченным ( территориально или производственно) аппаратно-программным реализациям, в которых не­сколько компьютерных систем связанны друг с другом с помощью соответствующих средств коммуникаций. Благодаря такому со­единению пользователь может взаимодействовать с другими рабочими станциями, подключенными к этой ЛВС.

   В производственной практики ЛВС играют очень большую роль. По­средством ЛВС в систему объединяются персональные компьютеры, распо­ложенные на многих удален­ных рабочих местах, которые используют совместно оборудование, программные средства и информацию. Рабочие места сотрудников перестают быть изолированными и объеди­няются в единую систему. Рассмотрим преимущества, получаемые при сетевом объединении персональных компьютеров в виде внутрипроизводственной вычислительной сети.

   Разделение ресурсов.

   Разделение ресурсов позволяет экономно использовать ресурсы, на­пример, управлять периферийными устройствами, такими как лазерные пе­чатающие устройства, со всех присоединенных рабочих станций.

   Разделение данных.

   Разделение данных предоставляет возможность доступа и управле­ния базами данных с периферийных рабочих мест, нуждающихся в инфор­мации.

   Разделение программных средств.

   Разделение программных средств предоставляет возможность одно­временного использования централизованных, ранее установленных программных средств.

   Разделение ресурсов процессора.

   При разделение ресурсов процессора возможно использование вы­числительных мощностей для обработки данных другими системами, вхо­дящими в сеть. Предоставляе­мая возможность заключается в том, что на имеющиеся ресурсы не “набрасываются” мо­ментально, а только лишь че­рез специальный процессор, доступный каждой рабочей станции.

   Многопользовательский режим.

Многопользовательские свойства системы содействуют одновременному использованию централизованных прикладных программных средств, ранее установленных и управляемых, например, если пользователь системы работает с другим заданием, то те­кущая вы­полняемая работа отодвигается на задний план.

Все ЛВС работают в одном стандарте принятом для компьютерных сетей - в стандарте Open Systems Interconnection (OSI).

 

Базовая модель OSI (Open System Interconnection)

 

Для того чтобы взаимодействовать, люди используют общий язык. Если они не могут разговаривать друг с другом непосредственно, они применяют соответствующие вспомогательные средства для передачи сообще­ний.

   Показанные выше стадии необходимы, когда сообщение передается от отправителя к получателю.

   Для того чтобы привести в движение процесс передачи данных, использовали машины с одинаковым кодированием данных и связанные одна с другой. Для единого представления данных в линиях связи, по которым передается информация, сформи­рована Международная организация по стандартизации (англ. ISO - International Standards Organization).

   ISO предназначена для разработки модели международного комму­никационного протокола, в рамках которой можно разрабатывать международные стандарты. Для наглядного по­яснения расчленим ее на семь уровней.

   Международных организация по стандартизации (ISO) разработала базовую модель  взаимодействия открытых систем (англ. Open Systems In­terconnection (OSI)). Эта модель явля­ется международным стандартом для передачи данных.

   Модель содержит семь отдельных уровней:

   Уровень 1физический - битовые протоколы передачи информации;

   Уровень 2канальный - формирование кадров, управление доступом к среде;

   Уровень 3сетевой - маршрутизация, управление потоками данных;

   Уровень 4транспортный - обеспечение взаимодействия удаленных процес­сов;

   Уровень 5сеансовый - поддержка диалога между удаленными про­цессами;

   Уровень 6представлении данных - интерпретация передаваемых данных;

   Уровень 7прикладной - пользовательское управление данными.

Основная идея этой модели заключается в том, что каждому уровню отводится кон­кретная ролью в том числе и транспортной среде. Благодаря этому общая задача передачи дан­ных расчленяется на отдельные легко обозримые задачи. Необходимые соглашения для связи одного  уровня с выше- и нижерасположенными называют про­токолом.

   Так как пользователи нуждаются в эффективном управлении, система вычис­лительной сети представляется как комплексное строение, которое координирует взаимодействие задач пользователей.

   С учетом вышеизложенного можно вывести следующую уровневую модель с админи­стративными функциями, выполняющимися в пользова­тельском прикладном уровне.

   Отдельные уровни базовой модели проходят в направлении вниз от источника данных (от уровня 7 к уровню 1) и в направлении вверх от прием­ника данных (от уровня 1 к уровню 7). Пользовательские данные переда­ются в нижерасположенный уровень вместе со специфическим для уровня заголовком до тех пор, пока не будет достигнут последний уровень.

   Уровень 1. Физический.

На физическом уровне определяются электрические, механические, функ­циональные и процедурные параметры для физической связи в системах. Физическая связь и неразрывная с ней экс­плуатационная готовность явля­ются основной функцией 1-го уровня. Стандарты физического уровня вклю­чают рекомендации V.24 МККТТ (CCITT), EIA RS232 и Х.21. Стандарт ISDN ( Integrated Services Digital Network) в будущем сыграет определяющую роль для функций передачи данных. В качестве среды передачи данных исполь­зуют трехжильный медный провод (экранированная витая пара), коакси­аль­ный кабель, оптоволоконный проводник и радиорелейную линию.

   Уровень 2. Канальный.

   Канальный уровень формирует из данных, передаваемых 1-м уров­нем, так на­зываемые "кадры" последовательности кадров. На этом уровне осуществляются управление доступом к передающей среде, используемой несколькими ЭВМ, синхро­низация, обнаружение и исправле­ние ошибок.

   Уровень 3. Сетевой.

   Сетевой уровень устанавливает связь в вычислительной сети между двумя абонентами. Соединение происходит благодаря функциям маршрути­зации, которые требуют наличия сете­вого адреса в пакете. Сетевой уровень должен также обеспечи­вать обработку ошибок, мультип­лексирование, управление потоками данных. Самый известный стандарт, относящийся к этому уровню, - рекомендация Х.25 МККТТ (для сетей общего пользования с коммутацией пакетов).

   Уровень 4. Транспортный.

   Транспортный уровень поддерживает непрерывную передачу данных между двумя взаимодействующими друг с другом пользовательскими про­цессами. Качество транспорти­ровки, безошибочность передачи, независи­мость вычислительных сетей, сервис транспорти­ровки из конца в конец, ми­нимизация затрат и адресация связи га­рантируют непрерывную и безоши­бочную передачу данных.

