Лекции по твердотельной электронике

  • Вид работы:
    Лекция
  • Предмет:
    Электротехника
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    1,94 Mb
  • Опубликовано:
    2008-12-09
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Лекции по твердотельной электронике

4.7. Работа транзистора в импульсном режиме.

4.7.1. Режим переключения

В режиме переключения транзистор работает как электронный ключ он либо заперт  и обладает высоким сопротивлением, либо включен  и его сопротивление мало. В ключевом режиме транзистор включается последовательно с нагрузкой и когда он выключен ток через нагрузку близок к нулю и все напряжение от внешнего источника прикладывается к транзистору (т. А на рис. 67). Когда транзистор включен (т. В на рис. 67), то ток через транзистор большой и приближается к предельно возможному в данной схеме Eк/Rк , где Rк - нагрузочное сопротивление в коллекторной цепи.

Когда транзистор выключен на его эмиттер либо подается отрицательное смещение, либо не подается никакого и транзистор находится в режиме отсечки. Когда транзистор включен, то на его эмиттерный переход подано прямое смещение, а коллекторный переход находится, либо под небольшим положительным смещением, либо под нулевым смещением, т.е. в режиме насыщения.


 

Рис. 67 Рабочие точки на нагрузочной характеристике (активная нагрузка) при работе транзистора в режиме переключения.

К достоинствам режима переключения относится то, что во включенном и выключенном состоянии мощность рассеиваемая на транзисторе может быть существенно меньше, чем мощность рассеиваемая в нагрузке и таким образом он может коммутировать мощность превосходящую предельно допустимую мощность рассевания самого транзистора (см. рис. 67) . Помимо статической в транзисторе может рассеиваться значительная динамическая мощность во время включения и выключения транзистора, причем при большой частоте коммутаций эта мощность может превосходить мощность, рассеиваемую в статическом режиме, поэтому желательно, чтобы время включения и выключения (в течение которого рассеивается динамическая мощность) было как можно меньше. На рис. 68 показаны соответствующие экспериментальным результатам диаграммы токов транзистора, при различных значениях амплитуды входных импульсов.


Рис. 67. Форма импульсов токов транзистора, при его работе в импульсном режиме

В представленных на рис. 67 диаграммах  кривые 1 соответствуют усилительному режиму для которого выполняется условие Iк = βIб, кривые 2, 3, 4 соответствуют случаям, когда во включенном состоянии транзистор находится в режим насыщения в котором для тока коллектора справедливо Iк ≤  βIб. Для характеристики глубины насыщения вводят коэффициент насыщения S = Iк/ Iкн, где Iкн = βIбн соответствует границе насыщения. Как видно из графиков, чем глубже заходит транзистор в область насыщения (чем больше S), тем меньше время включения и больше время рассасывания заряда (полочка предшествующая спаду тока) и соответственно время выключения.

4.7.2. Расчет времени включения

Для анализа переходных процессов при работе транзистора в ключевом режиме можно воспользоваться законом сохранения заряда:

                                      (4_115)

Помножим левую и правую части этого уравнения на q и проинтегрируем по объему базы. Получим, что изменение суммарного, накопленного в результате инжекции в базу заряда изменяется в результате рекомбинации этого заряда и протекающего через базу тока:

                                     (4_116)

Решением этого неоднородного уравнения первого порядка будет сумма общего решения однородного уравнения (Qp = Ae-t/τp) и частного решения неоднородного:

                        (4_117)

То, что Q = Jpτp является частным решением можно уюедиться подставив эту величину в (4_116). Для нахождения А воспользуемся тем, что до подачи входного импульса заряд в базе отсутствовал: Q(0) = 0. Тогда получим, что A= Jpτp  и соответственно:

                               (4_118)

Чтобы записать выражение для тока учтем, что Q(t) = Jкτα  β = τp/ τα, тогда используя эти соотношения из (4_118) получим:

                                  (4_119)

Используя (4_119) можем определить время tф в течение которого достигается заданный ток Jкн ~ Eк/Rк (в режиме насыщения S > 1):

                        (4_120)

Как видно из этого уравнения с ростом тока базы (при увеличении  S) для насыщенного во включенном состоянии транзистора время включения уменьшается.

