Расчет стационарного теплового поля в двумерной пластине

  • Вид работы:
    Курсовая работа (п)
  • Предмет:
    Математика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    264,90 kb
  • Опубликовано:
    2006-09-14
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Расчет стационарного теплового поля в двумерной пластине

Московский Государственный Технический Университет им. Н.Э. Баумана












КУРСОВАЯ РАБОТА

ПО СЕТОЧНЫМ МЕТОДАМ




Расчет стационарного теплового поля в двумерной пластине

 

Преподаватель: Станкевич И.В.

Группа: ФН2-101

Студент: Смирнов А.В.













 Москва 2002

Содержание

Постановка задачи.......................................................................................................................................................................... 3

Решение............................................................................................................................................................................................ 4

Триангуляция............................................................................................................................................................................. 5

Метод конечных элементов.................................................................................................................................................... 6

Список литературы:..................................................................................................................................................................... 12


Постановка задачи

Рассчитать установившееся температурное поле в плоской пластине, имеющей  форму криволинейного треугольника с тремя отверстиями (см. рисунок).

 К внешним границам пластины подводится тепловой поток плотностью . На внутренних границах конструкции происходит теплообмен со средой, характеризующийся коэффициентом теплообмена  и температурой среды . Коэффициент теплопроводности материала пластины  

                                                                        Рис. 1
Решение

                                                          Рис. 2

Задача теплопроводности в пластине запишется в виде

                                                             (1)

          (2)

                                  (3)

где   - направляющие косинусы вектора внешней нормали к граничной поверхности,  - граничная поверхность, на которой происходит теплообмен с коэффициентом теплообмена ,  - граничная поверхность, на которой задан тепловой поток плотности .

Решение уравнения (1) с граничными условиями (2) и (3) можно заменить задачей поиска минимума функционала

.   (4)

Решать поставленную задачу будем с помощью метода конечных элементов. Для этого сначала проведем триангуляцию нашей области.

Триангуляция.

Результат триангуляции представлен на рис.3.

Рис. 3

Все выбранные узлы заносятся в список, который содержит информацию о координатах узлов. Номер узла определяется его номером в списке. Кроме списка вершин будем вести еще список треугольников. В глобальном списке треугольников будет храниться информация о каждом построенном треугольнике: номера (Top1, Top2, Top3) трех узлов, составляющих данный элемент и номер границы. Номер треугольника определяется его номером в списке. Договоримся, что у каждого треугольника границе может принадлежать только одна сторона и если такая сторона есть, то вершины, которые она соединяет, будут стоять на первых двух позициях (Top1 и Top2). Обход треугольника совершается против часовой стрелки.

Метод конечных элементов

Выберем произвольный треугольник (с номером e). Обозначим его вершины  и . Каждому узлу треугольника поставим в соответствие функцию формы

,                                                                    (5)

где A – площадь треугольника. Тогда температуру в пределах треугольника можно определить с помощью функций форм и значений температуры  в узловых точках

.                                                       (6)

.                                                                               (7)

Минимум функционала (4) находим из условия

                                                   (8)

Функционал  можно представить в виде

                  (9)

Здесь , глобальный вектор  температур   ,  - матрица градиентов, которая для функций формы (5) примет вид , . Локальный вектор температур . Здесь матрица геометрических связей  имеет размерность . Элементы этой матрицы определяются следующим образом: ; все остальные элементы равны нулю.

Продифференцируем функционал (9):

Из выражения (8) с учетом последнего соотношения получаем , где матрица теплопроводности элемента ; вектор нагрузки элемента  .

В силу особенностей проведенной триангуляции можно выделить три группы конечных элементов. В первую входят треугольники, у которых сторона ij принадлежит одной из внешних границ. Во вторую – те, у которых та же сторона принадлежит одной из внутренних границ. И, наконец, третью группу составляют элементы, стороны которых лежат внутри рассматриваемой области.

В зависимости от того, к какой группе принадлежит конечный элемент с номером e, матрица  и вектор  будут определяться несколько различным образом.

Обозначим

.

Поверхностные интегралы можно посчитать с помощью относительных координат . Отрезки, соединяющие любую фиксированную точку P треугольника e c его вершинами, разбивают этот элемент на три треугольные части площадью . Координаты  определяются из соотношений .

Используя относительные координаты, можно получить следующие соотношения:

Если конечный элемент с номером e принадлежит к первой группе, то . Если ко второй, то . Наконец, если элемент принадлежит к третьей группе, то .

Вектор температур, удовлетворяющий условию (8) минимума функционала (4), находим решением системы линейных алгебраических уравнений

,                                                                                             (10)

,       .                                          (11)

 Для решения задачи (10) применялся следующий алгоритм:

·   Вычисление  разложения матрицы ().

·   Оценка числа обусловленности. Если число обусловленности больше  ( определяется точностью вычислительной машины), то выдается предупреждение, так как малые отклонения в коэффициентах матрицы  могут привести к большим отклонениям в решении.

·   . .

Реализация описанного выше метода проводилась на языке программирования С++ и FORTRAN в среде интегрированной среде разработки Microsoft Visual C++ 6.0. Конечные результаты данной работы приведены на рис.4 - 7.

Рис.4

Рис.5

Рис.6

Рис.7





Список литературы:

 

1. Амосов А.А, Дубинский Ю.А, Копченова Н.В. Вычислительные методы для инженеров: Учеб. пособие. – М.: Высш. шк., 1994. – 544 с.

2. Сегерлинд Л. Применение метода конечных элементов. – М.: Мир, 1979. – 392 с.

3. Станкевич И. В. Сеточные методы (лекции и семинары 2002 года).

Похожие работы на - Расчет стационарного теплового поля в двумерной пластине

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!