   Уровень 5. Сеансовый.

   Сеансовый уровень координирует прием, передачу и выдачу одного сеанса связи. Для координации необходимы контроль рабочих параметров, управление потоками данных промежуточных накопителей и диалоговый контроль, гарантирующий передачу, имеющихся в распоряжении данных. Кроме того, сеансовый уровень содержит дополнительно функции управле­ния паролями, подсчета платы за пользование ресурсами сети, управления диалогом, синхрони­зации и отмены связи в сеансе передачи после сбоя вследствие ошибок в нижерасположенных уровнях.

Уровень 6. Представления данных.

Уровень представления данных предназначен для интерпретации данных; а также под­готовки данных для пользовательского прикладного уровня. На этом уровне происходит преоб­разование данных из кадров, ис­пользуемых для передачи данных в экранный формат или фор­мат для пе­чатающих устройств оконечной системы.

Уровень 7. Прикладной.

В прикладном уровне необходимо предоставить в распоряжение пользовате­лей уже пе­реработанную информацию. С этим может спра­виться системное и пользовательское приклад­ное программное обеспече­ние.

Для передачи информации по коммуникационным линиям данные преобразу­ются в це­почку следующих друг за другом битов (двоичное коди­рование с помощью двух состояний:"0" и "1").

Передаваемые алфавитно-цифровые знаки представляются с помо­щью бито­вых комби­наций. Битовые комбинации располагают в определен­ной кодовой таблице, содержащей 4-, 5-, 6-, 7- или 8-битовые коды.

Количество представленных знаков в ходе зависит от количества би­тов, ис­пользуемых в коде: код из четырех битов может представить макси­мум 16 значений, 5-битовый код - 32 зна­чения, 6-битовый код - 64 значения, 7-битовый - 128 значений и 8-битовый код - 256 алфавитно-цифровых зна­ков.

   При передаче информации между одинаковыми вычислительными системами и разли­чающимися типами компьютеров применяют следующие коды:

На международном уровне передача символьной информации осуще­ствляется с помо­щью 7-битового кодирования, позволяющего закодировать заглавные и строч­ные буквы англий­ского алфавита, а также некоторые спец­символы.

Национальные и специальные знаки с помощью 7-битово кода пред­ставить нельзя. Для представления национальных знаков применяют наи­более употребимый 8-битовый код.

Для правильной и, следовательно, полной и безошибочной передачи данных необхо­димо придерживаться согласованных и установленных пра­вил. Все они огово­рены в протоколе передачи данных.

Протокол передачи данных требует следующей информации:

Синхронизация

Под синхронизацией понимают механизм распознавания начала блока данных и его конца.

Инициализация

Под инициализацией понимают установление соединения между взаимодейст­вующими партнерами.

Блокирование

Под блокированием понимают разбиение передаваемой информации на блоки данных строго определенной максимальной длины (включая опо­знава­тельные знаки начала блока и его конца).

   • Адресация

   Адресация обеспечивает идентификацию различного используемого оборудо­вания дан­ных, которое обменивается друг с другом информацией во время взаимодей­ствия.

   • Обнаружение ошибок

   Под обнаружением ошибок понимают установку битов четности и, следова­тельно, вы­числение контрольных битов.

   • Нумерация блоков

   Текущая нумерация блоков позволяет установить ошибочно переда­ваемую или поте­рявшуюся информацию.

   • Управление потоком данных

   Управление потоком данных служит для распределения и синхрони­зации ин­формаци­онных потоков. Так, например, если не хватает места в бу­фере устройства данных или данные не достаточно быстро обрабатыва­ются в периферийных устройст­вах (например, принтерах), со­общения и / или за­просы накапливаются.

   • Методы восстановления

   После прерывания процесса передачи данных используют методы восстанов­ления, чтобы вернуться к определенному положению для повтор­ной передачи инфор­мации.

   • Разрешение доступа

   Распределение, контроль и управление ограничениями доступа к данным вме­няются в обязанность пункта разрешения доступа (например, "только передача" или "только прием" ).

   Сетевые устройства и средства коммуника­ций.

 

В качестве средств коммуникации наиболее часто используются витая пара, коаксиальный кабель оптоволоконные линии. При выборе типа кабеля учитывают сле­дующие показатели:

   • стоимость монтажа и обслуживания,

   • скорость передачи информации,

   • ограничения на величину расстояния передачи информации (без дополни­тельных усилителей-повторителей(репитеров)),

   • безопасность передачи данных.

   Главная проблема заключается в одновременном обеспечении этих показате­лей, например, наивысшая скорость передачи данных ограничена максимально воз­можным расстоянием передачи данных, при котором еще обеспечивается требуемый уровень защиты данных. Легкая наращивае­мость и простота расширения кабельной системы влияют на ее стоимость.

   Витая пара.

   Наиболее дешевым кабельным соединением является витое двух­жильное про­водное соединение часто называемое "витой парой" (twisted pair). Она позволяет пе­редавать информацию со скоростью до 10 Мбит/с, легко наращивается, однако явля­ется помехонезащищенной. Длина кабеля не может превышать 1000 м при скорости передачи 1 Мбит/с. Преимущест­вами являются низкая цена и бес проблемная уста­новка. Для повышения помехозащищенности информации часто используют экраниро­ванную ви­тую пару, т.е. витую пару, помещенную в экранирующую оболочку, подобно экрану коаксиального кабеля. Это увеличивает стоимость витой пары и при­ближает ее цену к цене коаксиального кабеля.

Коаксиальный кабель.

Коаксиальный кабель имеет среднюю цену, хорошо помехозащитен и применя­ется для связи на большие расстояния (несколько километров). Скорость передачи информации от 1 до 10 Мбит/с, а в некоторых случаях может достигать 50 Мбит/с. Ко­аксиальный кабель используется для основ­ной и широкополосной передачи инфор­мации.

Широкополосный коаксиальный кабель.

