Профилактические продукты питания
Содержание
Введение
1. Методы обогащения
продуктов питания и готовых блюд витаминами
1.1 Обогащение
продуктов питания витаминами
1.2 Стабильность
витаминов в основных пищевых продуктах
1.3 Определение
витаминов в продуктах питания
1.4 Безопасность
витаминов
2. Рекомендуемые нормы
потребления витаминов (рекомендуемая суточная потребность)
Выводы
Список использованной
литературы
Введение
Питание является одним из важнейших факторов, опосредующих
связь человека с внешней средой и оказывающих решающее влияние на здоровье,
работоспособность, устойчивость организма к воздействию экологически вредных
факторов производства и среды обитания. Особое значение для поддержания
здоровья, работоспособности и активного долголетия человека имеет полноценное и
регулярное снабжение его организма всеми необходимыми микронутриентами:
витаминами и минеральными веществами. Микронутриенты относятся к незаменимым
пищевым веществам. Они абсолютно необходимы для нормального осуществления
обмена веществ, роста и развития организма, защиты от болезней и вредных
факторов внешней среды, надежного обеспечения всех жизненных функций.
Организм человека не синтезирует микронутриенты и должен
получать их в готовом виде с пищей. Способность запасать микронутриенты впрок
на сколько-нибудь долгий срок у организма отсутствует. Поэтому они должны
поступать регулярно, в полном наборе и количествах, соответствующих
физиологической потребности человека.
Международная конференция по питанию, организованная в 1992
г. ФАО/ВОЗ в Риме, указала на широкое распространение дефицита микронутриентов
как на важнейшую проблему в области питания не только развивающихся, но и
развитых стран и подчеркнула необходимость широкомасштабных мер на
государственных уровнях для эффективной коррекции этих дефицитов. Лаборатория
обмена витаминов и минеральных веществ Научно-исследовательского института
питания РАМН, располагающая практически всеми современными
клинико-биохимическими методами оценки витаминного статуса человека, проводит,
начиная с 1983 г., массовые обследования различных групп населения: детей
дошкольного возраста, учащихся общеобразовательных школ и профтехучилищ, студентов
высших учебных заведений, беременных женщин и работников различных профессий.
Результаты этих обследований и многочисленные данные других
авторов однозначно свидетельствуют о крайне недостаточном потреблении витаминов
и ряда минеральных веществ (железо, йод, селен, кальций и др.) у значительной
части населения России.
1.
Методы обогащения продуктов питания и готовых блюд витаминами
Обогащение рациона незаменимыми микронутриентами предусматривает постоянное включение в состав рациона как продуктов, обогащенных витаминно-минеральными смесями (премиксами) в процессе промышленного производства, так и блюд и кулинарных изделий, обогащение витаминами (витаминизация) которых проводится непосредственно на пищеблоке. Обогащение рациона незаменимыми микронутриентами проводится круглогодично. Для обогащения продуктов микронутриентами используются витаминно-минеральные смеси (премиксы) промышленного производства ("Валетек", "Элевит", "Витэн", "Комивит" и др.), а также отдельные препараты витаминов и минеральных веществ. Витаминно-минеральные премиксы "Валетек" (ТУ 9281-019-17028327-98) представлены следующими наименованиями: "Валетек-2", "Валетек-4", "Валетек-6", "Валетек-8" - для хлебобулочных и мучных кондитерских изделий; "Валетек-1", "Валетек-3", "Валетек-5" - для кондитерских изделий; "Валетек-3" - для сиропов, соков, безалкогольных напитков. Витаминно-минеральные премиксы "Элевит" (ТУ 9281-001-46393306-98, ТУ 9281-001-46393306-99) выпускаются в следующем ассортименте: "Элевит А" - для обогащения хлебобулочных, макаронных изделий и хлебопекарной муки; "Элевит В" - для обогащения макаронных изделий, "Элевит С" - для обогащения соков и безалкогольных напитков; "Элевит Д" - для обогащения детских каш быстрого приготовления, сухих завтраков и т.