Вредное воздействие тяжелых металлов на организм человека

  • Вид работы:
    Реферат
  • Предмет:
    Безопасность жизнедеятельности
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    45,11 kb
  • Опубликовано:
    2008-05-25
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Вредное воздействие тяжелых металлов на организм человека

ГУО «Заславская гимназия»

Реферат на тему:

«Вредное воздействие тяжелых металлов на организм человека»

Ученицы 10 «Б» класса

Салаевой Ироды

Заславль,2008

Оглавление

Оглавление

Введение

1. Вредное воздействие тяжелых металлов

1.1.  Загрязнение окружающей среды

2. Тяжелые металлы и их вредное воздействие на живые организмы

2.1. Ртуть

2.2. Метилртуть

2.3.  Мышьяк

2.4.  Свинец

2.5.Кадмий

2.6.Тяжелые металлы

3.  Как оградить себя от воздействия тяжелых металлов

Заключение

Литература

Введение

Не будем, однако, слишком обольщаться

 нашими победами над природой. За каждую

такую победу она нам мстит. Каждая из 

   этих побед имеет, правда, в    первую очередь

те последствия, на которые мы рассчитывали,

но во вторую и третью очередь    

 совсем другие, непредвиденные последствия,

которые часто уничтожают значение первых.

Ф. Энгельс

 

Тяжёлые металлы - это элементы периодической системы химических элементов Д.И. Менделеева, с относительной молекулярной массой больше 40. Одним из сильнейших по действию и наиболее распространенным химическим загрязнением является загрязнение тяжелыми металлами.

   К тяжелым металлам относятся более 40 химических элементов периодической системы Д.И. Менделеева, масса атомов которых составляет свыше 50 атомных единиц.

Эта группа элементов активно участвует в биологических процессах, входя в состав многих ферментов. Группа "тяжелых металлов" во многом совпадает с понятием "микроэлементы". Отсюда свинец, цинк, кадмий, ртуть, молибден, хром, марганец, никель, олово, кобальт, титан, медь, ванадий являются тяжелыми металлами.

Тяжелые металлы, попадая в наш организм, остаются там навсегда, вывести их можно только с помощью белков молока и белых грибов. Достигая определенной концентрации в организме, они начинают свое губительное воздействие - вызывают отравления, мутации. Кроме того, что сами они отравляют организм человека, они еще и чисто механически засоряют его - ионы тяжелых металлов оседают на стенках тончайших систем организма и засоряют почечные каналы, каналы печени, таким образом, снижая фильтрационную способность этих органов. Соответственно, это приводит к накоплению токсинов и продуктов жизнедеятельности клеток нашего организма, т.е. самоотравление организма, т.к. именно печень отвечает за переработку ядовитых веществ, попадающих в наш организм, и продуктов жизнедеятельности организма, а почки - за их выведение наружу Источники поступления тяжелых металлов делятся на природные (выветривание горных пород и минералов, эрозийные процессы, вулканическая деятельность) и техногенные (добыча и переработка полезных ископаемых, сжигание топлива, движение транспорта, деятельность сельского хозяйства).

Часть техногенных выбросов, поступающих в природную среду в виде тонких аэрозолей, переносится на значительные расстояния и вызывает глобальное загрязнение.

Другая часть поступает в бессточные водоемы, где тяжелые металлы накапливаются и становятся источником вторичного загрязнения, т.е. образования опасных загрязнений в ходе физико-химических процессов, идущих непосредственно в среде (например, образование из нетоксичных веществ ядовитого газа фосгена).

Тяжелые металлы накапливаются в почве, особенно в верхних гумусовых горизонтах, и медленно удаляются при выщелачивании, потреблении растениями, эрозии и дефляции - выдувании почв. Период полуудаления или удаления половины от начальной концентрации составляет продолжительное время: для цинка - от 70 до 510 лет, для кадмия - от 13 до 110 лет, для меди - от 310 до 1500 лет и для свинца - от 740 до 5900 лет. В гумусовой части почвы происходит первичная трансформация попавших в нее соединений.

Тяжелые металлы  обладают  высокой  способностью к многообразным химическим, физико-химическим и биологическим реакциям. Многие из них имеют переменную валентность и участвуют в окислительно-восстановительных процессах. Тяжелые металлы и их соединения, как и другие химические соединения, способны перемещаться и перераспределяться в средах жизни, т.е. мигрировать. Миграция соединений тяжелых металлов происходит в значительной степени в виде органо-минеральной составляющей. Часть органических соединений, с которыми связываются металлы, представлена продуктами микробиологической деятельности. Ртуть характеризуется способностью аккумулироваться в звеньях «пищевой цепи». Микроорганизмы почвы могут давать устойчивые к ртути популяции, которые превращают металлическую ртуть в токсические для высших организмов вещества. Некоторые водоросли, грибы и бактерии способны аккумулировать ртуть в клетках.

Ртуть, свинец, кадмий входят в общий перечень наиболее важных загрязняющих веществ окружающей среды, согласованный странами, входящими в ООН.

1.Вредное воздействие тяжелых металлов

1.1. Загрязнение окружающей среды

Под загрязнением окружающей среды понимают нежелательные изменения физических, физико-химических и биологических характеристик воздуха, почв, вод, которые могут неблагоприятно влиять на жизнь человека, необходимых ему растений, животных и культурное достояние, истощать или портить его сырьевые ресурсы. Эти негативные изменения являются результатом деятельности человека. Они прерывают или нарушают процессы обмена и круговорота веществ, их ассимиляцию, распределение энергии, в результате меняются свойства окружающей среды, условия существования организмов, снижается продуктивность или же разрушаются экосистемы. Прямо или косвенно такие преобразования влияют на человека через биологические ресурсы, воды и продукты.

Основные источники загрязнений антропогенного происхождения:

. тепловые электростанции (27 %),

. предприятия черной (24 %) и цветной (10,5 %) металлургии,

. нефтехимической промышленности (15,5 %),

. строительных материалов (8,1 %), химической промышленности (1,3%),

. автотранспорта (13,3 %).

Типы загрязнений и вредных воздействий: физические загрязнения — радиоактивные элементы (излучение), нагрев или тепловое загрязнение, шумы; биологические загрязнения — микробиологическое отравление дыхательных и пищевых путей (бактерии, вирусы), изменение биоценозов вследствие внедрения чужеродных растений или животных; химические загрязнения — газообразные производные углерода и жидкие углеводороды, моющие средства, пластмассы, пестициды, производные серы, тяжелые металлы, фтористые соединения, аэрозоли и др.; эстетический вред — нарушение ландшафтов, примечательных мест малопривлекательными постройками и др. Кроме того, выделяют группы загрязняющих факторов: материальные, включающие механические (аэрозоли, твердые тела и частицы в воде и почве), химические (разнообразные газообразные, жидкие и твердые химические соединения), биологические загрязнения (микроорганизмы и продукты их деятельности), энергетические (физические) загрязнения — энергия тепловая, механическая (вибрация, шум, ультразвук), световая, электромагнитные поля, ионизирующие излучения.
   Радиоактивные отходы — материальные и энергетические загрязнения. Различают также точечные (сосредоточенные) и рассредоточенные источники загрязнения, а также источники загрязнения непрерывного и периодического действия.