Широкополосный коаксиальный кабель невосприимчив к помехам, легко на­ращива­ется, но цена его высокая. Скорость передачи информации равна 500 Мбит/с. При пе­редачи информации в базисной полосе частот на рас­стояние более 1,5 км требуется усилитель, или так называемый репитер (повторитель). Поэтому суммарное расстоя­ние при передаче информации увеличивается до 10 км. Для вычислительных сетей с топологией шина или дерево коаксиальный кабель должен иметь на конце согласую­щий резистор (терминатор).

  

Еthernet-кабель.

   Ethernet-кабель также является коаксиальным кабелем с волновым сопротив­лением 50 Ом. Его называют еще толстый Ethernet (thick) или жел­тый кабель (yellow ca­ble). Он использует 15-контактное стандартное включе­ние. Вследствие помехоза­щищенности является дорогой альтернативой обычным коаксиальным кабелям. Мак­симально доступное расстояние без повторителя не превышает 500 м, а общее рас­стояние сети Ethernet - около 3000  м. Ethernet-кабель, благодаря своей магистральной топологии, ис­пользует в конце лишь один нагрузочный резистор.

Сheapernеt-кабель.

Более дешевым, чем Ethernet-кабель является соединение Cheaper­net-кабель или, как его часто называют, тонкий (thin) Ethernet. Это также 50-омный коаксиальный кабель со скоростью передачи информации в десять миллионов бит / с.

При соединении сегментов Сhеарегnеt-кабеля также требуются по­вторители. Вычислительные сети с Cheapernet-кабелем имеют небольшую стоимость и мини­мальные затраты при наращивании. Соединения сетевых плат производится с помо­щью широко используемых малогабаритных байо­нетных разъемов (СР-50). Дополни­тельное экранирование не требуется. Ка­бель присоединяется к ПК с помощью тройни­ковых соединителей (T-connectors).

Расстояние между двумя рабочими станциями без повторителей мо­жет состав­лять максимум 300 м, а общее расстояние для сети на Cheapernet-кабеля - около 1000 м. Приемопередатчик Cheapernet располо­жен на сетевой плате и как для гальваниче­ской развязки между адаптерами, так и для усиления внешнего сигнала

Оптоволоконные линии.

Наиболее дорогими являются оптопроводники, называемые также стекловоло­конным кабелем. Скорость распространения информации по ним достигает нескольких гигабит в секунду. Допустимое удаление более 50 км. Внешнее воздействие помех практически отсутствует. На данный момент это наиболее дорогостоящее соединение для ЛВС. Применяются там, где возникают электромагнитные поля помех или требу­ется передача информа­ции на очень большие расстояния без использования повтори­телей. Они обладают противоподспушивающими свойствами, так как техника ответв­ле­ний в оптоволоконных кабелях очень сложна. Оптопроводники объединя­ются в JIBC с помощью звездообразного соединения.

Показатели трех типовых сред для передачи приведены в таблице.

Показатели

Среда передачи данных

Двух жильный кабель - витая пара

Коаксиальный ка­бель

Оптоволо­кон­ный кабель

Цена

Относительно высо­кая

Высокая

Наращивание

Очень простое

Проблематично

Простое

Защита от про­слушивания

Незначительная

Хорошая

Высокая

Показатели

Среда передачи данных

Двух жильный кабель - витая пара

Коаксиальный ка­бель

Оптоволо­кон­ный кабель

Проблемы с заземлением

Нет

Возможны

Нет

Восприимчи­вость к поме­хам

Существует

Существует

Отсутствует


Существует ряд принципов построения ЛВС на основе выше рассмот­ренных компонентов. Такие принципы еще называют - топологиями.

Топологии вычислительной сети.

   Топология типа звезда.

   Концепция топологии сети в виде звезды пришла  из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с пе­риферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных, например, в электронной почте RELCOM. Вся информация между двумя периферийными рабочими мес­тами проходит через центральный узел вычислительной сети.

  

   Топология в виде звезды

Пропускная способность сети определяется вычислительной мощно­стью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает.

   Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

   При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

   Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других тополо­гиях.

   Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким ме­стом вычислительной сети. В случае выхода из строя центрального узла на­рушается работа всей сети.

   Центральный узел управления - файловый сервер мотает реализо­вать оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

  

Кольцевая топология.

   При кольцевой топологии сети рабочие станции связаны одна с дру­гой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3

  

   Кольцевая топология

с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

   Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географически рабочие станции расположены далеко от кольца (например, в линию).

Сообщения циркулируют регулярно по кругу. Рабочая станция посы­лает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффектив­ной, так как большинство сообщений можно отправлять “в дорогу” по ка­бельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличи­вается пропорционально количеству рабочих станций, входящих в вычисли­тельную сеть.

   Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информа­ции, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограниче­ния на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.

  

  

Структура логической кольцевой цепи

Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топо­логий. Отдельные звезды включаются с помощью специальных коммутато­ров (англ. Hub -концентратор), которые по-русски также иногда называют “хаб”. В зависимости от числа рабочих станций и длины кабеля между рабо­чими станциями применяют активные или пассивные концентраторы. Актив­ные концентраторы дополнительно содержат усилитель для подключения от 4 до 16 рабочих станций. Пассивный концентратор является исключи­тельно разветвительным устройством (максимум на три рабочие станции). Управление отдельной рабочей станцией в логической кольцевой сети про­исходит так же, как и в обычной кольцевой сети. Каждой рабочей станции присваивается соответствующий ей адрес, по которому передается управ­ление (от старшего к младшему и от самого младшего к самому старшему). Разрыв соединения происходит только для нижерасположенного (ближайшего) узла вычислительной сети, так что лишь в редких случаях мо­жет нарушаться работа всей сети.

  

Шинная топология.

   При шинной топологии среда передачи информации представляется в форме коммуникационного пути, доступного дня всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут не­посредственно вступать в контакт с любой рабочей станцией, имеющейся в сети.

                           Шинная топология

Рабочие станции в любое время, без прерывания работы всей вычис­лительной сети, могут быть подключены к ней или отключены. Функциони­рование вычислительной сети не зависит от состояния отдельной рабочей станции.

   В стандартной ситуации для шинной сети Ethernet часто используют тонкий кабель или Cheapernet-кaбeль с тройниковым соединителем. Выклю­чение и особенно подключение к такой сети требуют разрыва шины, что вы­зывает нарушение циркулирующего потока информации и зависание сис­темы.