п.; "Элевит К" - для обогащения кондитерских изделий, мороженого, сыров, молока, молочных смесей и других молочных продуктов; "Элевит М" - для обогащения витаминами колбасных изделий, рубленых мясных кулинарных изделий и других мясопродуктов. Улучшители "Витэн ЛП" и "Комивит" содержат смеси витаминов и минеральных веществ, могут использоваться для обогащения хлебобулочных изделий. Важным достоинством премиксов (по сравнению с препаратами отдельных витаминов является удобство их внесения и дозирования и возможность осуществления контроля содержания витаминов по закладке премикса, что делает возможным организацию производства витаминизированых продуктов на небольших предприятиях, в том числе на базовых предприятиях (комбинатах) школьного или дошкольного питания. Обогащение пищевых продуктов производится по нормативной и технической документации (техническим условиям), которая представляется вместе с премиксом или разрабатывается на самом предприятии с учетом рекомендаций, имеющихся в спецификации на препарат. Для обогащения рациона питания используются те витамины и минеральные вещества, дефицит которых реально имеет место. Для г. Москвы это витамин С, витамины группы В, фолиевая кислота, каротин, а из минеральных веществ - йод, железо, кальций. В первую очередь витаминизации (обогащению микронутриентами) подлежат продукты массового потребления, такие как молоко и кисломолочные продукты, мука и хлебобулочные изделия, кондитерские изделия, соль, соки и напитки. Целесообразно также витаминизировать масложировые продукты (жирорастворимыми витаминами), сухие завтраки, плодоовощные консервы, а также мясопродукты (специализированные колбасные и мясные кулинарные изделия), предназначенные для детей и подростков. Эффективной формой витаминизации рациона является включение в его состав сухих быстрорастворимых (инстантных) напитков, которые обеспечивают максимальную сохранность витаминов и удобны в использовании. Следует включать в рацион питания детей и подростков витаминизированные продукты из разных групп, как сочетая их использование в один и тот же день, так и чередуя разные продукты в разные дни.
1.1
Обогащение
продуктов питания витаминами
Успех
обогащения зависит от ряда факторов, включая стабильность вносимых в продукт
питания микронутриентов. При надлежащем хранении витамины в их исходной форме
сохраняют свою биологическую активность в течение ряда лет. Хорошая сохранность
отмечается также в сухих продуктах. Однако в более сложных условиях витамины
подвергаются воздействию ряда физических и химических факторов, которые
необходимо принимать во внимание перед выбором обогащающих компонентов:
температура, тепловая энергия, срок хранения, влажность, неблагоприятная
величина рН, кислород и другие газы, свободные Радикалы, свет, облучение,
катализаторы (например, ионы меди и железа), ферменты.
В
целом, холекальциферол, токоферола ацетат, биотин, ниацин, никотинамид,
пиридоксин и рибофлавин могут рассматриваться как стабильные витамины, тогда
как витамин А, витамин К, аскорбиновая кислота, цианокобаламин, фолиевая
кислота, пантотеновая кислота, пантенол и тиамин могут создавать некоторые
сложности, связанные с их стабильностью, возникающих при обработке и/или
хранении продуктов. Переработка продуктов питания наиболее сильно воздействует
на стабильность витаминов в готовых продуктах. Применение стабилизированных и
микрокапсулированных форм витаминов значительно повышает их устойчивость в
продуктах при различных условиях переработки и хранения. Исследования показывают,
что витамин А стабилен в обогащенной муке (после шести месяцев хранения при
температуре ниже 25°С сохранность витамина А составляет 95% от исходного
уровня). При выпечке хлеба из обогащенной муки наблюдаются незначительные
потери витамина А: 10-20%, при использовании для жарки обогащенного
растительного масла потери витамина А могут составить порядка 40%. Витамин Е
наиболее стабилен в форме d,l-alfa-токоферола ацетата. Природный витамин Е,
присутствующий в пищевом сырье в форме аlfa-токоферола, медленно окисляется под
воздействием кислорода воздуха. Однако стабильность витамина Е, внесенного в
форме d,l-alfa-токоферола ацетата очень высока и его потери появляются только
при продолжительном нагревании, например, кипячении или жарке. Тиамин (витамин
В1) - один из наименее стабильных витаминов. Выпечка, пастеризация или
кипячение продуктов, обогащенных тиамином, может привести к его потерям до 50%.
Стабильность тиамина при хранении зависит от влажность продукта. При хранении
муки с влажностью 12% в течении пяти месяцев потери тиамина могут составить до
20%, при 6% влажности муки потерь не наблюдается. Тиамин, рибофлавин и ниацин
стабильны при выпечке хлеба: потери составляют от 5 до 10%. Рибофлавин (витамин
В2) очень стабилен во время термообработки, хранения и приготовления пищи.