4.7.3. Расчет времени рассасывания


Предположим, что транзистор работает в ключевом режиме при управляющем токе показанном на рис. 68.

Рис. 68. Диаграмма переключающего сигнала

Уравнение, описывающее накопление заряда в базе транзистора, запишется в виде:

                                                 (4_121)

Начальное значение равно заряду, накопленному в базе транзистора за время, в течение которого он находился при прямом смещении, т.е. при t = 0, Q = Jбτp.  Решением, так же как и в предыдущем случае будет сумма общего решения однородного уравнения (Qp = Ae-t/τp) и частного решения неоднородного т.е.:

                        (4_122)

Используя начальное условие определим величину неизвестной константы в (4_117) и запишем решение:                           (4_123)

Обозначим через ts время задержки спада тока после прекращения прямого имульса, это время обусловлено рассасыванием избыточного относительно равновесного заряда дырок около коллектора. В момент t = ts концентрация дырок около коллекторного перехода становится равной равновесной:       pn(w) = pn0, Uкб = UTln[pn(w)/pn0] = UTln[pn0/pn0] = 0 , при этом ток коллектора соответствует граничному Jкн (при активной нагрузке Jкн ~ Ек/Rк), соответствующее значение базового тока Jбн=Jкн/β и заряд в базе Q(ts)= Jбнτp. Подставив эти значения в (4_118) получим:

                             (4_124)

Допустим, что выключение транзистора происходит при Jб1 = 0, тогда:

,                                  (4_125)


т.е. чем глубже транзистор находится в насыщении (больше коэффициент насыщения S), тем больше время рассасывания ts, и соответственно длиннее ступенька (см. кривые 3, 4 на рис. 67).

 

Рис. 69. Зависимость времени рассасывания при выключении от степени насыщения

5. ТИРИСТОРЫ

Тиристоры - многослойные структуры с чередующимися электронно-дырочными областям, двухэлектродные тиристоры называют денисторами, трехэлектродные - тринисторами. Иногда тиристоры называют кремниевыми управляемыми вентилями, что подчеркивает их основное назначение в силовой электронике - управление мощностью в нагрузке. На рис. 70 приведены примеры некоторых возможных структур тиристоров и их  графические обозначения.


Рис. 70. Примеры структур тиристоров: динисторы (а, г), управляемые тиристоры (б, в, д, е). Обозначения: А - анод, К - катод, У - управляющий электрод.


Функционально тиристоры являются электронными ключевыми элементами, сопротивление которых при определенном пороговом напряжении на них изменяется с высокого (выключенное состояние) на низкое (включенное состояние).  Динистор имеет постоянный порог срабатывания, порог тринистора может

изменяться током управляющего электрода. Пример характеристик динистора  приведен на рис. 71а и тринистора на рис. 71б.

Рис. 71.  Схематичное представление вольтамперных характеристик тиристоров: ф) динистор; б) тринистор. Значения тока управляющего электрода  Iу0­ = 0, Iу1< Iу2.

К катоду тиристора прикладывается отрицательное напряжение, к аноду положительное, поэтому центральный pn переход  для запертого тиристора (т.А на рис. 71) оказывается смещенной в обратном направлении.

 

 

 

 

 

 

 

 

Рис. 72.  Энергетические диаграммы pnpn структуры теристора в выключенном состоянии (т. А) и включенном состоянии (т. В). Пунктиром обозначено положение уровней Ферми.

Соответствующие энергетические диаграммы для областей тиристора показаны на рис. 72.  Центральный, смещенный в обратном направлении переход можно рассматривать как коллектор для расположенного слева pnp транзистора и расположенного справа npn транзистора. Действительно он собирает и перебрасывает в соседнюю область подходящие к нему неосновные носители заряда (дырки со стороны n - базы и электроны со стороны p- базы).и Как видно из диаграмма рис. 72 n и p базы тиристора являются потенциальными ямами соответственно для электронов и дырок как генерируемых в их объеме, так и поступающих. через коллекторный переход.