Новые технологии предлагают пассивные штепсельные коробки, че­рез которые можно отключать и / или включать рабочие станции во время работы вычислительной сети.

Благодаря тому, что рабочие станции можно включать без прерыва­ния сетевых процессов и коммуникационной среды, очень легко прослуши­вать информацию, т.е. ответвлять информацию из коммуникационной среды.

В ЛВС с прямой (не модулируемой) передачей информации всегда может существовать только одна станция, передающая информацию. Для предот­вращения коллизий в большинстве случаев применяется временной метод разделения, согласно которому для каждой подключенной рабочей станции в определенные моменты времени предоставляется исключительное право на использование канала передачи данных. Поэтому требования к пропуск­ной способности вычислительной сети при повышенной нагрузке снижа­ются, например, при вводе новых рабочих станций. Рабочие станции при­соединяются к шине посредством устройств ТАР (англ. Terminal Access Point - точка подключения терминала). ТАР представляет собой специальный тип подсоединения к коаксиальному кабелю. Зонд игольчатой формы внедря­ется через наружную оболочку внешнего проводника и слой диэлектрика к внутреннему проводнику и присоединяется к нему.

В ЛВС с модулированной широкополосной передачей информации различные рабочие станции получают, по мере надобности, частоту, на ко­торой эти рабочие станции могут отправлять и получать информацию. Пе­ресылаемые данные модулируются на соответствующих несущих частотах, т.е. между средой передачи информации и рабочими станциями находятся соответственно модемы для модуляции и демодуляции. Техника широкопо­лосных сообщений позволяет одновременно транспортировать в коммуни­кационной среде довольно большой объем информации. Для дальнейшего развития дискретной транспортировки данных не играет роли, какая перво­начальная информация подана в модем (аналоговая или цифровая), так как она все равно в дальнейшем будет преобразована.

Характеристики топологий вычислительных сетей приведены в таб­лице.

Характери­стики

Топология

Звезда

Кольцо

Шина

Стоимость расширения

Незначительная

Средняя

Присоединение абонентов

Пассивное

Активное

Пассивное

Защита от от­казов

Незначительная

Незначительная

Высокая

Характери­стики

Топология

Звезда

Кольцо

Шина

Размеры сис­темы

Любые

Любые

Ограниченны

Защищенность от прослуши­вания

Хорошая

Хорошая

Незначительная

Стоимость подключения

Незначительная

Незначительная

Высокая

Поведение системы при высоких на­грузках

Хорошее

Удовлетворитель­ное

Плохое

Возможность работы в ре­альном режиме времени

Очень хорошая

Хорошая

Плохая

Разводка ка­беля

Хорошая

Удовлетворитель­ная

Хорошая

Обслуживание

Очень хорошее

Среднее

Среднее

 

Древовидная структура ЛВС.

На ряду с известными топологиями вычислительных сетей кольцо, звезда и шина, на практике применяется и комбинированная, на пример древовидна структура. Она образуется в основном в виде комбинаций вы­шеназванных топологий вычислительных сетей. Основание дерева вычис­лительной сети располагается в точке (корень), в которой собираются ком­муникационные линии информации (ветви дерева).

Вычислительные сети с древовидной структурой применяются там, где невозможно непосредственное применение базовых сетевых структур в чистом виде. Для подключения большого числа рабочих станций соответст­венно адаптерным платам применяют сетевые усилители и / или коммута­торы. Коммутатор, обладающий одновременно и функциями усилителя, на­зывают активным концентратором.

   На практике применяют две их разновидности, обеспечивающие под­ключение соответственно восьми или шестнадцати линий.

   Устройство к которому можно присоединить максимум три станции, называют пассивным концентратором. Пассивный концентратор обычно ис­пользуют как разветвитель. Он не нуждается в усилителе. Предпосылкой для подключения пассивного концентратора является то, что максимальное возможное расстояние до рабочей станции не должно превышать несколь­ких десятков метров.

 

Типы построения сетей по методам передачи информации.

 

Локальная сеть Token Ring

Этот стандарт разработан фирмой IBM. В качестве передающей среды применяется неэкранированная или экранированная витая пара (UPT или SPT) или оптоволокно. Скорость передачи данных 4 Мбит/с или 16Мбит/с. В качестве метода управле­ния доступом станций к передающей среде используется метод - маркерное кольцо (Тоken Ring). Основные положения этого метода:

¨   устройства подключаются к сети по топологии кольцо;

¨   все устройства, подключенные к сети, могут передавать данные, только получив разрешение на передачу (маркер);

¨   в любой момент времени только одна станция в сети обладает таким правом.

 

Типы пакетов.

В IВМ Тоkеn Ring используются три основных типа пакетов:

¨   пакет управление/данные (Data/Соmmand Frame);

¨   маркер (Token);

¨   пакет сброса (Аbort).

Пакет Управление/Данные. С помощью такого пакета выполняется

 передача данных или команд управления работой сети. 

Маркер. Станция может начать передачу данных только после получения такого пакета, В одном кольце может быть только один маркер и, соответственно, только одна станция с правом передачи данных.

Пакет Сброса. Посылка такого пакета называет прекращение любых передач.

   В сети можно подключать компьютеры по топологии звезда или кольцо.

Локальная сеть Arknet.

Arknet (Attached Resource Computer NETWork ) - простая, недорогая, надежная и достаточно гибкая архитектура локальной сети. Разработана корпорацией Datapoint в 1977 году. Впоследствии лицензию на Аrcnet приобрела корпорация SМС (Standard Microsistem Corporation), которая стала основным разработчиком и производителем оборудования для сетей Аrcnet. В качестве передающей среды используются витая пара, коаксиальный кабель (RG-62) с волновым сопротивлением 93 Ом и оптоволоконный кабель. Скорость передачи данных - 2,5 Мбит/с. При подключении устройств в Аrcnet применяют топологии шина и звезда. Метод управления доступом станций к передающей среде - маркерная шина (Тоken Bus). Этот метод предусматривает следующие правила:

¨   Все устройства, подключенные к сети, могут передавать данные

¨   В любой момент времени только одна станция в сети обладает таким правом;

¨   Данные, передаваемые одной станцией, доступны всем станциям сети.