Загрязнители бывают:

. стойкие неразлагающиеся (например, соли ртути, фенольные соединения с длинной цепью, ДДТ, алюминиевые банки и др.), не существует природных процессов, разлагающих эти загрязнители с той же скоростью, с какой они вводятся в экосистемы;

. неустойчивые (бытовые сточные воды, избыток нитратов и др.), разрушающиеся под воздействием биологических процессов.

   Атмосферное загрязнение — присутствие в воздухе различных газов, паров, частиц твердых и жидких веществ, включая и радиоактивные, отрицательно влияющих на живые организмы, ухудшающих условия жизни человека и наносящих ему материальный ущерб.

   В атмосферу Земли за год выбрасывается, млн. т: оксида углерода 200, диоксида углерода более 20, диоксида серы 200, оксидов азота 53, пыли более
250, золы 120, углеводородов более 50, фреонов 1, свинца 0,4 и т.д.

  О загрязнении окружающей человека природной среды вредными веществами сейчас знают почти все. Средства массовой информации – печать, радио и телевидение – пытаются формировать такие знания у различных групп населения. Очевидно, что представить хороший обзор того, как, чем и в каких количествах загрязняется наш большой общий дом – биосфера – практически невозможно. К настоящему времени человечество ввело в биосферу более 4 миллионов ксенобиотиков (чужеродных для нее антропогенных веществ) и продолжает вводить по 6 тысяч веществ ежедневно. Понятно, что удельный вес, доля различных вредных веществ в загрязнении окружающей среды не являются одинаковыми. Г.В. Новиков и А.Я. Дударев (1978), например, в своей работе об охране окружающей среды современного города привели следующие данные Баттелевского института о «вкладе» отдельных веществ в загрязнение окружающей среды в 1970 и 1971 гг. В 1971 г. первое место в этом списке заняли тяжелые металлы Выделение их в окружающую среду происходит в основном при сжигании минерального топлива. В золе угля и нефти обнаружены практически все металлы. В каменноугольной золе, например, по данным Л.Г. Бондарева (1984), установлено наличие 70 элементов. В 1 т в среднем содержится по 200 г цинка и олова, 300 г кобальта, 400 г урана, по 500 г германия и мышьяка. Максимальное содержание стронция, ванадия, цинка и германия может достигать 10 кг на 1 т. Зола нефти содержит много ванадия, ртути, молибдена и никеля. В золе торфа содержится уран, кобальт, медь, никель, цинк, свинец. Так, Л.Г. Бондарев, учитывая современные масштабы использования ископаемого топлива, приходит к следующему выводу: не металлургическое производство, а сжигание угля представляет собой главный источник поступления многих металлов в окружающую среду. Например, при ежегодном сжигании 2,4 млрд. т каменного и 0,9 млрд. т бурого угля вместе с золой рассеивается 200 тыс. т мышьяка и 224 тыс. т урана, тогда как мировое производство этих двух металлов составляет 40 и 30 тыс. т в год соответственно.

Интересно, что техногенное рассеивание при сжигании угля таких металлов, как кобальт, молибден, уран и некоторые другие, началось задолго до того, как стали использоваться сами элементы. «К настоящему времени (включая 1981 г.), – продолжает Л.Г. Бондарев, – во всем мире было добыто и сожжено около 160 млрд. т угля и около 64 млрд. т нефти. Вместе с золой рассеяны в окружающей человека среде многие миллионы тонн различных металлов».

Хорошо известно, что многие из названных металлов и десятки других микроэлементов находятся в живом веществе планеты и являются совершенно необходимыми для нормального функционирования организмов. Но, как говорится, «все хорошо в меру». Многие из таких веществ при их избыточном количестве в организме оказываются ядами, начинают быть опасными для здоровья. Так, например, непосредственное отношение к заболеванию раком имеют: мышьяк (рак легкого), свинец (рак почек, желудка, кишечника), никель (полость рта, толстого кишечника), кадмий (практически все формы рака).

Разговор о кадмии должен быть особым. Л.Г. Бондарев приводит тревожные данные шведского исследователя М. Пискатора о том, что разница между содержанием этого вещества в организме современных подростков и критической величиной, когда придется считаться с нарушениями функции почек, болезнями легких и костей, оказывается очень малой. Особенно у курильщиков. Табак во время своего роста очень активно и в больших количествах аккумулирует кадмий: его концентрация в сухих листьях в тысячи раз выше средних значений для биомассы наземной растительности. Поэтому с каждой затяжкой дымом вместе с такими вредными веществами, как никотин и окись углерода, в организм поступает и кадмий. В одной сигарете содержится от 1,2 до 2,5 мкг этого яда. Мировое производство табака, по данным Л.Г. Бондарева, составляет примерно 5,7 млн т в год. Одна сигарета содержит около 1 г табака. Следовательно, при выкуривании всех сигарет, папирос и трубок в мире в окружающую среду выделяется от 5,7 до 11,4 т кадмия, попадая не только в легкие курильщиков, но и в легкие некурящих людей.

Заканчивая краткую справку о кадмии, необходимо отметить еще и то, что это вещество повышает кровяное давление. Относительно большее количество кровоизлияний в мозг в Японии, по сравнению с другими странами, закономерно связывают в том числе и с кадмиевым загрязнением, которое в Стране восходящего солнца является очень высоким.

Формула «все хорошо в меру» подтверждается и тем, что не только избыточное количество, но и недостаток названных выше веществ (и других, разумеется) не менее опасен и вреден для здоровья человека. Есть, например, данные о том, что недостаток молибдена, марганца, меди и магния также может способствовать развитию злокачественных новообразований.

Примеров насыщения окружающей человека среды тяжелыми металлами и микроэлементами накопилось очень много. Значительное их число приведено в монографии Л.Г. Бондарева. Еще больше данных о вредном действии тяжелых металлов, и не только для человека, содержится в третьем томе седьмого издания справочника «Вредные вещества в промышленности» (1977). Для нас эти примеры имели целью показать масштабы металлического давления на биосферу и возможность неблагоприятных следствий этого процесса для здоровья людей.

2.Тяжелые металлы и их вредное воздействие на живые организмы

2.1.Ртуть

Кроме свинца наиболее полно по сравнению с другими микроэлементами изучена ртуть. Отравление ртутью, основные его проявления в качестве профессиональной болезни, описанные Льюисом Кэроллом как “безумие шляпника” и до настоящего времени остаются классическими. Раньше этот металл иногда применялся для серебрения зеркал и производства фетровых шляп. У рабочих часто наблюдались психические нарушения токсического характера, называвшиеся “безумием”.