Генерируемые в области ОПЗ коллекторного перехода электроны и дырки разделяются полем этого перехода и поступают соответственно в n и p базы (см. левую диаграмму рис. 72. Для запертого тиристора (т.А) количество поступающих в базу неосновных носителей в результате тепловой генерации  в области базы и области ОПЗ коллектора равно количеству носителей рекомбинирующих в базе и выходящих через эмиттерный переход создавая тепловой ток запертого тиристора (соответствующий т. А). При этом высота барьеров эмиттер-база для pnp и npn транзисторов близка к соответствующим значениям контактных разностей потенциалов.

При увеличении напряжения коллекторного перехода, в области ОПЗ коллектора начинается лавинное умножение неосновных носителей, что приводит к росту потоков электронов и дырок и их накопление в соответствующих базах. Появление дополнительного отрицательного заряда электронов в n базе приводит к приоткрыванию эмиттерного перехода pnp и инжекции дырок, заряд которых нейтрализует накопленный в базе заряд электроны. Появление дополнительного положительного заряда дырок в p базе приводит к приоткрыванию эмиттерного перехода pnp транзистора и инжекции электронов, заряд которых нейтрализует накопленный в базе заряд дырок. Инжектированные дополнительно носители через коллектор попадают в соседнюю базу, способствую дальнейшему открыванию соответствующих эмиттерных переходов и нарастанию тока. Процесс будет повторяться до тех пор, пока не будет достигнут предельно возможный в данной цепи ток, обусловленный внешней нагрузкой (если нагрузка активная, то это Imax ~ Eк/Rн). При этом тиристор переходит во  включенное состояние (т. В на рис. 71) в котором он обладает минимальным сопротивлением. При этом как pnp транзистор (в дальнейшем будем связанные с ним величины обозначать индексом "p"), так и npn транзистор  (в дальнейшем будем связанные с ним величины обозначать индексом  "n") попадают в режим насыщения.  Схематическое распределение носителей в базах тиристора для выключенного и включенного состояния показаны на рис. 73. На рисунке обозначены значения основных носителей для каждой из областей, однако следует иметь ввиду условность этих обозначений (концентрация основных носителей на несколько порядков выше, чем неосновных и в выбранном масштабе можно только отобразить факт их наличия и превосходства по концентрации).


Рис. 73. Схема распределения носителей в структуре тиристора в выключенном (т. А) и включенном состояниях (т. В).

Эквивалентная схема тиристора может быть представлена с помощью двух разнополярных транзисторов, имеющих общий коллекторный переход (рис. 74)

Рассчитаем условие переключения тиристора, приняв за начало переключения момент, в который за счет положительной обратной связи начинается нарастание тока.

Для токов электронного и дырочного токов коллекторного перехода  можно записать: Iкp = αpIэp = αpIа,  Iкn = αnIэp nIкат, где Iкp, Iэp, Iкn - соответственно управляемые дырочные и электронные токи эмиттера и коллектора, αp и αn коэффициенты передачи тока соответственно для pnp и npn транзисторов, Iа, Iкат - токи анода и катода (в рассматриваемом случае      Iа = Iкат = I) . Общий ток тиристора I,  будет включать как управляемые токи, так и тепловой ток коллекторного перехода Iк0:    I =  αpIа + αnIк+ Iк0 = Iк0 + (αp+ αn) I.

Откуда:

                                      (5_1)

Из этой формулы следует, что если

p + αn) → 1,                                            (5_2)

то ток тиристора стремится к бесконечности. Таким образом (5_2) и будет условием включения тиристора. На рис. 74 показаны зависимости коэффициентов αp, αn и αS =p + αn) от тока через тиристор. Поскольку ток определяется напряжением на тиристоре, аналогичная зависимость будет если использовать в качестве аргумента напряжение. При этом моменту включения тиристора будут соответствовать значения некоторого порогового тока и напряжения: Iвкл, Uвкл. Изменяя характер зависимости αp(I) или αn(I) возможно изменять значения тока и напряжения, при которых происходит переход тиристора в состояние с малым сопротивлением.

