Задачи по оборудованию портов
Министерство образования и науки Украины
Одесский государственный морской университет
Кафедра «Подъемно-транспортные машины и механизация перегрузочных работ»
Домашнее задание №1,2
«»
Выполнила:
студентка 2 курса
факультета ФТТС
группы №5
Шпирна Ю.А.
Проверил: Герасимов И.В.
Одесса- 2001
Вариант №22
Исходные данные:
Размеры пакета, мм: 820(1210(900
Масса пакета: 658 кг
Тип пакета: ПД (пакет на плоском деревянном поддоне)
Тип вагона: 11-066.
Введение
Одним из направлений совершенствования транспортно-перегрузочного
процесса является укрупнение и унификация представленных к перевозке
грузовых мест. В значительной степени это положение относится к тарно-
штучным грузам и получило достаточно широкое распространение путем
внедрения «пакетизации» грузов, под которой понимают формирование
укрупненных грузовых единиц из однородных (по типу тары, весу и размерам)
грузовых мест (мешков, ящиков, кип, тюков, рулонов, бочек и т.д.). Подобная
грузовая единица, гарантированно сохраняющая свою целостность в процессе
всех перемещений и сформированная с помощью каких-либо вспомогательных
средств (приспособлений) или без них, называется пакетом.
Пакеты могут быть сформированы на плоских деревянных (иногда
металлических, пластмассовых, картонных) площадках-поддонах, без поддонов
путем обвязки группы грузовых мест специальной (чаще всего синтетической)
лентой с быстроразъемным замком (строп-лента, строп-контейнер), без
поддонов путем упаковки (с помощью специальной машины) в синтетическую
термоусадочную пленку.
Остановимся более подробно на пакетировании тарно-штучных грузов с
помощью поддонов, так как именно такой вид пакетизации предполагается при
выполнении данных расчетов.
На водном транспорте наибольшее распространение получили два типа
плоских деревянных поддонов поперечным сечением 1200(1600 и 1200(1800 мм.
Поддоны с этими типоразмерами предусмотрено эксплуатировать преимущественно
в межпортовых сообщениях с ограниченным выходом на другие виды транспорта.
В сквозных смешанных железнодорожно-водных сообщениях в качестве основного
предусматривается применение деревянных поддонов поперечным сечением
1200(800 мм.
Для проведения погрузочно-разгрузочных работ на железных дорогах и в
портах широко применяются самоходные погрузчики, служащие для выполнения
операций захвата, вертикального и горизонтального перемещения груза и
укладки его в штабеля или на транспортные средства.
В зависимости от назначения конструкция погрузчиков бывает различна.
Они выполняются в виде самоходных тележек с различной подъемной платформой
и с вильчатым подхватом для захвата штучных грузов и укладывания их в
штабеля или на стеллажи, ковшами для сыпучих грузов; они могут быть
снабжены крановым оборудованием и т.д. Для работы с некоторыми типами
грузов (бочки, рулоны, ящики и т.п.) на каретке грузоподъемника
устанавливается захват, имеющий грузозахватные челюсти плоской или
полукруглой формы. Эти захваты могут иметь принудительный поворот челюстей
на 90-360є, что позволяет при укладке груза в штабель повернуть
его в требуемое положение.
1. Определение оптимальной схемы загрузки вагона
В данной работе заданным является вагон типа 11-066. Его основные
характеристики следующие:
Грузоподъемность – 68,0 т
Полезный объем кузова – 120 м3
Внутренние размеры кузова: длина – 13800 мм ширина – 2760 мм высота – 2791 мм
Размеры двери: ширина – 2000 мм высота – 2300 мм
Наружные размеры: длина по осям сцепки – 14730 мм длина кузова – 14010 мм ширина – 3010 мм высота (над головкой подкранового рельса) – 4687 мм
Высота пола над головкой подкранового рельса – 1283 мм
База – 10000 мм
Масса (тара) – 21,8 т
Оптимальное использование кузова вагона при его загрузке пакетами может
быть выполнено по ряду стандартных схем. Так, оптимальная загрузка пакетами
крытого железнодорожного вагона с дверным проемом стандартной ширины может
быть обеспечена при использовании одной из четырех стандартных схем
укладки пакетов, принятой в зависимости от конкретных размеров пакета,
кузова вагона и принятых укладочных (технологических) зазоров.
Исходя из этого, определяем число рядов (пар) пакетов, укладываемых
короткой стороной вдоль вагона: схема №1 (m = 1):
Lв – (Bп + ?п) 13800 –
(1210 + 50) n + ?n = —————— = ———————— = 15,1 шт.,
Ап + ?п
820 + 10 т.е. n = 15 шт. ?n = 0,1.