Хлористая ртуть когда-то “популярная” среди самоубийц до сих пор используется в фотогравюрах. Она также применяется в некоторых инсектицидах и фугицидах, что представляет опасность для жилых помещений. В наши дни отравления ртутью редки, но, тем не менее, эта проблема заслуживает внимания.

Несколько лет тому назад в г. Минимата (Японии) была зарегистрирована эпидемия отравления ртутью. Ртуть была обнаружена в консервированном тунце, который в качестве пищи употребляли жертвы этого отравления. Выяснилось, что один из заводов сбрасывал в Японское море отходы ртути как раз в том районе, откуда появились отравленные люди. Поскольку ртуть использовалась в краске для судов, ее и раннее постоянно обнаруживали в мировом Океане в небольших количествах. Однако японская трагедия позволила привлечь внимание общественности к этой проблеме. Маленькие дозы, которые и сейчас обнаруживаются в рыбе, в расчет не принимались, так как в маленьких концентрациях ртуть не аккумулируется. Она выделяется через почки, толстую кишку, желчь, пот и слюну. Между тем ежедневное поступление этих доз может иметь токсические последствия.

Производные ртути способны инактивировать энзимы, в частности цитохромоксидазу, принимающую участие в клеточном дыхании. Кроме того, ртуть может соединяться с сульфгидрильными и фосфатными группами и, таким образом, повреждать клеточные мембраны. Соединения ртути более токсичны, чем сама ртуть. Морфологические изменения при отравлении ртутью наблюдаются там, где наиболее высокая концентрация металла, то есть в полости рта, в желудке, почках и толстой кишке. Кроме того, может страдать и нервная система.

Острая интоксикация ртутью. Она возникает при массивном поступлении ртути или ее соединений в организм. Пути поступления: желудочно-кишечный тракт, дыхательные пути, кожа. Морфологически она может виде массивных некрозов в желудке, толстой кишке, а также острого тубулярного некроза почек. В головном мозге никаких характерных повреждений не отмечается. Резко выражен отек.

Хроническая интоксикация ртутью. Хроническая интоксикация ртутью сопровождается более характерными изменениями. В ротовой полости из-за выделения ртути усиленно функционирующими слюнными железами возникает обильное слюноотделение. Ртуть скапливается по краям десен и вызывает гингивит и окраску десен, похожую на “свинцовую каемку”. Могут расшатываться зубы. Часто возникает хронический гастрит, который сопровождается изъязвлениями слизистой. Поражение почек характеризуется диффузным утолщением базальной мембраны клубочкового аппарата, протеинурией, а иногда развитием нефротического синдрома. В эпителии извитых канальцев развивается гиалиново-капельная дистрофия. В коре головного мозга, преимущественно затылочных долей и в области задних рогов боковых желудочков, выявляются диссеминированные очаги атрофии.

Первоначально ртуть попадает в океан в виде Нg2+, затем она взаимодействует с органическими веществами и с помощью анаэробных организмов переходит в токсичные вещества метилртуть (СН3Нg)+  и диметилртуть (СН3-Нg-СН3),

Ртуть присутствует не только в гидросфере, но и в атмосфере, так как имеет относительно высокое давление паров. Природное содержание ртути составляет ~0,003-0,009 мкг/м3.

Ртуть характеризуется малым временем пребывания в воде и быстро переходит в отложения в виде соединений с органическими веществами, находящимися в них. Поскольку ртуть адсорбируется отложениями, она может медленно освобождаться и растворяться в воде, что приводит к образованию источника хронического загрязнения, действующего длительное время после того, как исчезнет первоначальный источник загрязнения.

Мировое производство ртути в настоящее время составляет более 10000 т в год, большая часть этого количества используется в производстве хлора. Ртуть проникает в воздух в результате сжигания ископаемого топлива. Анализ льда Гренландского ледяного купола показал, что, начиная с 800 г. н.э. до 1950-х гг., содержание ртути оставалось постоянным, но уже с 50-х гг. нашего столетия количество ртути удвоилось. На рис.23 представлены пути цикловой миграции ртути.

 










Металлическая ртуть опасна, если ее проглотить и вдыхать ее пары. Металлическая ртуть, находящаяся, например, в термометрах, сама по себе редко бывает опасной. Лишь ее испарение и вдыхание паров ртути могут привести к развитию фиброза легких.  При этом у человека появляется металлический вкус во рту, тошнота, рвота, колики в животе, зубы чернеют и начинают крошиться. Пролитая ртуть разлетается на капельки и, если это произошло, ртуть должна быть тщательно собрана. Жидкий металл раньше использовался для лечения упорных запоров, так как его плотность и законы тяжести способствовали мощному терапевтическому эффекту. При этом признаков ртутной интоксикации не наблюдалось.

Неорганические соединения ртути практически нелетучи, поэтому опасность представляет попадание ртути внутрь организма через рот и кожу. Соли ртути разъедают кожу и слизистые оболочки тела. Попадание солей ртути внутрь организма вызывает воспаление зева, затрудненное глотание, оцепенение, рвоту, боли в животе.

У взрослого человека при попадании внутрь около 350 мг ртути может наступить смерть.

Загрязнение ртутью может быть уменьшено в результате запрещения производства и применения ряда продуктов. Нет сомнения, что загрязнение ртутью всегда будет острой проблемой. Но с введением строгого контроля за отходами производства, содержащими ртуть, а также за пищевыми продуктами можно уменьшить опасность отравления ртутью.

2.2.Метилртуть

Ртуть в составе выбросов из антропогенных и природных источников поступает в атмосферу в неорганической форме и затем в результате протекания биологических процессов может преобразовываться в метилртуть в почве и водной среде.

В окружающей среде происходит биологическая аккумуляция метилртути, которая беспрепятственно поступает в человеческий организм через пищевые продукты. Атмосферные концентрации ртути в Европе, а также во всем мире обычно находятся на уровне, существенно ниже того, при котором, как известно, оказывается негативное воздействие на здоровье человека в результате вдыхания ртути. Концентрации неорганических соединений ртути в почве и подземных водах обычно находятся на уровне существенно ниже того, при котором, как известно, возникают негативные последствия для здоровья человека в результате потребления питьевой воды.

Метилртуть является сильнодействующим нейротоксичным химическим веществом. Нерожденные дети (т.е. зародыши) являются наиболее уязвимой группой и подвергаются воздействию этого химического вещества главным образом в результате потребления рыбы в рационе матери. Метилртуть также выделяется вместе с молоком матери. Данные человеческого биомониторинга и биомоделирования режима питания свидетельствуют о том, что допустимые объемы поступления метилртути в составе пищевых продуктов превышаются в подгруппах населения, которые потребляют значительное количество рыбы, например в Скандинавии, Северной Америке и Франции. Концентрации ртути в размере 0,5 мг/кг, т.е. показателя, использующегося во многих странах в качестве опорного, нередко превышаются для некоторых видов (главным образом крупных хищных) пресноводных и морских рыб и млекопитающих.