Для того, чтобы поднять напряжение включения часто искусственно занижают значение коэффициента передачи тока. Для этого можно использовать либо технологические приемы, например такие как уменьшение времени жизни носителей заряда в базе или увеличение толщины базы. Часто используют схемотехнические приемы шунтируя эмиттерный переход внешним сопротивлением.


Рис. 74. Диаграмма, поясняющая влияние зависимостей коэффициентов передачи тока от тока (напряжения) на порог включения тиристора..


Для того, чтобы снизить  порог включения достаточно ввести неосновные носители заряда в одну из баз тиристора. Осуществить это возможно изготовив дополнительный управляющий электрод к одной из баз транзистора (см. рис. 70 б, в, г, д. ).  Тогда чем больше ток управляющего электрода, тем раньше будет наступать включение (см. рис. 71 б).

Рис. 74. Эквивалентные схемы тиристора.

Чтобы выключить транзистор необходимо создать условия при которых исчезает заряд инжектированный в базы транзистора и соответственно концентрации неосновных носителей около коллекторного перехода становится меньше или равны равновесным. При этом будет иметь место выход pnp и npn транзисторов из режима насыщения и соответственно переход тиристора в состояние с высоким сопротивлением. Проще всего выключить тиристор прекратив на некоторое время инжекцию заряда через эмиттерные переходы. При питании тиристора переменным напряжением это происходит автоматически в момент, когда напряжение проходит через ноль. Существуют специальные , запираемые типы тиристоров, в которых выключению способствует вытягивание носителей из базы управляющим электродом.

Широкое распространение в цепях переменного тока находят тиристоры с симметричными характеристиками - семисторы. Семисторы могут иметь управляющий, который позволяет изменять порог включения. На рис. 75 показаны примеры различных конструкций семисторов.  


Рис. 75. Конструкции семисторов: а) неуправляемый, б) управляемый отрицательным импульсом, в) управляемый положительным импульсом.

Как видно из рис. 75, по существу, семистор представляет пятислойную структуру, в которой эмиттерные переходы зашунтированы металлическим слоем. В зависимости от полярности включается тот переход, который работает в прямом направлении.

6. ПОЛЕВЫЕ ТРАНЗИСТОРЫ

Среди многочисленных разновидностей полевых транзисторов возможно выделить два основных класса: полевые транзисторы с затвором в виде pn перехода и полевые транзисторы с затвором, изолированным от рабочего полупроводникового объема диэлектриком. Приборы этого класса часто так же называют МДП транзисторами (от словосочетания металл -диэлектрик - полупроводник) и МОП транзисторами (от словосочетания металл-окисел - полупроводник), поскольку  в качестве диэлектрика чаще всего используется окись кремния.

Основной особенностью полевых транзисторов, по сравнению с биполярными, является их высокое входное сопротивление, которое может достигать 109 - 1010 Ом. Таким образом эти приборы можно рассматривать как управляемые потенциалом, что позволяет на их основе создать схемы с чрезвычайно низким потреблением энергии в статическом режиме. Последнее особенно существенно для  электронных статических микросхем памяти с большим количеством запоминающих ячеек.

Так же как и биполярные полевые трнзисторы могут работать в ключевом режиме, однако падение напряжения на них во включенном состоянии весьма значительно, поэтому эффективность их работы в мощных схемах меньше, чем у биполярных приборов.

Полевые транзисторы могут иметь как p, так и n управление которыми осуществляется при разной полярности на затворах . Это свойство комплементарности расширяет возможности при конструировании схем и широко используется при создании запоминающих ячеек и цифровых схем на основе МДП транзисторов (CMOS схемы).

Полевые транзисторы относятся к приборам униполярного типа, это означает, что принцип их действия основан на дрейфе основных носителей заряда.  Последнее обстоятельство значительно упрощает их анализ по сравнению с биполярными приборами, поскольку, в первом приближении, возможно пренебречь диффузионными токами, неосновными носителями заряда и их рекомбинацией.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 

Лекция 19.................................................................................................................................... 10

Лекция 20.................................................................................................................................... 14

Лекция 21.................................................................................................................................... 18

Лекция 19

6.2. Полевые транзисторы с изолированным затвором (МДП)

6.2. 1. Свойства МДП структуры.