Основные принципы работы.

Передача каждого байта в Аrcnet выполняется специальной посылкой ISU(Information Symbol Unit - единица передачи информации), состоящей из трех служебных старт/стоповых битов и восьми битов данных. В начале каждого пакета передается начальный разделитель АВ (Аlегt Вurst), который состоит из шести служебных битов. Начальный разделитель выполняет функции преамбулы пакета.

В Аrcnet определены 5 типов пакетов:

1.   Пакет IТТ (Information To Transmit) - приглашение к передаче. Эта посылка передает управление от одного узла сети другому. Станция, принявшая этот пакет, получает право на передачу данных.

2.   Пакет FBE (Free Buffeг Еnquiries) - запрос о готовности к приему данных. Этим пакетом проверяется готовность узла к приему данных.

3.   Пакет данных. С помощью этой посылки производиться передача данных.

4.   Пакет АСК (ACKnowledgments) - подтверждение приема. Подтверждение готовности к приему данных или подтверждение приема пакета данных без ошибок, т.е. в ответ на FBE и пакет данных.

5.   Пакет NAK ( Negative AcKnowledgments) - неготовность к приему. Неготовность узла к приему данных ( ответ на FBE ) или принят пакет с ошибкой.

В сети Arknet можно использовать две топологии: звезда и шина.

 

Локальная сеть Ethernet

Спецификацию Ethernet в конце семидесятых годов предложила компания Xerox Corporation. Позднее к этому проекту присоединились компании Digital Equipment Corporation (DEC) и Intel Corporation. В 1982 году была опубликована спецификация на Ethernet версии 2.0. На базе Ethernet институтом IEEE был разработан стандарт IEEE 802.3. Различия между ними незначительные.

Основные принципы работы.

На логическом уровне в Ethernet применяется топология шина :

¨   все устройства, подключенные к сети, равноправны, т.е. любая станция может начать передачу в любой момент времени( если передающая среда свободна);

¨   данные, передаваемые одной станцией, доступны всем станциям сети.

 

Сетевые операционные системы для локальных сетей.

Основное направление развития современных Сетевых Операционных Систем (Network Operation System - NOS ) - перенос вычислительных операций на рабочие станции, создание систем с распределенной обра­боткой данных. Это в первую очередь связано с ростом вычислительных возможностей персональных компьютеров и все более активным внедрением мощных многозадачных операционных систем: OS/2, Windows NТ, Windows 95. Кроме этого внедрение объектно-ориентированных технологий (ОLЕ, DСЕ, IDAPI) позволяет упростить организацию распределенной обработки данных. В такой ситуации основной задачей NOS становится объединение неравноценных операционных систем рабочих станций и обеспечение транспортного уровня для широкого круга задач: обработка баз данных, передача сообщений, управление распределенными ресурсами сети (directoгу/namе service).

В современных NOS применяют три основных подхода к организации управления ресурсами сети.

Первый - это Таблицы Объектов (Bindery). Используется в сетевых операционных системах NetWare 28б и NetWare v3.1х. Такая таблица находится на каждом файловом сервере сети. Она содержит информацию о пользователях, группах, их правах доступа к ресурсам сети (данным, сервисным услугам и т.п.). Такая организация работы удобна, если в сети только один сервер. В этом случае требуется определить и контролировать только одну информационную базу. При расширении сети, добавлении новых серверов объем задач по управлению ресурсами сети резко возрастает. Администратор системы вынужден на каждом сервере сети определять и контролировать работу пользователей. Абоненты сети, в свою очередь, должны точно знать, где расположены те или иные ресурсы сети, а для получения доступа к этим ресурсам - регистрироваться на выбранном сервере. Конечно, для информационных систем, состоящих из большого количества серверов, такая организация работы не подходит.

Второй подход используется в LANServer и LANMahager - Структура Доменов (Domain). Все ресурсы сети и пользователи объединены в группы. Домен можно рассматривать как аналог таблиц объектов (bindery), только здесь такая таблица является общей для нескольких серверов, при этом ресурсы серверов являются общими для всего домена. Поэтому пользователю для того чтобы получить доступ к сети, достаточно подключиться к домену (зарегистрироваться), после этого ему ста­новятся доступны все ресурсы домена, ресурсы всех серверов и устройств, входящих в состав домена. Однако и с использованием этого под­хода также возникают проблемы при построении информационной системы с большим количеством пользователей, серверов и, соответственно, доменов. Например, сети для предприятия или большой разветвленной организации. Здесь эти проблемы уже связаны с организацией взаимодействия и управления несколькими доменами, хотя по содержанию они такие же, как и в первом случае.

Третий подход - Служба Наименований Директорий или Каталогов (Directory Name Services - DNS) лишен этих недостатков. Все ресурсы сети: сетевая печать, хранение данных, пользователи, серверы и т.п. рассматриваются как отдельные ветви или директории информационной системы. Таблицы, определяющие DNS, находятся на каждом сервере. Это, во-первых, повышает надежность и живучесть системы, а во-вторых, упрощает обращение пользователя к ресурсам сети. Зарегистрировавшись на одном сервере, пользователю становятся доступны все ресурсы сети. Управление такой системой также проще, чем при использовании доменов, так как здесь существует одна таблица, определяющая все ресурсы сети, в то время как при доменной организации необходимо определять ресурсы, пользователей, их права доступа для каждого домена отдельно.

В настоящее время по оценке компании IDC наиболее распростра­ненными являются следующие сетевые операционные системы:

¨   NetWare v2.х и vЗ.х, Nowell Inc.                              65%

¨   LAN Server, IВМ Согр.                                                       14%

¨   LAN Manager, Microsoft Corp.                                             3%

¨   VINES, Ваnуаn Systems Inc.                                     2%

Рассмотрим более подробно возможности этих и некоторых других сетевых операционных систем и требования, которые они предъявляют к программному и аппаратному обеспечению устройств сети.

NetWare 3.11, Nowell Inc.

Отличительные черты:

¨   самая эффективная файловая система среди современных NOS;

¨   самый широкий выбор аппаратного обеспечения

 

Основные характеристики и требования к аппаратному обеспечению.

¨   Центральный процессор: 38б и выше.