Ретроспективные данные (например, данные об озерных отложениях в Скандинавии) свидетельствуют о том, что в сравнении с доиндустриальной эрой концентрации ртути возросли в 2–5 раз в результате антропогенных выбросов ртути и ее переноса на большие расстояния. Метилртуть, присутствующая в организмах пресноводных рыб, трансформировалась из неорганической ртути, содержащейся в почве и непосредственных атмосферных осаждениях. С 1990-х годов антропогенные выбросы ртути в Европе сократились приблизительно на 50%. Данные моделирования и ограниченного мониторинга свидетельствуют о том, что уровень осаждения ртути в Европе сократится в аналогичном размере. Однако не было отмечено сопутствующего уменьшения концентрации метилртути в организмах пресноводных рыб.

Существует лишь ограниченный объем информации об источниках метилртути, присутствующей в организме морских рыб, и о роли, которую в этом процессе играет перенос загрязнения на большие расстояния. Ряд данных свидетельствует о росте концентрации ртути в организмах морских рыб и млекопитающих в Арктике – этот факт подтверждает воздействие переноса ртути на большие расстояния. В целом потребление рыбы весьма благоприятно сказывается на здоровье человека, однако в организмах представителей некоторых групп населения, потребляющих значительное количество рыбы или рыбы, содержащей загрязняющие вещества, объем поступления метилртути может достигать опасных уровней. В этой связи сокращение концентраций метилртути в рыбе следует рассматривать в качестве высокоприоритетной задачи.

Одним из средств для достижения этой цели является сокращение атмосферных выбросов и переноса загрязнения на большие расстояния.

Ртуть и ее соединения опасны для жизни. Метилртуть особенно опасна для животных и человека, так как она быстро переходит из крови в мозговую ткань, разрушая мозжечок и кору головного мозга. Клинические симптомы такого поражения - оцепенение, потеря ориентации в пространстве, потеря зрения. Симптомы ртутного отравления проявляются не сразу. Другим неприятным последствием отравления метилртутью является проникновение ртути в плаценту и накапливание ее в плоде, причем мать не испытывает при этом болезненных  ощущений.  Метилртуть  оказывает  тератогенное воздействие на человека. Ртуть относится к I классу опасности.

2.3. Мышьяк

 

Мышьяк в природе присутствует в виде сульфатов. Его содержание в свинцово-цинковых концентратах около 1 %. Вследствие летучести он легко попадает в атмосферу.

Самыми сильными источниками загрязнения этим металлом являются гербициды (химические вещества для борьбы с сорными растениями), фунгициды (вещества для борьбы с грибными болезнями растений) и инсектициды (вещества для борьбы с вредными насекомыми).

По токсическим свойствам мышьяк относится к накапливающимся ядам. По степени токсичности следует различать элементарный мышьяк и его соединения. Элементарный мышьяк сравнительно мало ядовит, но обладает тератогенными свойствами. Вредное воздействие на наследственный материал (мутагенность) оспаривается.

Соединения мышьяка медленно поглощаются через кожу, быстро всасываются через лёгкие и желудочно-кишечный тракт. Смертельная доза для человека – 0,15-0,3 г.

Хроническое отравление вызывает нервные заболевания, слабость, онемение конечностей, зуд, потемнение кожи, атрофию костного мозга, изменения печени. Соединения мышьяка являются канцерогенными для человека. Мышьяк и его соединения относятся ко II классу опасности.

Арсенизм, или отравление мышьяком, столь распространенное и любимое в эпоху средневековья, к счастью в наше время – очень редкая болезнь.

 Соли, оксиды и пары мышьяка чрезвычайно опасны. Препараты на основе мышьяка используются в качестве гербицидов для опрыскивания фруктов, в качестве инсектицидов, яда для крыс и во многих промышленных процессах. Различают острый и хронический арсенизм.

Острое отравление, обычно, наблюдаемое при суициде или гомициде, редко, но хроническое отравление из-за продолжительного контакта с мышьяковой пылью, парами, как в промышленности, так и в сельском хозяйстве является нередко причиной смерти и в наши дни.

Механизм воздействия на клетку еще полностью неясен. Однако известно, что мышьяк соединяется с сульфгидрильными группами (SH – группами). Вот почему при хронической интоксикации мышьяк скапливается в волосах, ногтях, эпидермисе и может там обнаруживаться. Возможно, что мышьяк может инактивировать энзимы, содержащие SH – группы и, таким образом, являться ингибитором дыхательных ферментов.

Проявления арсенизма зависят от дозы. Довольно маленькая доза в 30 мг триоксида мышьяка может быть смертельной. Значительные дозы этого сильнейшего яда могут убить в течение 1-2 часов, вызывая обычно выраженную периферическую вазодиллятацию, резкое уменьшение объема циркулирующей крови и шок. Предполагают, что мышьяк действует как депрессор центральной нервной системы и ведет к параличу вазомоторных центров. Если отравление менее значительно, то после первых суток основные морфологические изменения обнаруживаются в сосудах, в головном мозге, пищеварительном тракте и коже.
Множественные петехии выявляются на коже и в серозной оболочках внутренних органов, что связано с деструкцией базальной мембраны капилляров. Если больной пережил два или три дня, в желудке и в кишечнике можно наблюдать выраженное полнокровие, отек, участки геморрагии и очаги коагуляционного некроза. В головном мозге выявляется диффузная геморрагическая инфильтрация, обусловленная фибриноидным некрозом стенок капилляров, отек. В сосудах микроциркуляторного русла формируются тромбы, которые могут быть причиной инфарктов мозга.

Если больной пережил 4-5 дней, в паренхиматозных органах, таких как почки, печень и сердце выявляется жировая дистрофия. У этих больных быстро развивается кардиоваскулярный коллапс, депрессия ЦНС, приводящие к коме и смерти через несколько часов. При подостром течении болезни наблюдается рвота, бесконечный профузный понос.

Клинически для хронического отравления мышьяком характерно быстро развивающиеся недоиагание и мышечная слабость. Затем появляются онемение и периферические параличи. Нередко первичный диагноз связан с появлением кожных пигментных пятен, характерных для хронической интоксикации. Если установлен источник отравления, и он вовремя обезврежен, то прогноз благоприятен при условии адекватно проведенного лечения. При хроническом течении заболевания основные повреждения локализуются в пищеварительном тракте, нервной системе и коже. Они немного напоминают таковые при острой форме отравления, но менее тяжелые. Петехии на коже не столь многочисленны и менее выражены. В желудке и тонкой кишке имеют место полнокровие, отек и мелкие эрозии. Повреждения головного мозга редки. Больше страдают периферические нервы, в которых резко выражены явления демиэлинизации вплоть до деструкции осевых цилиндров. Характерны темно-коричневые пигментации в виде изолированных или сливающихся пятен на коже. На ладонях и стопах развивается гиперкератоз. В этих участках часто возникают эпидермоидные карциномы. В почках и в печени морфологические изменения сходные с теми, что наблюдаются при остром отравлении. В настоящее время внимание ученых привлекли случаи развития рака легких и ангиосарком печени, которые развиваются у виноградарей, имеющих контакт с пестицидами, содержащими мышьяк.

