Электроснабжение и техническая эксплуатация электрооборудования ТП РМЦ

  • Вид работы:
    Курсовая работа (т)
  • Предмет:
    Физика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    6,58 Кб
  • Опубликовано:
    2012-05-23
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Электроснабжение и техническая эксплуатация электрооборудования ТП РМЦ

1 Теоретическое обоснование к проектированию цеховой трансформаторной подстанции РМЦ металлургического предприятия

1.1 Теоретические основы к проектированию цеховых трансформаторных подстанций

Трансформаторные подстанции являются основным звеном системы электроснабжения, предназначенные для обеспечения электроприемников заданными показателями и качеством электрической энергией.

На территории промышленных предприятий размещают трансформаторные подстанции: заводские и цеховые. По расположению цеховые и заводские подстанции бывают: встроенные, пристроенные к основным производственным зданиям и отдельно стоящие. В зависимости от способа комплектации трансформаторные подстанции бывают в полностью собранном виде или в подготовленном для сборки виде. Электроэнергия к цеховым подстанциям может поступать как по воздушным, так и по кабельным линиям от главных понизительных подстанций (ГПП), расположенных на территории промышленных предприятий, а также в черте города или района. [3]

Основными конструктивными частям цеховых подстанций являются:

1.Распределительное устройство высокого напряжения (РУ ВН). В него входит электрооборудование напряжением 6-10 кВ: высоковольтные выключатели, разъединители, предохранители, измерительные трансформаторы тока и напряжения, устройства защиты и сигнализации, средства измерений.

.Силовые трехфазные трансформаторы.

.Распределительное устройство низкого напряжения (РУ НН). В него входит оборудование напряжением 0,4/0,23 кВ: автоматические выключатели, рубильники, предохранители, средства измерения.

В курсовом проекте на основе чертежа общего вида механического цеха следует спроектировать трансформаторную подстанцию, встроенную в помещение цеха. Подача электрической энергии к трансформаторной подстанции осуществляется по кабельной линии. Для коммутации оборудования подстанции с высшей стороны в РУ 10 кВ будут устанавливаться выключатели нагрузки и высоковольтные предохранители. С учетом категории надежности электроснабжения будут выбраны силовые трансформаторы для понижения переменного трехфазного напряжения с 10 кВ до 0,4 кВ. Для коммутации цепи со стороны 0,4 кВ будут выбраны автоматические выключатели. В самом начале работы над построением системы выбора оборудования цеховой подстанции механического цеха, на основе данных электрических нагрузок потребителей механического цеха произведем расчет общей полной мощности потребителей цеха, выбирая один из методов расчета нагрузок с разным режимом работы и коэффициентом использования мощности в течение смены.

1.1.1Теоретические основы выбора силовых трансформаторов

Для внутрицеховых подстанций рекомендуется применять сухие трансформаторы, а масляные - при условии выкатки их на улицу. Мощность цеховых трансформаторов следует выбирать исходя из средней нагрузки в наиболее загруженную смену. При этом надо учитывать перегрузочную способность, которая зависит от характера графика нагрузки и от предшествующей послеаварийному режиму загрузки трансформатора. Число трансформаторов определяется с учетом категории надежностиэлектроснабжения, коэффициента загрузки трансформатора. [9]

По Правилам устройства электроустановок электроприемники систем электроснабжения распределяются по категориям надежности: [6]

а) электроприемники I категории - электроприемники, перерыв электроснабжения которых может повлечь за собой: опасность для жизни людей, значительный ущерб народному хозяйству; повреждение дорогостоящего основного оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства.

Электроприемники I категории должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания.

Для электроснабжения особой группы электроприемников I категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания.

Из состава электроприемников I категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего основного оборудования;

б) электроприемники II категории - электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.

Электроприемники II категории рекомендуется обеспечивать электроэнергией от двух независимых взаимно резервирующих источников питания.

Для электроприемников II категории при нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады.

Допускается питание электроприемников II категории по одной ВЛ, в том числе с кабельной вставкой, если обеспечена возможность проведения аварийного ремонта этой линии за время не более 1 сутки. Кабельные вставки этой линии должны выполняться двумя кабелями, каждый из которых выбирается по наибольшему длительному току ВЛ. Допускается питаниеэлектроприемников II категории по одной кабельной линии, состоящей не менее чем из двух кабелей, присоединенных к одному общему аппарату.

в) электроприемники III категории - все остальные электроприемники, не подходящие под определения I и II категорий.

Для электроприемников III категории электроснабжение может выполняться от одного источника питания при условии, что перерывы

электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают 1 сутки.