В основе работы полевых  транзисторов с изолированным затвором лежат свойства МДП структуры (рис. 81 ). 

Рис. 81. Пример МДП структуры

По существу эта структура представляет плоский конденсатор одной из обкладок которого служит металл (затвор), второй полупроводник. Особенность такого МДП конденсатора по отношению к классическому МДМ конденсатору в том, что в объеме полупроводника заряд может быть связан с носителями разной физической природы и разной полярности: свободными электронами и дырками, заряженными положительно ионизованными донорами, заряженными отрицательно ионизованными акцепторами, а так же заряженными дефектами.  В МДП структуре в отличие от pn перехода существует гетерограница разделяющая две среды с различной структурой это, например, граница разделяющая полупроводник и его окисле или другой диэлектрик или полупроводник и воздух (вакуум). На свободной границе полупроводника имеется большое количество оборванных связей стремящихся захватить заряд из объема полупроводника , а так же связей вступивших в реакцию с сооседней средой и пассивированных этой средой, кроме того на поверхности могут находиться посторонние примесные атомы и ионы.  Таким образом на свободной поверхности и гетеропереходе металл-диэлектрик уже в начальном состоянии может находиться некоторый заряд, который индуцирует равный ему по величине и противоположный по знаку заряд в объеме полупроводника.  На рис. 82 показана схема поверхности частично пассивированной радикалами ОН и атомами О, а так же соответствующие поверхностным дефектам поверхностные энергетические состояния, дающие дополнительные уровни в запрещенной зоне, которые локализованы вблизи поверхности.   ЩР








Рис. 82. Диаграмма, поясняющая возникновение поверхностных состояний на границе кристалла.


Если зарядить одну из обкладок МДП конденсатора - затвор, то на второй - полупроводниковой обкладке должен появиться заряд равный по величине и противоположный по знаку, который будет связан с поверхностными состояниями, ионизованными атомами примеси и свободными носителями заряда. Если индуцированный внешним полем заряд на полупроводниковой обкладке превышает изменение заряда на поверхностных состояниях, то  в  приповерхностной области полупроводника происходит изменение концентрации свободных носителей заряда, что сопровождается  изменением поверхностной проводимости (см. рис. 83) и соответственно протекающего вдоль поверхности тока, в случае если имеется направленное вдоль поверхности поле, как это показано на вставке рис. 83.

Рис. 83. Изменение поверхностной проводимости полупроводнка в МДП структуре: 1 - полупроводник n типа, 2 - собственный полупроводник, 3 - полупроводник p типа.

В той приповерхностной  полупроводниковой области, где существует электрическое поле имеется обедненная носителями область пространственного заряда, аналогичная по свойствам области ОПЗ pn перехода, работающая как диэлектрик. При изменении потенциала на металлической (затворе) обкладке МДП конденсатора будет изменяться заряд  ОПЗ  и соответственно ширина  обедненной области. При этом будет изменяться емкость МДП структуры. Зависимости емкости МДП структур от напряжения показаны на рис. 84. Емкость МДП структуры можно рассматривать как состоящую из двух последовательно включенных емкостей: емкости диэлектрика - Сд и  емкости слоя пространственного заряда в полупроводнике Спп.

                                     (6_13)

Если Сд>> Спп, то можно с хорошим приближение считать, что емкость структуры определяется емкость ОПЗ, т.е. С = Спп.

Если Спп >> Сд, то приближенно можно считать, что С = Сд, поэтому максимальное значение емкости на рис. 84 ограничено линией С = Сд.


Рис. 84. Изменение емкости МДП структур от напряжения на затворе:   1 - полупроводник n типа, 2 - собственный полупроводник,                               3 - полупроводник p типа.