схема №2 (m = 0):
Lв – (3 ?п + 2?п) 13800 – (3·50
+ 2·10) n + ?n = ——————— = ————————— = 16,4 шт.,
Ап + ?п
820 + 10 т.е. n = 16 шт. ?n = 0,4.
схема №3 (m = 3):
Lв – (3Bп + 2?п + 2?п) 13800 – (3·1210 +
2·50 + 2·10) n + ?n = ————————— = ———————————— = 12,1 шт.,
Ап + ?п
820 + 10 т.е. n = 12 шт. ?n = 0,1.
схема №4 (m = 2):
Lв – (3Bп + 2 ?п ) 13800 –
(2·1210 + 3·50) n + ?n = ——————— = ————————— = 13,5 шт.,
Ап + ?п
820 + 10 т.е. n = 13 шт. ?n = 0,5. где n – число рядов (пар) пакетов, укладываемых короткой стороной вдоль
вагона;
?n – дробный остаток; m – число рядов (состоящих из трех пакетов) пакетов, укладываемых
длинной стороной вдоль вагона;
Lв = 13800 мм - длина вагона;
Ап = 820 мм – ширина пакета;
Bп = 1210 мм – длина пакета;
?п = 50 мм – боковой укладочный зазор;
?п = 10 мм – фронтальный укладочный зазор.
Определяем число слоев пакетов по высоте вагона:
Нв – 2hпґ nвс = —————— , hп где Нв = 2791 мм – высота вагона по вертикальной части боковой стенки; hпґ = 50 мм – укладочный зазор по высоте; hп = 900 мм – высота пакета.
2791 - 2·50 nвс = ————— = 2 шт.
900
Число пакетов укладываемых в нижнем слое по какой-либо стандартной
схеме определяем следующим образом:
NHc = 3m + 2n
NHc1 = 3·1 + 2·15 = 33 шт.,
NHc2 = 3·0 + 2·16 = 32 шт.,
NHc3 = 3·3 + 2·12 = 33 шт.,
NHc4 = 3·2 + 2·13 = 32 шт.
Число слоев пакетов, укладываемых на дверном просвете, определяем так:
Нg – 2hпґ ngс = —————— , hп где Нg = 2300 мм – высота дверного проема.
2300 - 2·50 ngс = ————— = 2 шт.
900
Так как ngс = nвс, то общее число пакетов в вагоне по каждой схеме
укладки составит:
Nв = nвс· NHc ,
Nв1 = 2·33 = 66 шт.,
Nв2 = 2·32 = 64 шт.,
Nв4 = 2·32 = 64 шт..
Так как тарно-штучные грузы характеризуются различным удельным
погрузочным объемом, оценка эффективности загрузки вагона определяется
такими показателями.
Коэффициент использования грузоподъемности вагона:
Qв – QГP
КвГ = ( 1 - ———— ) ·100%,
Qв где Qв = 68 т – паспортная грузоподъемность вагона;
QIP = Nв·gВ.П. , где QГP - общая масса груза в вагоне, т; gВ.П. = 658 кг = 0,658 т – масса пакета;
QГP1 = 66·0,658 = 43,428 т,
QГP2 = 64·0,658 = 42,112 т,
QГP3 = 66·0,658 = 43,428 т,
QГP4 = 64·0,658 = 42,112 т,
68 – 43,428
КвГ1 = ( 1 - ————— ) ·100% =
63,9%,
68
68 – 42,112
КвГ2 = ( 1 - ————— ) ·100% =
61,9%,
68
68 – 43,428
КвГ3 = ( 1 - ————— ) ·100% =
63,9%,
68
68 – 42,112
КвГ4 = ( 1 - ————— ) ·100% =
61,9%,
68
Коэффициент использования кубатуры вагона:
Vв – VIP
Vв – Nв( Ап + ?п )( Bп + ?п )( hп + hпґ )
Квк = ( 1 - ———— ) ·100% = 1 - ———————————————— ·100%,
Vв
Vв где Vв = 120 м3 – объем прямоугольной зоны вагона (без учета объема
“купольной” зоны);
VIP - объем груза, уложенного в вагон с учетом укладочных
зазоров, м3.