Однако рибофлавин подвержен разрушению под воздействием света. Этого можно
избежать при использовании светозащитной упаковки. Ниацин - один из наиболее
стабильных витаминов и основные потери возникают из-за выщелачивания в воде для
приготовления пищи. Пиридоксин (Витамин В6): его потери зависят от типа
термической обработки. Например, наибольшие потери в витамина В6 возникают в
процессе стерилизации жидкого детского питания, и наоборот, В6 в обогащенной
муке стоек к температуре выпекания. В6 чувствителен на свету, вызывающем
расщепление и выдерживание в воде может вызвать выщелачивание и привести к
значительным потерям. Однако витамин В6 стабилен при хранении, в пшеничной
муке, хранящейся при комнатной температуре или при 45°С сохраняется около 90%
от внесенного В6. Фолиевая кислота нестабильна и теряет свою активность в
присутствии света, окислителей или восстановителей, в кислой или щелочной
средах. Однако она относительно стабильна к нагреванию и влажности; так выпечка
и зерновые хлопья сохраняют до 100% от добавленного количества фолиевой кислоты
после шести месяцев хранения. Свыше 70% ее сохраняется в процессе выпечки
хлеба.
D-пантотенаткальция
стабилен при нагревании в слабых кислотах и нейтральной среде, но его стабильность
снижается в щелочной среде.
Биотин
чувствителен как к кислотам, так и к основаниям. Аскорбиновая кислота (витамин
С) легко разрушается в ходе технологической обработки или хранении из-за
действия металлов таких как медь или железо. Длительное воздействие воздуха и
продолжительное нагревание в присутствии кислорода разрушает аскорбиновую
кислоту, таким образом стабильность витамина С в обогащенном продукте будет
зависеть от самого продукта, технологии его производства, типа используемой
упаковки. В витаминизированном продукте или напитке сохраняется от 75 до 97%
витамина С при хранении 12 месяцев при комнатной температуре. Для увеличения
стабильности некоторые витамины могут быть также подвержены химической
модификации, специальной технологической обработке с целью получения более
стабильных форм, позволяющих их использовать в различных отраслях пищевой
промышленности. Основные параметры, учитывающиеся при разработке форм
продуктов:
· -стабильность(в
процессе обработки и при хранении)
· -удобство
при использовании (например минимальное пылеобразование, -минимальное
расслоение в конечном продукте, устойчивость к слеживанию, хорошая сыпучесть и
однородность)
· -растворимость(получение
вододиспергируемых форм жирорастворимых витаминов и каротиноидов)
· биодоступность
· -органолептические
характеристики (например, маскирование неприятных запахов за счет встраивания
или инкапсулирования действующего вещества в защитную матрицу)
Перед
внедрением новых технологий необходимо сопоставлять их с традиционными обычными
технологиями для оценки влияния на пищевую ценность конечных продуктов, по этой
причине РОШ проводит многочисленные исследования стабильности витаминов в
различных технологических процессах (пастеризации, микроволновый нагрев).
1.2
Стабильность витаминов в основных пищевых продуктах
Сохранность
витаминов в премиксе на основе рисовой муки спустя 12 месяцев хранения при
комнатной температуре
Выбор
оптимальной упаковки в значительной степени определяется сроком хранения и
стоимостью. Витамин А необходимо защищать от кислорода и света, витамин С - от
кислорода, а рибофлавин и пиридоксин - от света. В напитках, молоке и масле
кислород может вызывать быстрое разложение витаминов А и С. Упаковка из стекла
- хороший выбор для защиты от кислорода, но с точки зрения удобства
использования, утилизации и других причин пластмассовая является более
подходящей. Правильно подобранные упаковочные материалы совместно с
соответствующими передозировками витаминов - путь преодоления проблем,
вызываемых взаимодействием с кислородом. Светозащитная упаковка (темное стекло,
темный пластик, асептические коробки) - также способствуют сведению к минимуму
воздействие света и, следовательно, сведению к минимуму разложения
светочувствительных витаминов.
1.3
Определение витаминов в продуктах питания
Определяемые
концентрации обычно находятся в диапазоне несколько частей на миллион (ppm) или
частей на миллиард (ppb). Современные методы анализа витаминов позволяют
достаточно точно оценивать потери витаминов в результате обработки пищи. Методы
количественнго анализа, применяемые для определения витаминов: газовая
хроматография, ВЭЖХ, капиллярный электрофорез и биоспецифические методы,
например радиоиммуноанализ. Многие физико-химические факторы оказывают
негативное воздействие на стабильность микронутриентов, изначально содержащихся
в продуктах питания или добавленных с целью увеличения питательной ценности.