¨   Минимальный объем жесткого диска: 9 МБайт.

¨   Объем ОП (Оперативной Памяти) на сервере: 4 МБайт - 4ГБайт.

¨   Минимальный объем ОП РС (Рабочей Станции) клиента: б40 Кбайт.

¨   Операционная система: собственная разработка Nowell

¨   Протоколы: IРХ/SРХ.

¨   Мультипроцессорность: нет.

¨   Количество пользователей: 250.

¨   Максимальный размер файла: 4ГБайт.

¨   Шифрование данных: нет.

¨   Монитор UPS: есть.

¨   ТТS: есть.

¨   Управление распределенными ресурсами сети: таблицы bindeгу на сервере.

¨   Система отказоустойчивости: дублирование дисков, зеркальное отражение дисков, SFT II,SFT III, поддержка накопителя на магнитной ленте, резервное копирование таблиц bindery и данных.

¨   Компрессирование данных: нет.

¨   Фрагментация блоков ( Block suballocations): нет.

¨   Файловая система клиентов: DOS, Windows, Мас(доп.), ОS/2(доп.), UNIX(доп.), Windows NT.

LAN Server, IВМ Согр.

Отличительные черты:

¨   использование доменной организации сети упрощает управление и доступ к ресурсам сети;

¨   обеспечивает полное взаимодействие с иерархическими системами (архитектурой SNА).

Целостная операционная система с широким набором услуг. Рабо­тает на базе ОS/2, поэтому сервер может быть невыделенным (nondedicated). Обеспечивает взаимодействие с иерархическими системами, поддерживает межсетевое взаимодействие.

Выпускаются две версии LAN Server: Entry и Advanced. Advanced в отличие от Entry поддерживает высокопроизводительную файловую систему  (High Perfomance File System - HPFS). Она включает системы отказоустойчивости (Fail Tolerances) и секретности (Local Security).

Серверы и пользователи объединяются в домены. Серверы в до­мене работают как единая логическая система. Все ресурсы домена дос­тупны пользователю после регистрации в домене. В одной кабельной системе могут работать несколько доменов. При использовании на рабочей станции OS/2 ресурсы этих станций доступны пользователям других рабочих станций, но только одному в данное время. Администратор может управлять работой сети только с рабочей станции, на которой установлена операционная система OS/2. LAN Server поддерживает удален­ную загрузку рабочих станций DOS, OS/2 и Windows (Remote Interface Procedure Load - RIPL).

К недостаткам можно отнести:

¨   сложная процедура установки NOS;

¨   ограниченное количество поддерживаемых драйверов сетевых адаптеров.

 

Основные характеристики и требования к аппаратному обеспечению.

¨   Центральный процессор: 38б и выше.

¨   Минимальный объем жесткого диска: 4.6 МБайт для клиента (requestor)/7.2 МБайт для сервера.

¨   Минимальный объем ОП на сервере: 1.3 МБайт - 16 МБайт.

¨   Минимальный объем ОП РС клиента: 4.2 Мбайт для OS/2, 640 КБайт для DOS.

¨   Протоколы: NetBIOS, ТСР/IР.

¨   Мультипроцессорность: поддерживается.

¨   Количество пользователей: 1016.

¨   Максимальный размер файла: 2 Гбайт.

¨   Шифрование данных: нет.

¨   Монитор UPS: есть.

¨   ТТS: есть.

¨   Управление распределенными ресурсами сети: домены.

¨   Система отказоустойчивости: дублирование дисков, зеркальное отражение дисков, поддержка накопителя на магнитной ленте, резервное копирование таблиц домена.

¨   Компрессирование данных: нет.

¨   Фрагментация блоков (Block suballocation): нет.

¨   Файловая система клиентов: DOS, Windows, Мас (доп.), OS/2, UNIX, Windows NT (доп.).

 

VINES 5.52, Banyan System Inc.

Отличительные черты:

¨   возможность взаимодействия с любой другой сетевой операционной системой;

¨   использование службы имен StreetTalk позволяет создавать разветвленные системы.

До появления NetWare 4 VINES преобладала на рынке сетевых операционных систем для распределенных сетей, для сетей масштаба предприятия (enterprise network). Тесно интегрирована с UNIX.

Для организации взаимодействия используется глобальная служба имен - StreetTalk, во многом схожая с NetWare Directory Services. Позволяет подключиться пользователю, находящемуся в любом месте сети. StreetTalk - база данных, распределенная по всем серверам сети.

Поддержка Х.29 позволяет удаленной рабочей станции DOS подключиться к локальной сети через сети Х.25 или ISDN.

VINES критична к типу компьютера и жестких дисков. Поэтому при выборе оборудования необходимо убедиться в совместимости аппаратного обеспечения и сетевой операционной системы VINES.

 

Основные характеристики и требования к аппаратному обеспечению.

¨   Центральный процессор: 386 и выше.

¨   Минимальный объем жесткого диска: 80 Мбайт.

¨   Объем ОП на сервере: 8 Мбайт - 25б Мбайт.

¨   Минимальный объем ОП РС клиента: б40 КБайт.

¨   Операционная система: UNIX.

¨   Протоколы: VINES IР, AFP, NetBIOS, ТСР/IР, IРХ/SРХ.

¨   Мультипроцессорность: есть - SMP(Symmetric MultiProcesing).

¨   Количество пользователей: неограниченно.

¨   Максимальный размер файла; 2ГБайт.

¨   Шифрование данных: нет.

¨   Монитор UPS: есть.

¨   ТТS: нет.

¨   Управление распределенными ресурсами сети: StreetTalk.

¨   Система отказоустойчивости: резервное копирование таблиц StreetTalk и данных.

¨   Компрессирование данных: есть.

¨   Фрагментация блоков (Block suballocation): нет.

¨   Файловая система клиентов: DOS, Windows, Мас(доп.), ОS/2, UNIX(доп.), Windows NT (доп.).

Windows NT Advanced Server 3.1, Microsoft Corp.

Отличительные черты:

¨   простота интерфейса пользователя

¨   доступность средств разработки прикладных программ и поддержка прогрессивных объектно-ориентированных технологий

Всё это привело к тому, что эта операционная система может стать одной из самых популярных сетевых операционных систем.