2.4. Свинец.

В настоящее время свинец занимает первое место среди причин промышленных отравлений. Это вызвано широким применением его в различных отраслях промышленности. Воздействию свинца подвергаются рабочие, добывающие свинцовую руду, на свинцово-плавильных заводах, в производстве аккумуляторов, при пайке, в типографиях, при изготовлении хрустального стекла или керамических изделий, этилированного бензина, свинцовых красок и др. Загрязнение свинцом атмосферного воздуха, почвы и воды в окрестности таких производств, а также вблизи крупных автомобильных дорог создает угрозу поражения свинцом населения, проживающего в этих районах, и прежде всего детей, которые более чувствительны к воздействию тяжелых металлов.

Отравление свинцом (сатурнизм) – представляет собой пример наиболее частого заболевания, обусловленного воздействием окружающей среды. В большинстве случаев речь идет о поглощении малых доз и накопление их в организме, пока его концентрация не достигнет критического уровня необходимого для токсического проявления. Острые свинцовые отравления встречаются редко. Их симптомы – слюнотечение, рвота, кишечные колики, острая форма отказа почек, поражение мозга. В тяжёлых случаях – смерть через несколько дней.

Ранние симптомы отравления свинцом проявляются в виде повышенной возбудимости, депрессии и раздражительности. При отравлении органическими соединениями свинца его повышенное содержание обнаруживают в крови.

Существует острая и хроническая форма болезни. Острая форма возникает при попадании значительных его доз через желудочно-кишечный тракт или при вдыхании паров свинца, или при распылении свинцовых красок. Хроническое отравление наиболее часто возникает у детей, лижущих поверхность предметов, окрашенных свинцовой краской. Дети в отличие от взрослых гораздо легче абсорбируют свинец. Хроническое отравление может развиваться при использовании плохо обожженной керамической посуды, покрытой эмалью, содержащей свинец, при употреблении зараженной воды, особенно в старых домах, где канализационные трубы содержат свинец, при злоупотреблении алкоголем, изготовленным в перегонном аппарате, содержащим свинец. Проблема хронической интоксикации связана также с наличием паров свинца при применении тетраэтилсвинца при ожогах в качестве антишокового препарата.

Выбросы газа отравляют не только атмосферу, но почву, и воду, и продукты питания. Только в Северной Америке такие выбросы в атмосферу составляют 200 тыс. тон свинца ежегодно. Отравление атмосферы повсеместно и в среднем взрослый человек получает примерно от 150 до 400 мг свинца и его концентрация в крови и в тканях составляет до 25 мг/100 мл. Для возникновения клинических признаков болезни необходимо около 80 мгр/100 мл.

Попадая оральным путем, свинец абсорбируется в кишечнике и достигает печени, откуда с желчью вновь попадает в 12-ти перстную кишку. Одна часть свинца реабсорбируется, другая удаляется с испражнениями. Если свинец попадает через дыхательные пути, он быстро достигает кровотока и тогда его действие максимально. Из крови свинец экскретируется почками, часть его депонируется в костях. Свинец ингибирует действие многих энзимов, а также инкорпорацию железа в организме, в результате чего в моче резко увеличивается количество свободного протопорфирина. Его увеличение в моче является четким клиническим признаком сатурнизм.

Органами — мишенями при отравлении свинцом являются кроветворная и нервная системы, почки. Менее значительный ущерб сатурнизм наносит желудочно-кишечному тракту. Один из основных признаков болезни — анемия, возникающая в результате усиленного гемолиза. Эта анемия характеризуется “точечным крапом” эритроцитов в виде базофильных гранул, хорошо выявляемых при окраске метиленовым синим. На уровне нервной системы отмечается поражение головного мозга и периферических нервов. Сатурнизм-обусловленная энцефалопатия чаще наблюдается у детей, реже - у взрослых. В головном мозге выражен диффузный отек серого и белого вещества в сочетании с дистрофическими изменениями кортикальных и ганглионарных нейронов, демиэлинизация белого вещества. В капиллярах и артериолах отмечается пролиферация эндотелиоцитов. Мозговые поражения клинически сопровождаются конвульсиями и бредом, иногда приводят к сонливости и коме. Из периферических нервов чаще всего поражаются наиболее “активные” двигательные нервы мышц. Морфологически наблюдается их демиэлинизация с последующим повреждением осевых цилиндров. Тяжелее всего страдают мышцы – разгибатели кисти, которая приобретает вид “рогов оленя”. Паралич m. peroneus приводит к положению “согнутой ноги”.

При хроническом сатурнизме характерно появление кислотоустойчивых внутриядерных включений в эпителиальных клетках проксимальных канальцах нефрона. Эти включения содержат магний, кальций, свинец и протеины. Каково бы ни было их происхождение, выявление этих включений является важным морфологическим признаком сатурнизма. У некоторых больных может наблюдаться развитие хронического тубуло-интерстициального нефрита и хронической почечной недостаточности.

Интоксикация свинцом может быть, по большей части предупреждена, особенно у детей. Законы запрещают использовать краски на основе свинца, равно как и его присутствие в них. Соблюдение этих законов может хоть частично решить проблему этих “тихих эпидемий”.

Свинец является металлом, оказывающим хорошо известное нейротоксическое воздействие. Нарушение процесса развития нервной системы детей является наиболее важным воздействием свинца. Эти нарушения могут объясняться его воздействием на эмбрионы, а также в период грудного вскармливания и в раннем детском возрасте.

Свинец накапливается в скелете, и его поступление из костей в период беременности и грудного кормления вызывает воздействие на эмбрионы и детей, вскармливаемых грудью. В этой связи важное значение имеет воздействие свинца на организм женщин до беременности.

В последние десятилетия во многих районах отмечено значительное сокращение уровней Pb-B, главным образом, в результате постепенного прекращения использования этилированного бензина, а также в связи с уменьшением воздействия других источников. Существующий в настоящее время самый низкий средний уровень Pb-B в ряде европейских стран составляет около 20 мкг/л; однако в отношении многих районов

Европы отсутствует надежная информация об уровнях Pb-B.

Относительный вклад источников зависит от местных условий. Пища является доминирующим источником поступления свинца в организм человека во всех группах населения. Важным источником поступления свинца в организм младенцев и детей младшего возраста может быть также попадание в организм через их руки пищи, содержащей частицы загрязненной почвы, пыли и свинцовой (старой) краски. При использовании водопроводных систем со свинцовыми трубами поступление свинца в организм через питьевую воду может быть также важным источником, в особенности для детей. Воздействие свинца в результате вдыхания может быть также значительным в тех случаях, когда концентрации свинца в окружающем воздухе являются высокими.

В последние десятилетия концентрации свинца в окружающем воздухе сократились: в период 1990–2003 годов уровни содержания свинца в воздухе сократились на 50–70% в Европе. Аналогичным образом сократились уровни атмосферного осаждения.