Следует обратить внимание на то, что на всех кривых рис. 83  и рис. 84 имеются точки минимума. Это точки соответствуют случаю минимальной поверхностной проводимости, которая имеет место когда на поверхности концентрации электронов и дырок близки к собственной и равны друг другу, тогда увеличение потенциала затвора относительно значения соответствующего точке минимума должно обогащать поверхность дырками а уменьшение потенциала относительно потенциала точки минимума должно обогащать поверхность дырками. При этом соответственно с разных сторон от точки минимума должен наблюдаться разный тип проводимости в приповерхностной области.

Рис. 84. Энергетические диаграммы приповерхностной полупроводниковой области n - типа при различных значениях напряжения на МДП структуре (см. рис. 82 и 83): т. А - начальное состояние (UзA = 0),      т. B - обеднение (UзB <  0), т. C инверсия (UзC < UзB < 0), т. D обогащение (UзD.>0)

На рис. 84 показаны энергетические диаграммы МДП структуры при раличных значениях потенциала Uз. В качестве примера выбран материал n типа. Точка A соответствует случаю нулевого потенциала затвора. Поскольку материал n типа уровень Ферми находится в верхней половине запрещенной зоны и для концентрации электронов в глубине материала можно записать (через собственную концентрацию ni):

,              (6_14)

где φо = 1/q(Ei - F) При записи (6_14) считалось, что в собственном полупроводнике уровень Ферми находится при Eiв (примерно в середине запрещенной зоны). На рис. 84 для точки A вблизи поверхности наблюдается искривление зон (и соответственно Ei), что свидетельствует о наличии поверхностного потенциала φs = 1/q(Eis - F) заряда захваченного поверхностными состояниями (Ns). Для поверхностной концентрации электронов nи дырок ps аналогично как в (6_14) можно записать:

                            (6_15)

Как видно из рис. 84 для т. А φs< φо и следовательно вблизи поверхности концентрация электронов ниже, чем в объеме, т.е. существует некоторое начальное обеднение поверхности основными носителями заряда.

При подаче на затвор отрицательного потенциала  будет происходить дальнейшее обеднение поверхности электронами и при некотором напряжении на структуре (т. B на рис. 84) φs станет равным 0. При этом в соответствии с (6_15) для поверхностные концентрации равны: ns = ps = ni. При дальнейшем увеличении отрицательного заряда на затворе будет иметь дальнейшее искривление зон и φs изменяет знак, при этом (см. 6_15)                ps> ns > ni и ns < ni , т.е. на поверхности происходит изменение типа проводимости - инверсия знака носителей на поверхности относительно объем (т. C на рис. 84). И чем больше отрицательный заряд на затворе, тем больше дырочная проводимость на поверхности.) Напряжение на затворе, приводящее к инверсии проводимости, принято называть пороговым (Uп), если       |φs| = 2(Ec - F).

Если на затвор подать положительное напряжение величина φs возрастает соответственно (см. 6_15) концентрация электронов увеличивается. Действительно электрическое поле вблизи поверхности будет притягивать электроны и отталкивать дырки (их концентрации уменьшается). Когда поверхность обогащается основными свободными электронами или дырками (в случае инверсии) ширина ОПЗ стремится к нулю и емкость структуры определяется только толщиной диэлектрика. В этом случае обогащенная свободными носителями поверхность полупроводника ведет себя подобно поверхности металла.

Лекция 20 6.2. 2. МДП транзисторы.


В основе работы МДП транзистора лежит рассмотренный в предыдущем параграфе эффект управления поверхностной проводимостью и поверхностным током с помощью затвора. Для того, чтобы обеспечить прохождение управляемого тока под затвором создают две электродные области: исток и сток. На рис.  85 показана конструкция МДП транзистора с индуцированным n каналом, схема его включение и графическое обозначение.

Рис. 85. МДП транзистор с индуцированным n каналом.