Интерфейс напоминает оконный интерфейс Windows 3.1, инсталяция занимает около 20 минут. Модульное построение системы упрощает внесение изменений и перенос на другие платформы. Обеспечивается защищенность подсистем от несанкционированного доступа и от их взаимного влияния (если зависает один процесс, это не влияет на работу остальных). Есть поддержка удаленных станций - Remote Access Service (RAS), но не поддерживается удаленная обработка заданий.

Windows NT предъявляет более высокие требования к производительности компьютера по сравнению с NetWare.

Основные характеристики и требования к аппаратному обеспечению.

¨   Центральный процессор: 386 и выше, MIPS, R4000, DEC Alpha АХР.

¨   Минимальный объем жесткого диска: 90 Мбайт.

¨   Минимальный объем ОП на сервере: 16 Мбайт.

¨   Минимальный объем ОП РС клиента; 12 Мбайт для NТ/512 КБайт для DOS.

¨   Операционная система: Windows NT.

¨   Протоколы: NetBEUI, ТСР/IР, IРХ/SРХ, АррlеТаlk, АsyncBEUI.

¨   Мультипроцессорность: поддерживается.

¨   Количество пользователей: неограниченно.

¨   Максимальный размер файла: неограничен.

¨   Шифрование данных: уровень С-2.

¨   Монитор UPS: есть.

¨   ТТS: есть.

¨   Управление распределенными ресурсами сети: домены.

¨   Система отказоустойчивости: дублирование дисков, зеркальное отражение дисков, RAID 5, поддержка накопителя на магнитной ленте, резервное копирование таблиц домена и данных.

¨   Компрессирование данных: нет.

¨   Фрагментация блоков (Block suballocation): нет.

¨   Файловая система клиентов: DOS, Windows, Мас, ОS/2, UNIX, Windows NT.

 

NetWare 4, Nowell Inc.

Отличительная черта:

¨   применение специализированной системы управления ресурсами сети (NetWare Directory Services - NDS) позволяет строить эффективные информационные системы с количеством пользователей до 1000. В NDS определены все ресурсы, услуги и пользователи сети. Эта информация распределена по всем серверам сети.

Для управления памятью используется только одна область (рооl), поэтому оперативная память, освободившаяся после выполнения каких-либо процессов, становится сразу доступной операционной системе (в отличие от NetWare 3).

1. Фрагментация Блоков или Разбиение Блоков Данных на Подблоки (Block Suballocation). Если размер блока данных на томе 64 КБайта, а требуется записать файл размером 65 КБайт, то ранее потребовалось бы выделить 2 блока по б4 Кбайта. При этом 6З Кбайта во втором блоке не могут использоваться для хранения других данных. В NetWare 4 система выделит в такой ситуации один блок размером 64 КБайта и два блока по 512 Байт. Каждый частично используемый блок делится на подблоки по 512 Байт, свободные подблоки доступны системе при записи других файлов.

2. Упаковка Файлов (File Compression). Долго не используемые данные система автоматически компрессирует, упаковывает, экономя таким образом место на жестких дисках. При обращении к этим данным автоматически выполняется декомпрессия данных.

3. Перемещение Данных (Data Migration). Долго не используемые данные система автоматически копирует на магнитную ленту либо другие носители, экономя таким образом место на жестких дисках.

Встроенная поддержка Протокола Передачи Серии Пакетов (Packet-Burst Migration). Этот протокол позволяет передавать несколько пакетов без ожидания подтверждения о получении каждого пакета. Подтверждение передается после получения последнего пакета из серии.

При передаче через шлюзы и маршрутизаторы обычно выполня­ется разбиение передаваемых данных на сегменты по 512 Байт, что уменьшает: скорость передачи данных примерно на 20%. Применение в NetWare 4 протокола LIP (Large Internet Packet) позволяет повысить эффективность обмена данными между сетями, так как в этом случае разбиение на сегменты по 512 Байт не требуется.

Все системные сообщения и интерфейс используют специальный модуль. Для перехода к другому языку достаточно поменять этот модуль или добавить новый. Возможно одновременное использование не­скольких языков: один пользователь при работе с утилитами использует английский язык, а другой в это же время немецкий.

Утилиты управления поддерживают DOS, Windows и OS/2-интерфейс.

Основные характеристики и требования к аппаратному обеспечению.

¨   Центральный процессор: 38б и выше.

Минимальный объем жесткого диска: от 12 Мбайт до 60 Мбайт.

Объем ОП на сервере: 8 Мбайт - 4ГБайт.

Минимальный объем ОП РС клиента: б40 КБайт.

Операционная система: собственная разработка Nowell.

Протоколы: IРХ/SРХ.

Мультипроцессорность: нет.

Количество пользователей: 1000.

Максимальный размер файла: 4 Гбайт.

Шифрование данных: С-2.

Монитор UPS: есть.

ТТS: есть.

Управление распределенными ресурсами сети: NDS.

Система отказоустойчивости: дублирование дисков, зеркальное отражение дисков, SFT II,SFT III, поддержка накопителя на магнитной ленте, резервное копирование таблиц NDS.

Компрессирование данных: есть.

¨   Фрагментация блоков (Block suballocation): есть.

¨   Файловая система клиентов: DOS, Windows, Мас(5), ОS/2, UNIX(доп.), Windows NT.

Техническое решение.

   В виду рассмотренного материала который дает сравнительное рас­смотрение максимального количества всех возможных вариантов решений основанных на существующих технологиях и мировом опыте, а также на су­ществующих и принятых во всем мире стандартах построения ЛВС, мы мо­жем принять следующую концепцию за основу построения сети как макси­мально отвечающую поставленным требованиям и технико-экономически законченную.

   Шаг 1. У нас есть (см. пл-т 1) небольшие сети (отдел, подразделение, цех) и отдельно стоящие компьютеры ни с кем не соединенные ( начальники отделов и административный корпус). На первом этапе мы объединим все компьютеры в одном здании в одну сеть, по способам и технологиям рассматриваемым конкретно к каждому случаю. В каждом корпусе ( пучке ) (см. пл-т 2)  будет выделенный сервер имеющий связь с центральным сервером предприятия, но дающий возможность связи простым компьютерам только через себя. Так как ряд компьютеров имеют достаточно слабые технические характеристики, то рационально объединить их в сети под управлением ОС Nowell NetWare 4.02 или Windows 3.11 for WorkGroups так как они дают возможность подключения “клиентов” на уровне DOS.