Ежегодные объемы поступления свинца в верхние слои почвы в результате ТЗВБР и в связи с использованием минеральных и органических удобрений имеют практически одинаковый порядок величины и изменяются между странами, а также в зависимости от объема сельскохозяйственной деятельности. Это поступление является относительно небольшим в сравнении с уже накопленными запасами свинца, поступающими из природных источников и в результате ресуспендирования. Однако ТЗВБР может в значительной степени повышать содержание свинца в сельскохозяйственных культурах в результате непосредственного осаждения. Хотя объемы его поглощения через корни растений являются относительно небольшими, в долгосрочной перспективе особую озабоченность вызывает рост концентраций свинца в почве, которому следует препятствовать ввиду возможной опасности воздействия низких концентраций свинца на здоровье человека. Поэтому объемы атмосферных выбросов свинца следует поддерживать на максимально возможном низком уровне.

Содержание свинца в магматических породах позволяет отнести его к категории редких металлов. Он концентрируется в сульфидных породах, которые встречаются во многих местах в мире. Свинец легко выделить путем выплавки из руды. В природном состоянии он обнаруживается в основном в виде галенита (РbS).

Свинец, содержащийся в земной коре, может вымываться под воздействием атмосферных процессов, переходя постепенно в океаны. Ионы Рb 2+ довольно нестабильны, и содержание свинца в ионной форме составляет всего 10 –8 %. Однако он накапливается в океанских осадках в виде сульфитов или сульфатов. В пресной воде содержание свинца гораздо выше и может достигать 2 х 10 –6 %, а в почве примерно такое же количество, что и в земной коре (1,5 х 10 –3 %) из-за нестабильности этого элемента в геохимическом цикле.

Свинцовые руды содержат 2-20 % свинца.  Концентрат, получаемый флотационным способом, содержит 60-80 % Рb. Его нагревают для удаления серы и выплавляют свинец. Такие первичные процессы крупномасштабны. Если же для получения свинца используют отходы, процессы выплавки называют вторичными. Ежегодное мировое потребление свинца составляет более 3 млн. т, из них 40 % используют для производства аккумуляторных батарей, 20% -для производства алкила свинца - присадки к бензину, 12% применяют в строительстве, 28 %  для других целей.

Ежегодно в мире в результате воздействия атмосферных процессов мигрирует около       180 тыс. т свинца. При добыче и переработке свинцовых руд теряется более 20 % свинца. Даже на этих стадиях выделение свинца в среду обитания равно его количеству, попадающему в окружающую среду в результате воздействия на магматические породы атмосферных процессов.

Наиболее серьезным источником загрязнения среды обитания организмов свинцом являются выхлопы автомобильных двигателей. Антидетонатор тетраметил - или тетраэтилсвинеп - прибавляют к большинству бензинов, начиная с 1923 г., в количестве около 80 мг/л. При движении автомобиля от 25 до 75% этого свинца в зависимости от условий движения выбрасывается в атмосферу. Основная его масса осаждается на землю, но и в воздухе остается заметная ее часть.

Свинцовая пыль не только покрывает обочины шоссейных дорог и почву внутри и вокруг промышленных городов, она найдена и во льду Северной Гренландии, причем в 1756 г. содержание свинца во льду составляло 20 мкг/т, в 1860 г. уже 50 мкг/т, а в 1965 г. - 210 мкг/т.

Активными источниками загрязнения свинцом являются электростанции и бытовые печи, работающие на угле.

Источниками загрязнения свинцом в быту могут быть глиняная посуда, покрытая глазурью; свинец, содержащийся в красящих пигментах.

Свинец не является жизненно необходимым элементом. Он токсичен и относится к I классу опасности. Неорганические его соединения нарушают обмен веществ и являются ингибиторами ферментов (подобно большинству тяжелых металлов). Одним из наиболее коварных последствий действия неорганических соединений свинца считается его способность заменять кальций в костях и быть постоянным источником отравления в течение длительного времени. Биологический период полураспада свинца в костях - около 10 лет. Количество свинца, накопленного в костях, с возрастом увеличивается, и в 30-40 лет у лиц, по роду занятий не связанных с загрязнением свинца, составляет 80-200 мг.

Органические соединение свинца считаются ещё более токсичными, чем неорганические.

Вдыхаемая пыль примерно на 30-35 % задерживается в легких, значительная доля её всасывается потоком крови. Всасывания в желудочно-кишечном тракте составляют в целом 5-10 %, у детей – 50 %. Дефицит кальция и витамина Д усиливает всасывание свинца.

Вследствие глобального загрязнения окружающей среды свинцом он стал вездесущим компонентом любой пищи и кормов. Растительные продукты в целом содержат больше свинца, чем животные.

2.5. Кадмий

Кадмий, цинк и медь являются наиболее важными металлами при изучении проблемы загрязнений, так они широко распространены в мире и обладают токсичными свойствами. Кадмий и цинк (так же как свинец и ртуть) обнаружены в основном в сульфидных осадках. В результате атмосферных процессов эти элементы легко попадают в океаны.  В почвах содержится приблизительно 4,5х10 –4 %. Растительность содержит различное количество обоих элементов, но содержание цинка в золе растений относительно высоко –0,14;, так как этот элемент играет существенную роль в питании растений.

Около 1 млн. кг кадмия попадает в атмосферу ежегодно в результате деятельности заводов по его выплавке, что составляет около 45 % общего загрязнения этим элементом.         52 % загрязнений попадают в результате сжигания или переработки изделий, содержащих кадмий. Кадмий обладает относительно высокой летучестью, поэтому он легко проникает в атмосферу.

 Попадание кадмия в природные воды происходит в результате применения его в гальванических процессах и техники. Наиболее серьёзные источники загрязнения воды цинком – заводы по выплавке цинка и гальванические производства.

Потенциальным источником загрязнением кадмием  являются удобрения. При этом кадмий внедряется в растения, употребляемые человеком в пищу, и в конце цепочки переходят в организм человека. Кадмий и цинк легко проникают в морскую воду и океан через сеть поверхностных и грунтовых вод.

Кадмий накапливается в определённых органах животных (особенно в печени и в почках).

Кадмий и его соединения относятся к I классу опасности. Он проникает в человеческий организм в течение продолжительного периода. Вдыхание воздуха в течение 8 часов при концентрации кадмия 5 мг/м3 может привести к смерти.

При хроническом отравлении кадмием в моче появляется белок, повышается кровяное давление.

При исследовании присутствия кадмия в продуктах питания было выявлено, что выделения человеческого организма редко содержат столько же кадмия, сколько было поглощено. Единого мирового мнения относительно приемлемого безопасного содержания кадмия в пище сейчас нет.

Одним их эффективных путей предотвращения поступления кадмия в виде загрязнений состоит в введении контроля за содержанием этого металла в выбросах плавильных заводов и других промышленных предприятий.

 a) повышенное содержание белков с низким молекулярным весом в моче в результате повреждения проксимальных тубулярных клеток и

 b) увеличение опасности остеопороза.