Стабильность этих микронутриентов в обогащенных продуктах питания может быть
увеличена за счет использования соответствующей упаковки или определенных
условий хранения. Для компенсации потерь в процессе технологической обработки,
хранения или распространения, предусматриваются определенные перезакладки
витаминов, так называемые передозировки.
1.4
Безопасность витаминов
Более
чем 50-летний опыт обогащения продуктов питания в цивилизованных и
развивающихся странах подтвердил, что обогащение продуктов питания безопасно и
эффективно. Витамины группы В, витамин С и другие не оказывают отрицательного
воздействия на организм, даже если их употреблять в количествах, значительно
превышающих рекомендуемые нормы потребления. Повышенного внимания требует лишь
применение жирорастворимых витаминов А и D. Поскольку предлагаемые дозировки
составляют всего некоторую часть от рекомендуемой нормы потребления данных
витаминов в день (RDА), обычно в около 30% рекомендуемых норм потребления на
порцию, превышение этой нормы потребителем практически исключается, даже если
он будет употреблять обогащенные продукты в больших количествах. Это
достигается тем, что объем обогащаемого продукта подобран таким образом, чтобы
исключить возможность переедания, и тем самым передозировки потребленных
витаминов. Кроме того, пределы безопасных доз для микронутриентов настолько
высоки, что даже возможное превышение обычной нормы потребления готового
продукта не приведет к получению человеком опасно высокой дозировки
микронутриентов.
2.
Рекомендуемые нормы потребления витаминов (рекомендуемая суточная потребность)
Рекомендуемая
суточная потребность (RDA) - определенный Департаментом продовольствия и
питания уровень потребления жизненно важных веществ, необходимый для
обеспечения потребностей в них практически здоровых людей.
1)
EEC - Рекомендуемая суточная потребность, EEC 90/496 (Европейское Экономическое
Сообщество) 2) RDA - Рекомендуемая суточная потребность, США, 10 издание, 1989
год + рекомендации 2000 г. по витаминам 3) DGE - Рекомендуемая по потреблению
питательных веществ, DGE, Германия 2000 г. 4) Согласно СанПиН 2.3.2.560 - 96 для
условного «среднего» взрослого, занятого легким физическим трудом человека
(18-29 лет) на основе «Норм физиологических потребностей в пищевых веществах и
энергии для различных групп населения СССР», Москва 1991 год.
Европейская
система цифровой кодификации
Содержание
витаминов в овощах и фруктах
Приведенные
в таблицах сведения о содержании витаминов в пищевых продуктах заимствованы из
справочника «Химический состав пищевых продуктов», 2-е издание, т. 2, М.,
Агропромиздат, 1987 г., а также из книги "Mag. Ingrid
Kiefer, Gerda Bernhard. Die Kalorien-Fibel I", лицензионное
издание
1999. Средняя
суточная потребность взрослого человека в витаминах принята в соответствии с
«Нормами физиологических потребностей в пищевых веществах и энергии для
различных групп населения СССР», утвержденных Министерством здравоохранения
СССР в 1991 г.
Выводы
Концепция
государственной политики в области здорового питания населения Российской
Федерации на период до 2005 года предполагает рационализацию питания населения
через широкую разработку и внедрение специализированных продуктов питания,
обогащенных биологически активными компонентами. Одним из наиболее эффективных
путей реализации данного подхода является производство и потребление новой
категории продуктов питания – обогащенных продуктов, представляющих собой
традиционно употребляемые продукты с добавлением к ним любых эссенциальных
пищевых веществ и минорных компонентов пищи. В соответствии с «Пищевым
кодексом» ФАО/ВОЗ, обогащение продуктов питания определяется как добавление
одного или нескольких питательных веществ к продуктам питания, содержащим или
нет их нативно, с целью предотвращения или исправления имеющегося дефицита
одного или нескольких нутриентов у населения в целом или у отдельной группы.