Полупроводниковые области истока и стока создают из сильно легированного, обладающего хорошей проводимостью, материала, отличающегося по типу от материала  базового кристалла. Таким образом при отсутствии напряжения на затворе между истоком и стоком оказываются два встречно включенных диода и соответственно ток в этой цепи будет равен обратному току одного из диодов, т.е. весьма мал и транзистор будет находиться в закрытом состоянии. Для того, чтобы транзистор открылся на затвор необходимо подать такой потенциал относительно потенциала подзатворной области, чтобы на поверхности произошла инверсия проводимости. При этом под затвором индуцируется область n типа, образующая канал соединяющий n+ области истока  и стока, встречно включенные pn переходы исчезают и в стоковой цепи начинает протекать ток. Напряжение затвора при котором происходит инверсия проводимости подзатворной области и начинает протекать ток называют пороговым (Uп). Стоковый ток тем выше,  чем больше индуцированный в канале заряд  и соответственно больше проводимость индуцированного канала.   При работе транзистора в усилительном режиме полярность напряжения на стоке относительно истока задается такой, чтобы основные носители дрейфовали к стоку на сток подается напряжение такой полярности. Полярность напряжений подаваемых на электроды МДП с индуцированными n и p каналами при их работе в усилительном режиме противоположна. Для n канального транзистора на затвор подается плюс относительно истока, на p канальный транзистор минус. За сток принимается тот электрод к кторому дрейфуют основные носители, т.е. в p канальном транзисторе сток должен быть отрицательным относительно истока и в n канальном положительным (см. рис. 85).



Рис. 86. Вольта мерные характеристики МДП транзистора: выходные (слева) и передаточные (справа)

На рис. 86 представлены вольтамперные характеристики, типичные для МДП транзистора. Получим аналитическое выражение, позволяющее их описать, при этом сделаем следующие основные допущения:

одномерное приближение, т.е. концентрации носителей и потенциалы по сечению  канала постоянны,

на поверхности выполняется условие сильной инверсии (Uз > Uп),

заряд на поверхностных состояниях постоянен и не зависит от изгиба зон,

дрейфовые токи значительно больше диффузионных и последними можно пренебречь

подвижность носителей заряда в канале постоянна.

Будем считать, что ось х направлена вдоль канала (рис. 85). Для индуцированного в канале заряда Qi можно записать:

Qi = - Cd[Uз-Uп-U(x)],                                 (6_16)

где U(x) - потенциал в т.х канала. Для наведенной поверхностной проводимости обусловленной зарядом индуцированным зарядом затвора справедливо:

σi = qμnni = - μnCd[Uз-Uп-U(x)]                  ( 6_17)

Плотность тока в канале:

Ji = σiE(x),                                              (6_18)

где E(x) = -dU/dx тогда используя (6_17) и (6_18) для ток стока запишем :

Ic  = JiW = σiE(x) W= WμnCd [Uз-Uп-U] dU/dx,             (6_19)                              

где W - ширина канала. Проинтегрируем (6_19) вдоль канала:

                      (6_20)

Откуда получим:

Ic = WμnCd /d[(Uз-Uп)Uс-1/2Uc2]                          (6_21)

При увеличении напряжения на стоке потенциал U(L) = Uс стремится к Uз и при некотором Uс = Uсo инверсия вблизи стока исчезает, канал перекрывется и заряд в канале становится равным нулю. Дальнейшее увеличение напряжения на стоке не будет приводить к возрастанию тока стока, поскольку все приращение напряжения будет осуществляться за счет на перекрытой ОПЗ пристоковой области канала, таким образом при Uз > Uсо исток-стоковая вольтамперная характеристика  будет переходить из крутой области в пологу. Значение Uсо =0 найдем из следующего условия :

Qi(L) = 0 = -Cd (Uз-Uп-Uco]                      (6_22)

Откуда Uco = Uз - Uп. Подставим это значение Uco вместо Uc в (6_21) и найдем выражение дл выходных вольтамперных характеристик МДП транзистора в пологой области.

                    (6_23)


Это выражение описывает передаточную характеристику для МДП транзистора (см. правый график на рис. 86). Используя (6_23) для получим :

                    (6_24)

Соответствующий график для зависимости крутизны от напряжения на затворе приведен на рис. 87.

Рис. 87. Зависимость крутизны  МДП транзистора с индуцированным напряжение от напряжения на затворе.