По ПУЭ рекомендуется применять допустимые коэффициенты загрузки трансформатора в нормальном режиме: [6]

а)КЗ = 0,65 - 0,7 при преобладании нагрузок I категории двухтрансформаторной подстанции;

б)КЗ = 0,7 - 0,8 при преобладании нагрузок II категории для однотрансформаторной подстанции или двухтрансформаторной подстанции с неравномерным графиком нагрузок;

в)КЗ = 0,9 - 0,95 при преобладании нагрузок II категории однотрансформаторной подстанции, при наличии складского резерва; при нагрузках III категории.

Номинальная мощность трансформаторов двухтрансформаторной подстанции принимается равной 70% от общей расчетной нагрузки цеха. Тогда при выходе из строя одного из трансформаторов, второй на время ликвидации аварии оказывается загруженным не более чем на 140%, что допустимо в аварийных условиях в течение 5 суток не более 6 часов в сутки. [3] Из требований к проектированию системы электроснабжения цеха цеховая подстанция должна иметь два сухих трансформатора, т.к. преобладают в цехе электроприемники IIкатегории по надежности с неравномерным суточным графиком нагрузок. [9] Для указанных условий принимаем коэффициент загрузки трансформатора КЗ = 0,7.

1.1.2 Теоретические основы выбора силовых кабелей

Рассмотрим теоретические основы выбора питающих силовыхкабелей при условии прокладки кабелей в земле. Марку кабеля выбираем с учетом условий прокладки и температуры окружающей среды. Выбираем силовые кабели напряжением 10 кВ марки АСБ Кабель марки АСБ по ГОСТ 18410-73 с алюминиевыми токопроводящими жилами с бумажной изоляцией, пропитанной маслоканифольным составом, в свинцовой оболочке, бронированный двумя стальными оцинкованными лентам, с наружным джутовым покровом, применяется для прокладки в земляных траншеях. При отсутствии растягивающих усилий броня усилий защищает от механических повреждений. Кабель применяется при прокладке в температуре окружающей среды от -500С до +500С, имеет срок эксплуатации 30 лет. Следовательно, кабель марки АСБ-10 кВ можно применять в земле при фактической температуре от +10 до +150С [2]

По ПУЭ для кабеля с алюминиевыми жилами напряжением 10 кВ с бумажной изоляцией при прокладке в земле:

1)Расчетная допустимая температура нагрева кабеля нормальном режиме - +600С. [6]

2)Допустимая температура окружающей среды - +15 0С.

)Поправочный коэффициент при фактической температуре окружающей среды +10 0С - КПОПРАВ. = 1,06. [3]

)Допустимая температура нагрева кабеля в режиме короткого замыкания +2000С. [3]

)Экономическая плотность тока при числе часов использования максимума нагрузки ТМАКС. = 3000 часов в год - jЭК=1,4 А/мм2. [3]

)Допустимая потеря напряжения - не более 5%. [3]

Силовые кабели напряжение выше 1 кВ выбираются по следующим условиям: по допустимому току нагрева; по экономической плотности тока; по потере напряжения; по термической стойкости в режиме короткого замыкания. [3]

Жилы кабелей, токоведущие части коммутационных аппаратов, первичные обмотки измерительных трансформаторов тока при коротких замыканиях в электрической цепи могут нагреваться до температуры, значительно большей, чем при нормальном режиме. Повышенная температура нагрева приводит к перегреву изоляции, ее перегоранию, а также значительным потерям качества электроснабжения. Следовательно, при проектировании электроснабжения подстанций и выборе электрооборудования необходимо проверить выбранное оборудование на допустимую температуру нагрева (тепловой эквивалент) в режиме короткого замыкания в схеме. Если предварительно выбранное оборудование, кабели будут не устойчивы в режиме короткого замыкания, то необходимо выбрать оборудование с большими номинальными данными и вновь проверить его устойчивость к токам короткого замыкания.

1.1.3 Теоретические основы выбора компенсирующих устройств

Потребители электроэнергии нуждаются как в активной, так и в реактивной мощностях. Увеличение потребления реактивной мощности за счет включения потребителей с реактивным (индуктивным) сопротивлением (асинхронные двигатели станков, кранов, сварочных трансформаторов) приводит к снижению коэффициента мощности в сети, увеличению потерь активной мощности, росту потребляемого тока, снижению напряжения на потребителях. Этот процесс сказывается на чрезмерном нагреве токоведущих частей, просадке напряжения на нагрузках, и как следствие, срабатыванию релейной защиты на отключение схемы. Говорят, «схема разобралась». В этом случае происходит простой электрооборудования, технико-экономические показатели работы предприятия снижаются. Поэтому необходимо повышать коэффициент мощности. В случае если мероприятия, не требующие применения компенсирующих устройств, не дают повышения коэффициента мощности до нормативной величины 0,92-0,95, то применяют автоматическое или ручное регулирование коэффициента мощности с применением компенсирующих устройств. Если необходимо скомпенсировать реактивной мощности до 200 квар, то применяется ручное управление, если свыше 200 квар - автоматическое. [9]


Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!