Обогащенные функциональные продукты предназначены для широкого круга
потребителей (здоровых людей и людей из групп риска). Лечебно-профилактические
и профилактические обогащенные продукты показаны больным, страдающим некоторыми
хроническими заболеваниями, а так же людям, проживающим в экологически
неблагополучных районах или подвергающимся воздействию неблагоприятных факторов
производственной среды. Среди задач, решаемых обогащением продуктов питания,
наряду с поддержанием и улучшением здоровья населения, стоит и возможность использования
добавки для решения технологических задач. С учётом этого обстоятельства
представляется перспективным расширение ассортимента пищевой продукции путем
комбинации продуктов традиционного рациона населения с компонентами,
сочетающими биологическую ценность для организма и улучшение свойств исходного
(традиционного) продукта. Учитывая высокую степень потребления населением
продуктов, содержащих молочные масла, а также регулярность, с которой
осуществляется это потребление, представляет интерес получение обогащенного
продукта на основе коровьего масла. В настоящее время одной из проблем пищевой
промышленности остается предотвращение процессов перекисного окисления молочных
жиров и их производных, приводящего к его прогорканию. Процесс разложения жира
протекает в две стадии. Вначале идет процесс гидролиза жира, вызываемый
ферментом липазой. Кислотность масла при этом заметно повышается, образующиеся
кислоты (масляная, капроновая, каприловая) придают маслу прогорклый вкус. Затем
происходит окисление жирных кислот с образованием кетокислот, кетонов,
альдегидов, эфиров и других веществ, значительно усиливающих выраженность
порока. Липаза, как правило, активно действует при длительном резервировании
сырых сливок и в выработанном из них масле, причем источником попадания липазы
в масло является молоко. Для предупреждения окислительного разрушения жиров
(стабилизация) к ним добавляют антиокислители. Сущность действия применяемых в
настоящее время антиокислителей в том, что они вступают в реакцию со свободными
радикалами более активно и тем самым обрывают цепную реакцию, приводящую к
порче жиров.
Список
использованной литературы
1
Доронин
А.Ф. Функциональное питание [Текст] / А.Ф. Доронин, Б.А. Шендеров. – М.:
ГРАНТЪ, 2002.
2
Иванова
Т.Н. Профилактические продукты питания [Текст]: учеб. пособие
/ Т.Н. Иванова, Г.Л. Захарченко. – Орел, 2000.
3
Тихомирова
Н.А. Технология продуктов функционального питания [Текст] / Н.А. Тихомирова. –
М.: Франтера, 2002.
4
Касьянов
Г.И. Технология продуктов питания для людей пожилого и преклонного возраста
[Текст] / Г.И. Касьянов, А.А. Запорожский, С.В. Юдина. – Ростов-н/Д: Изд. МарТ,
2001.
5
Сорока
Н.Ф. Питание и здоровье [Текст] / Н.Ф. Сорока. – Минск: Беларусь, 1994.
6
Платен
М.П. Лечение целебными силами природы [Текст] / М.П. Платен. – М.: Пресса,
1994.
7
Габович
Р.Д. Гигиена [Текст]: учебник / Р.Д. Габович, С.С. Познанский, Г.Х. Шахбазян. –
М.: Медицина, 1971.
8
Горшков,
А.И. Гигиена питания [Текст] / А.И. Горшков, О.В. Липатова– М.: Медицина, 1987.
9
Малыгина
В.Ф. Основы физиологии питания, гигиена и санитария [Текст] / В.Ф. Малыгина,
Е.А. Рубин. – М.: Экономика, 1998.
10 Мартынчик,
А.Н. Физиология питания, санитария, гигиена [Текст] / А.Н. Мартынчик, А.А.
Коровин, Л.С. Трофименко. – М.: Агропромиздат, 2000.
11 Педенко,
А.И. Гигиена и санитария общественного питания [Текст]: учебник для вузов / А.
И. Педенко, И.В. Лерина, В.И. Белицкий. – М.: Экономика, 1991.
12 Румянцев,
Г.И. Общая гигиена [Текст]: учебник для вузов / Г.И. Румянцев, Е.П. Вишневская,
Т.А. Козлова. – М.: Медицина, 1995.
13 Матюхина,
З.П. Основы физиологии питания, гигиены и санитарии [Текст]: учебник / З.П.
Матюхина. – М.: ИРПО; Академия, 1999.
14 Максимов,
М.Т. Радиоактивное загрязнение и их измерение [Текст]: учеб. пособие / В.Н.
Максимов, Г.О. Оджагов. – Изд. – 2-е, перераб. и доп. – М.: Энергоатомиздат,
1989.
15 Нормы
радиационной безопасности (НРБ -96) [Текст]: гигиенические нормативы ГН
2.6.1.054 -96. – М.: Госсанэпиднадзор России, 1996. – 127 с. – (2.6.1.
Ионизирующее излучение, радиационная безопасность).