Сообщалось также о повышенной опасности рака легких в результате воздействия через дыхательные пути в ходе осуществления профессиональной деятельности.

Запас безопасности между содержанием кадмия в суточном рационе, который не оказывает какого-либо воздействия, и содержанием, которое может привести к возникновению последствий, является весьма малым, а для групп населения, подверженных высокому уровню воздействия, – практически нулевым. В группы населения, подверженные риску, входят престарелые лица, диабетики и курильщики. Женщины могут быть подвержены более высокой опасности ввиду того, что с учетом более низкого содержания железа в их организмах они поглощают по сравнению с мужчинами более значительные объемы кадмия при одинаковом уровне воздействия.

Пища является основным источников воздействия кадмия на все группы населения (более чем 90% общего объема поступления в организмы некурящих). В сильно загрязненных районах пыль, содержащаяся в окружающем воздухе, может в значительной степени загрязнять сельскохозяйственные культуры и оказывать воздействие через дыхательные и пищеварительные тракты.

Ежегодные объемы поступления кадмия в верхние слои почвы в результате ТЗВБР и в связи с использованием минеральных и органических удобрений имеют приблизительно одинаковый порядок величины. Это поступление увеличивает уже имеющиеся и нередко относительно значительные объемы кадмия, содержащиеся в верхних слоях почвы.

Несмотря на сокращение выбросов кадмия, его концентраций в окружающем воздухе и уровней его осаждения, недавно опубликованные данные не свидетельствуют об уменьшении содержания кадмия в организмах некурящих в течение последнего десятилетия. Результаты исследований баланса кадмия в верхних слоях пахотной почвы свидетельствуют о том, что поступление кадмия по-прежнему превышает его удаление.

Кадмий накапливается в почвах и водосборных бассейнах при определенных условиях состояния окружающей среды и тем самым увеличивает риск будущего воздействия через пищевые продукты. В этой связи с учетом малого запаса безопасности следует приложить все силы для дальнейшего сокращения атмосферных выбросов кадмия и других видов поступления кадмия в почву.

Разговор о кадмии должен быть особым. Л.Г. Бондарев приводит тревожные данные шведского исследователя М. Пискатора о том, что разница между содержанием этого вещества в организме современных подростков и критической величиной, когда придется считаться с нарушениями функции почек, болезнями легких и костей, оказывается очень малой. Особенно у курильщиков. Табак во время своего роста очень активно и в больших количествах аккумулирует кадмий: его концентрация в сухих листьях в тысячи раз выше средних значений для биомассы наземной растительности. Поэтому с каждой затяжкой дымом вместе с такими вредными веществами, как никотин и окись углерода, в организм поступает и кадмий. В одной сигарете содержится от 1,2 до 2,5 мкг этого яда. Мировое производство табака, по данным Л.Г. Бондарева, составляет примерно 5,7 млн. т в год. Одна сигарета содержит около 1 г табака. Следовательно, при выкуривании всех сигарет, папирос и трубок в мире в окружающую среду выделяется от 5,7 до 11,4 т кадмия, попадая не только в легкие курильщиков, но и в легкие некурящих людей.

Заканчивая краткую справку о кадмии, необходимо отметить еще и то, что это вещество повышает кровяное давление. Относительно большее количество кровоизлияний в мозг в Японии, по сравнению с другими странами, закономерно связывают в том числе и с кадмиевым загрязнением, которое в Стране восходящего солнца является очень высоким.

2.6. Тяжелые металлы

 

Марганец забивает канальцы нервных клеток. Снижается проводимость нервного импульса, как следствие повышается утомляемость, сонливость, снижается быстрота реакции, работоспособность, появляются головокружение, депрессивные, подавленные состояния. Особенно опасны отравления марганцем у детей и эмбрионов (когда женщина беременна) - приводит к идиотии. Из 100 детей, матери которых во время беременности подверглись отравлению марганцем, 96-98 рождаются идиотами. Есть также теория, что токсикозы на ранних и поздних сроках беременности вызываются марганцем. В водопроводной воде - избыток марганца. Кроме воды марганец содержится в воздухе из-за производственных выбросов. В природе марганец затем накапливается в грибах и растениях, попадая, таким образом, в пищу. Марганец почти невозможно вывести из организма; очень тяжело диагностировать отравление марганцем, т.к. симптомы очень общие и присущи многим заболеваниям, чаще же всего человек просто не обращает на них внимания. Природное содержание марганца в растениях, животных и почвах очень высоко. Основные области производства марганца – производство легированных сталей, сплавов, электрических батарей и других химических источников тока. Присутствие марганца в воздухе сверх нормы (среднесуточная ПКД марганца в атмосфере – воздухе населённых мест – составляет 0,01 мг/м3) вредно влияет на организм человека, что выражается в прогрессирующем разрушении центральной нервной системы. Марганец относится ко  II классу опасности.

Алюминий так же оказывает общее отравляющее и засоряющее действие на организм человека. В водопроводной воде его избыток связан с тем, что излишки железа на водозаборе удаляют сульфатом алюминия. Реагируя с ионами железа, сульфат алюминия дает нерастворимый осадок, в который выпадает, в принципе и железо, и алюминий, но в реальности в воде остается и железо, и алюминий.

Селен не содержится в природной воде Новосибирска. Селен необходим человеку в очень малых дозах, при малейшем превышении дозы он превращается в канцероген, мутаген и токсин. Человеку можно безопасно восполнить недостаток селена с помощью специальных минеральных комплексов; селен также содержится в морской капусте.

Железо бывает в природе в трех состояниях - молекулярное железо F0(когда оно куском), Fe2+ - необходимо в организме человека как переносчик кислорода (в молекуле гемоглобина 4 иона F2+) и F3+ - вредное для человека - оно и есть ржавчина. Железо необходимо организму человека, но только в определенной пропорции и в виде иона F2+. В водопроводной воде большой избыток железа, т.к. в природной воде Новосибирска его много, плюс ржавые трубы, по которым течет вода к потребителям.

Кальций необходим в организме человека для строения костной ткани (зубы, кости), мышечной ткани (мышцы, мышца сердца), поддержания проводящей функции нервной ткани. При избытке кальций нейтрален по отношению к организму человека, однако, это снижает качество воды - соли кальция образуют накипь и мутность воды.

Магний необходим для нормальной деятельности нервных клеток. Однако, его количество в воде должно быть ограниченно, т.к. при избытке он действует на подобие марганца - засоряет канальцы нервных клеток, только он менее активен и проще выводится из организма.

Калий также необходим для нормальной жизнедеятельности организма, т.к. является компонентом калий-натриевого насоса. Калий-натриевый насос - это структура на мембране каждой клетки, благодаря которой в клетку проникают вещества из межклеточной жидкости, а из клетки выводятся продукты ее жизнедеятельности. Кроме того, особенно важен калий для сердечно-сосудистой деятельности, т.к. он нормализует давление крови и работу сердца.