              Шаг 2. На втором шаге нам необходимо объединение корпусов в единую сеть (см. пл-т 3). Для этого мы возьмём мощный сервер с большой производительностью и соединим его через опто-волоконную связь со всеми 6-ю корпусами по топологии “звезда” как самой защищенной от сбоев и полного выхода сети из работы и имеющую максимальную пропускную способность. Управлять сетью будет Nowell NeWare 4.02 как ОС дающая возможность присоединения любых компьютеров и работы со всеми другими ОС (см. пл-т 4). Для увеличения спектра решаемых задач к центральному серверу мы подключим и Sun Spark Station работающий под управлением ОС Unix и SQL Server Windows NT подключенные под управлением математических мостов в объединенных средах Unix/NetWare и Windows NT/NetWare дающие возможность взаимного выступления серверов и клиентами и серверами по отношению друг к другу.

 

Организация сети.

Объединение локальных сетей отделов и “рабочих групп”, информационно связанных по функциональному взаимодействию при решении их производственных задач осуществляется по принципу “клиент-сервер” с последующим предоставлением сводной результирующей технологической и финансово-экономической информации на уровень АРМ руководителей предприятия (и объединения, в дальнейшем) для принятия управленческих решений.

Программно-структурная организация сети.

Предлагается решить данную задачу путем создания на основе Nowell технологии и операционной системы Nowell NetWare 4.02 корпоративную сеть предприятия по принципу "распределенная звезда", работающую под управлением нескольких серверов и поддерживая основные транспортные протоколы ( IPX/SPX и TCP/IP) в зависимости от протокола под которым работают местные локальные сети и имеющая сегменты типа Ethernet .

Кабельная структура

Пассивная часть кабельной структуры ЕИС предприятия содержит в себе:

¨   6 магистральных сегментов волоконно-оптических кабелей связи FXOHBMUK-4GKW-57563-02;

¨   соединительные кабели F/O Patch Cable;

¨   коммутирующие панели F/O Patch Panel;

¨   экранированные радиочастотные кабели RG-58;

¨   кабели "витая пара" 10Base-T Level 5;

¨   коммутирующие панели TP Patch Panel;

¨   соединители T-connector;

¨   концевые радиочастотные терминаторы.

Применение оптико-волоконных линий связи оправдано значитель­ным удалением производственных объектов и зданий друг от друга и высо­ким уровнем индустриальных помех. Кабели RG-58 используются при под­клю­чении к сети автоматизированных промышленных установок, также тре­бую­щих защиты обрабатываемой на этих АРМах и передаваемой на другие АРМы технологической и другой информации от различного вида индустри­альных помех. "Витая пара" 10Base-T Level 5 используется для подключения рабочих станций пользователей сети в местах, не требующих повышенных требований к защите среды передачи информации от помех.

   Активная часть кабельной структуры ЕИС представлена следующей аппаратурой :

¨   репитер CMMR-1440 Multi-Media Repeater;

¨   коммутирующие концентраторы 10Base-T UTPC-1220 Concentrator;

¨   коммутирующие концентраторы 10Base-T UTPC-6100 Concentrator.

Аппаратно-программая организация

ЕИС, представленная на рисунке, содержит 3 сервера баз данных (файл-сервера),2 из которых представлены компьютерами IBM PC/AT486DX, 3-й - Pentium 120/40/4.2G, функционирующих под управлением сетевой ОС   Novell NetWare и Unix-сервера на базе Sun Sparkstation. Серверы, кроме сво­его прямого назначения обработки и хранения информации, решают задачу маршрутизации и транспортировки информации, с одной стороны снижая трафик на основной информационной магистрали и с другой - обеспечивают прозрачный доступ к информации других серверов.

Серверы в настоящее время обслуживают порядка 60-ти рабочих станций, обрабатывающих различного вида технологическую информацию, а также свыше 40-ка рабочих станций в административно-управленческих и финансово-экономических подразделениях предприятия.

В качестве сетевых аппаратных средств серверов и рабочих станций используются следующие сетевые адаптерные карты:

- NE-1000;

- NE-2000;

- SMC8634;

- SMC8834;

Сетевые потоколы - IEEE 802.2, IEEE 802.3 CSMA/CD.

Транспортные протоколы - IPX/SPX - для NetWare-серверов, TCP/IP -

 со своими правами и привилегиями.

Для программно-аппаратного объединения сетевых сред NetWare и Unix использовать программный мост на базе совмещенного транспортного протокола IPX/IP, в дальнейшем с возможным переходом на сетевую интегрированную ОС Unix/Ware.

Наряду с сетевой ОС NetWare 3.11 для групп клиентов, функционально взаимосвязанных между собой при решении производственных задач, используется сетевая среда Artisoft LANtastic 6.0 и Windows for Workgroup 3.11 предоставляющие прозрачный доступ пользователям этих одноранговых сетей к информации друг друга. В то же время пользователи среды LANtastic 6.0 и Windows for Workgroup 3.11 являются клиентами NetWare-серверов, имея доступ к их ресурсам и информации на жестких дисках в соответствии со своими правами и привилегиями.

   Таким образом Мы получили реально работающую корпоративную сеть имеющую множество оригинально работающих узлов и принципов решений задачи которая на сегодня в мире является одной из самых интересных и передовых в мире в области информационных технологий. Эта сеть даст в дальнейшем возможность переходить на новые более мощные программные и аппаратные средства связи и коммуникаций которые будут разработаны в мире, так как вся сеть реализована на основе ISO и полностью соответствует мировым стандартам.


Литература.

·   Д.Веттинг “ Nowell NetWare для пользователя”

·   С.И.Казаков “Основы сетевых технологий”

·   “ Nowell NetWare 4.02 for Lan Managers” Nowell Corp.

·   Б.Г. Голованов “ Введение в программирование в сетях Nowell NetWare”

  



Похожие работы на - Информационно-вычислительная сеть

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!