120 – 66( 0,82 + 0,01 )( 1,21 + 0,05 )( 0,9
+ 0,05 )
Квк1 = 1 - ———————————————————— ·100% = 54,6%,
120
120 – 64( 0,82 + 0,01 )( 1,21 + 0,05 )( 0,9
+ 0,05 )
Квк2 = 1 - ———————————————————— ·100% = 53%,
120
120 – 66( 0,82 + 0,01 )( 1,21 + 0,05 )( 0,9
+ 0,05 )
Квк3 = 1 - ———————————————————— ·100% = 54,6%,
120
120 – 64( 0,82 + 0,01 )( 1,21 + 0,05 )( 0,9
+ 0,05 )
Квк4 = 1 - ———————————————————— ·100% = 53%.
120
Коэффициент использования площади пола вагона:
Sв – SIP
Lв·Bв – NHc ( Ап + ?п )( Bп + ?п )
Квп = ( 1 - ———— ) ·100% = 1 - —————————————— ·100%,
Sв
Lв·Bв где Sв – площадь пола вагона, м2;
SIP - площадь пола, занимаемая пакетами (с учетом укладочных
зазоров), м2;
Bв = 2760 мм – ширина вагона.
13,8·2,76 – 33( 0,82
+ 0,01 )( 1,21 + 0,05 )
Квп1 = 1 - ————————————————— ·100% = 90,6%,
13,8·2,76
13,8·2,76 – 32( 0,82 + 0,01 )( 1,21 + 0,05 )
Квп2 = 1 - ————————————————— ·100% = 88%,
13,8·2,76
13,8·2,76 – 33( 0,82 + 0,01 )( 1,21 + 0,05
)
Квп3 = 1 - ————————————————— ·100% = 90,6%,
13,8·2,76
13,8·2,76 – 32( 0,82 + 0,01 )( 1,21 + 0,05
)
Квп4 = 1 - ————————————————— ·100% = 88%.
13,8·2,76
Полученные результаты расчета для возможных схем сводим в таблицу 1.
Таблица 1. Анализ показателей загрузки вагона.
|Номер |Число |Общее |Масса |Коэффициенты использования |Вывод |
|схемы |пакетов|число |груза |вагона | |
| |в слое |пакетов|в | | |
| |nвс |в |вагоне| | |
| | |вагоне |QIP | | |
| | |Nв | | | |
| | | | |По |По |По площади| |
| | | | |грузо- |кубатуре|пола Квп ,| |
| | | | |подъем-|Квк , % |% | |
| | | | | | | | |
| | | | |ности | | | |
| | | | |КвГ, % | | | |
|1 |2 |66 |43,428|63,9 |54,6 |90,6 |Оптимальной |
| | | | | | | |является |
| | | | | | | |схема №2, так|
| | | | | | | |как n –|
| | | | | | | |четное и |
| | | | | | | |наибольшее |
|2 |2 |64 |42,112|61,9 |53 |88 | |
|3 |2 |66 |43,428|63,9 |54,6 |90,6 | |
|4 |2 |64 |42,112|61,9 |53 |88 | |
2. Подбор погрузчика по грузоподъемности
Производим предварительный подбор погрузчика по величине паспортной
грузоподъемности Qпм , причем
Qпм ? gВ.П.
Так как gВ.П. = 658 кг, для перевозки пакетов такой массой является
приемлемым погрузчик «Фенвик»-ELP-105 с паспортной грузоподъемностью Qпм =
1000 кг.
Устанавливаем фактическую грузоподъемность предварительно выбранного
погрузчика с учетом размеров пакета.
Фактическая грузоподъемность Qфм определяем по следующей формуле:
Qфм = ————— , lГP + ?Т где l0 = 500 мм – расстояние от центра тяжести поднимаемого груза до
передней плоскости каретки, мм. lГP – расстояние от передней плоскости каретки до центра тяжести
находящегося на вилах пакета, мм. lГP = 0,5·Bп = 0,5·1210 = 605 мм, так выбранная схема загрузки –
схема №1;
?Т = 279 мм - расстояние от передней плоскости каретки до оси
передних колес.