3. Как оградить себя от воздействия тяжелых металлов


Атмосфера промышленных городов загрязнена выбросами в атмосферу тяжелых металлов.  Их поставляют цветная металлургия, стекольное и гальваническое производство, выхлопы автотранспорта.…   В организме человека накапливаются вредные для него вещества. Они нарушают его работу. Часто на организм оказывают влияние не один,  а несколько компонентов— свинец, марганец, хром, мышьяк, кадмий.

Считается, что расстояние в 1 километр - это зона сильного влияния, а 5 км и более - минимального влияния. В организме ребенка, живущего недалеко от промышленного предприятия с рождения, уже к 5 годам накапливается достаточная доза вредных веществ. Раньше всего начинают наблюдаться нарушения со стороны центральной нервной системы. Как правило, такие дети очень неусидчивы и рассеянны.  Если человек переселяется из опасной зоны, концентрация тяжелых металлов в крови постепенно снижается.  От "осевшего" в волосах можно избавиться состриганием. А вот от попавшего в кости и ЦНС - нельзя. У беременных тяжелые металлы могут влиять на плод.

Если ребенок играет на загрязненной детской площадке, то его руки, игрушки, одежда тоже загрязняются.  Грязь попадает в организм ребенка, токсические вещества - в кровь.  Тут нужно уделять особое внимание вопросам гигиены.  Самое простое - мытье рук. Оно снижает  концентрацию тяжелых металлов на поверхности ладоней почти в 10 раз!

Если ваше жилье расположено поблизости от предприятия, то окна вашей квартиры надо чаще мыть и тщательней изолировать.  В этом случае помогут герметичные стеклопакеты. Кроме того, нужно всеми возможными средствами бороться с пылью: на пылевые частицы оседают все вредные вещества, которые находятся в воздухе. Необходимо чаще проводить влажную уборку с моющими средствами.  Использовать пылесос с мелкими фильтрами.  Отчасти могут помочь увлажнители и озонаторы.

Для выведения из организма накопившегося свинца необходимо как можно чаще употреблять в пищу молочные продукты, содержащие кальций.  Поэтому и рекомендуется всем, кто подвержен воздействию воздуха, загрязненного свинцом, пить молоко и употреблять больше молочных продуктов.  Очень важно, чтобы в продуктах питания содержалось большое количество клетчатки.  Нужно больше есть овощей, фруктов и зерновых продуктов. Тогда тяжелые металлы будут оседать в желудочно-кишечном тракте, и выводиться из организма, не всасываясь. Пища не должна быть жирной.  Полезны витамины и антиоксиданты.  Врач может назначить лекарственные средства и биологически активные добавки, так называемые энтеросорбенты.

Заключение

Атмосфера промышленных городов загрязнена выбросами в атмосферу тяжелых металлов.  Их поставляют цветная металлургия, стекольное и гальваническое производство, выхлопы автотранспорта… В организме человека накапливаются вредные для него вещества. Они нарушают его работу. Часто на организм оказывают влияние не один,  а несколько компонентов— свинец, марганец, хром, мышьяк, кадмий.

Считается, что расстояние в 1 километр - это зона сильного влияния, а 5 км и более - минимального влияния. В организме ребенка, живущего недалеко от промышленного предприятия с рождения, уже к 5 годам накапливается достаточная доза вредных веществ. Раньше всего начинают наблюдаться нарушения со стороны центральной нервной системы. Как правило, такие дети очень неусидчивы и рассеянны.  Если человек переселяется из опасной зоны, концентрация тяжелых металлов в крови постепенно снижается.  От "осевшего" в волосах можно избавиться состриганием. А вот от попавшего в кости и ЦНС - нельзя. У беременных тяжелые металлы могут влиять на плод.

Если ребенок играет на загрязненной детской площадке, то его руки, игрушки, одежда тоже загрязняются.  Грязь попадает в организм ребенка, токсические вещества - в кровь.  Тут нужно уделять особое внимание вопросам гигиены.  Самое простое - мытье рук. Оно снижает  концентрацию тяжелых металлов на поверхности ладоней почти в 10 раз!

Если ваше жилье расположено поблизости от предприятия, то окна вашей квартиры надо чаще мыть и тщательней изолировать.  В этом случае помогут герметичные стеклопакеты. Кроме того, нужно всеми возможными средствами бороться с пылью: на пылевые частицы оседают все вредные вещества, которые находятся в воздухе. Необходимо чаще проводить влажную уборку с моющими средствами.  Использовать пылесос с мелкими фильтрами.  Отчасти могут помочь увлажнители и озонаторы.

Для выведения из организма накопившегося свинца необходимо как можно чаще употреблять в пищу молочные продукты, содержащие кальций.  Поэтому и рекомендуется всем, кто подвержен воздействию воздуха, загрязненного свинцом, пить молоко и употреблять больше молочных продуктов.  Очень важно, чтобы в продуктах питания содержалось большое количество клетчатки.  Нужно больше есть овощей, фруктов и зерновых продуктов. Тогда тяжелые металлы будут оседать в желудочно-кишечном тракте и выводиться из организма, не всасываясь. Пища не должна быть жирной.  Полезны витамины и антиоксиданты.  Врач может назначить лекарственные средства и биологически активные добавки, так называемые энтеросорбенты.

Литература

1. Руководство по профессиональным заболеваниям, под ред. Н.Ф.

Измерова, Москва, “Медицина”, 1983.

2. Рациональное питание/ Смоляр В.И. – Киев: Наук. думка, 1991.

5 Л.И. Анфимова «Кулинария», 1996г.

6 З.П. Матюхина «Основы физиологии питания, гигиены и санитарии» М. Зысона, 1981г.

7 Г.И. Бутатиж «Организация производства предприятий общественного питания» М. Экономика, 1997г.

8 А.В. Куденцов Товароведение продовольственных товаров. М. Экономика,

1997г.

3. Ахметов Н.С. Общая и неорганическая химия. - М.: Высшая школа, 1988.

4. Некрасов Б.В. Основы общей химии: Т. I. -М.: Химия, 1969.

5. Крискунов Е. А., Пасечник В. В., Сидорин А. П. Экология учебник для 9-го класса издательский лом "Дрофа" 1995

6. Экологические преступления.- Комментарий к Уголовному

Кодексу Российской Федерации, Изд.”ИНФРА*М-НОРМА”, Москва,

1996г.,- с.586.

7. Экология. Учебник. Е.А.Криксунов., Москва, 1995г..- 240с.

8. Новиков Э. А. Человек и литосфера. Ленинград, 1976 г.

9. Экологический кризис и социальный прогресс. Госкомиздат,1977 г.

10. Исследование поведения загрязняющих веществ в окружающей

среде. Госкомиздат, 1982 г.

11. Мельников Н. Н. Пестициды и окружающая среда. Химия, 1977 г.

12. Сайты Интернета


Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!