Канал между истоком и стоком можно создать технологическим путем на стадии изготовления МДП транзистора (например вводя соответствующую примесь), такие транзисторы называют транзисторами с встроенным каналом. При подаче напряжения на затвор концентрация носителей в канале будет либо возрастать либо уменьшаться вплоть до полного исчезновения канала и перехода транзистора в запертое (выключенное) состояние, в котором  выходные токи будут определяться обратными характеристиками  исток-стоковых pn переходов.

Рис. 88. Графическое обозначение МДП транзистора с встроенным каналом и его вольтамперные характеристики: выходные (слева) и передаточные (справа)

Влияние подложки на характеристики МДП транзистора.


Рассмотрим влияние подложки на характеристики МДП транзистора.

Если подложка имеет положительный потенциал относительно стока, как это показано на рис. 89, то этот потенциал будет поднимать потенциал канала, что будет приводить к уменьшению разности потенциалов между затвором и каналом и соответственно будет уменьшаться заряд индуцированный в канале и проводимость канала. Поэтому потенциал подложки подобно потенциалу затвора может управлять проводимостью канала, однако отличие будет заключаться в том, что если увеличение положительного потенциала на затворе будет увеличивать ток стока, то увеличение положительного потенциала на подложке будет приводить к уменьшению тока стока. С учетом этого замечания формулу (6_21) для области крутой ВАХ транзистора можно переписать в следующем виде:

Ic = WμnCd /{2d[(Uз-Uп-kUподл)Uс-1/2Uc2]},                  (6_25)

где коэффициент k зависит от конструктивных особенностей транзистора.  В пологой области ВАХ транзистора с учетом влияния подложки, после подстановки в (6_25) Uс = Uс - Uп примут вид :

                              (6_26)

Усилительные свойства МДП транзистора будут характеризоваться крутизной по подложке:


              (6_27)

Рис. 90.  Эквивалентная схема МДП транзистора

Эквивалентная схема МДП транзистора, учитывающая возможность управления  по подложке показана на рис. 88

Лекция 21

6.2.3. Биполярные транзисторы с изолированным затвором

Стремление совместить в одном приборе лучшие свойства полевого и биполярного транзистора привели к созданию комбинированного прибора - биполярного транзистора с изолированным затвором, в технической литературе его называют IGBT (от англ. Insulator Gate Bipolar Transistor). Этот прибор нашел широкое распространение в силовой электронике благодаря тому, что он позволяет с высокой скоростью коммутировать большие токи.

Рис. 91. Обозначение биполярного транзистора с изолированной базой (IGBT)

Обозначение IGBT показано на рис.91. Как видно из обозначения вход IGBT подобен МДП - транзистору, т.е. это прибор управляемый потенциалом. Выход подобен выходу биполярного транзистора, т.е. выходные характеристики IGBT должны быть такими же как у биполярного транзистора.Несмотря на то, что IGBT является единой монолитной кристаллической структурой, по существу это функциональное усилительное устройство, которое может быть представлено в виде схемы показанной на следующем рисунке. , как видно из схемы, коллекторный ток биполярного транзистора Т2 поступает на вход биполярного транзистора Т3, и часть коллекторного тока Т3 поступает на вход Т2. С выхода которого ток опять поступает на вход Т3. Таким образом между двумя выходными биполярными транзисторами имеется положительная обратная связь.

Рис. 92. Эквивалентная схема IGBT

Для токов транзисторов можно записать: iC1=SUЗ, где S - крутизна T1;          iК2= α2 iЭ2 и iК3= α3 iЭ3, где α i - коэффициенты передачи тока биполярных транзисторов.
Для общего тока эмиттера можно записать iЭ=iК2+iК3+iС. Откуда                               iС = iЭ (1–α2–α3). Так как iЭ=iК, то для выходного тока IGBT, равного коллекторному току T3 из предыдущего соотношения получим:

iк=SUЗЭ/[(1–α23)]=SЭКВUЗ.

Соответственно для эффективной крутизны SЭКВ, равной отношению изменения выходного тока IGBT к изменению входного напряжения затвора можно записать SЭКВ=S/[[1 – (α2+α3)]. Как видно из этого соотношения управляя значениями α1 и α2 возможно получить весьма высокую величину эффективной крутизны.


Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!