Qпм (l0 + ?Т)
Qфм = ——————— , lГP + ?Т
1000·(500 + 279)
Qфм = ——————— = 881.2 кг ,
605 + 279
Таким образом, данный колесный погрузчик может быть использован для
транспортировки пакетов заданных размеров. Исходя из этого, приводим его
характеристику:
Модель – «Фенвик»-ELP-105
Грузоподъемность - Qпм = 1000 кг
Расстояние от центра тяжести груза до спинки вил - l0 = 500 мм
Расстояние от спинки вил до оси передних колес – ?Т = 279 мм
Ширина – Bм = 1000 мм
Высота строительная – Hстрм = 2110 мм
Высота максимальная – Hmaxм = 3810 мм
Высота подъема вил - hmaxВ = 3280 мм
Высота подъема вил свободная – hСВВ = 245 мм
Внешний радиус поворота – RВ = 1420 мм
Маневренная характеристика – Дм90ш = 2599 мм
Скорость подъема вил с грузом – VГВ.П = 0,2 м/с
Скорость опускания вил с грузом – VГВ.О = 0,4 м/с
Скорость передвижения– VГМ = 2,9 м/с
Тип привода – КД
Давление на ось – Р0= 2210 кг
Масса - Gм = 1970
Страна изготовитель – Франция
Схематическое изображение погрузчика приведено на рис.1
Вариант №22
Исходные данные:
Перегружаемый груз – гречиха
Грузопоток - Qi = 700 тыс.т
Производительность – П = 600 т/ч
Тип судна – «Николай Вознесенский»
Введение
Термин «судоразгрузочная машина» (СРМ) относится к перегрузочным
машинам непрерывного действия, разгружающим суда с навалочными грузами и
подающими последний к береговым приемным устройствам наземного транспорта
(как правило непрерывного действия).
СРМ – сравнительно новый вид портового перегрузочного оборудования,
изучение их технологических возможностей и методика выбора параметров в
связи со значительными объемами морских перевозок навалочно-насыпных грузов
представляет существенный интерес для специалиста – менеджера в сфере
портовых перегрузочных процессов.
Определение основных параметров СРМ
Приводим свойства заданного груза и характеристики расчетного типа
судна:
Груз – гречиха
Насыпная плотность – ? = 0,6-0,7 т/м3
Размер частиц – ? = 2-4 мм
Угол естественного откоса – ?п = 35-36є
Коэффициент трения по резине в покое – fп = 0,52
Группа абразивности - В
Тип судна - «Николай Вознесенский»
Длина максимальная – 199,8 м
Длина между перпендикулярами – 185,1 м
Ширина максимальная – 27,8 м
Высота борта – 15,6 м
Осадка в грузу – 11,2 м
Осадка в балласте – 2,8 м
Водоизмещение – 47,7 тыс.т
Дедвейт – 38,2 тыс.т
Грузоподъемность – 35,8 тыс.т
Число трюмов – 7
Длина трюма максимальная – 27,4 м
Высота трюма максимальная – 14,0 м
Длина трюма минимальная – 14,2 м
Высота трюма минимальная – 13,1 м
Длина люка максимальная – 14,4 м
Ширина люка максимальная – 9,4 м
Длина люка минимальная – 14,2 м
Ширина люка минимальная – 9,4 м
Количество тонн на 1 см осадки – 46,1
Мощность – 13,7 тыс.л.с.
Скорость в грузу – 16,2 узлов
Скорость в балласте – 17,0 узлов
Стоимость строительная – 22,3 млн.руб.
Эксплуатационные расходы на стоянке – 5,3 тыс.руб/сут
Эксплуатационные расходы на ходу – 8,7 тыс.руб/сут
Расход топлива на ходу – 51,0 т/сут
Страна изготовитель – СССР
Год постройки - 1972
Высота вертикального подъемника HВ.П определяется по условию
обеспечения захвата (забора) остаточного слоя груза в трюме (т.е. при
минимальной осадке) с наибольшими габаритами
HВ.П = Hс + hк + hм – hg
– hб, где Hс = 15,6 м – высота борта судна; hк = 1,5 м – высота комингса люка; hм = 2,0 м – конструктивный размер вертикального подъемника; hg = 2,0 м – высота двойного дна судна; hб = 0,2 м – зазор, обеспечивающий безопасность работы нижней
оконечности вертикального подъемника или его забортного органа.
HВ.П = 15,6 + 1,5 + 2,0 –
2,0 – 0,2 = 16,9 м,
Максимальный вылет стрелового конвейера определяем из условия
обеспечения ввода вертикального подъемника в подпалубное пространство (под
комингс люка к «морскому борту») на величину «запаса вылета»:
Rmax = RС.К.+ ?R = 0,5(Bм
+ Вс + Вл) + а1 + а2 + ?R, где RС.К.- вылет стрелового конвейера;
Bм = 10,5 м – колея портала СРМ, принимаемая по аналогии со
стандартной колеей двухпутных крановых порталов;
Вс = 27,8 м – ширина судна;
Вл = 9,4 м – ширина люка трюма; а1 = 3,2 м – расстояние от оси «морского» рельса подкрановых
(«подмашинных») путей до «кордона» (кромки причала); а2 = 1,0 м – расстояние от борта судна до кордон, в связи с
установкой на «стенке» причала отбойных устройств;
?R = 1,5 м – «запас вылета».
RС.К.= 0,5(10,5 + 27,8 +
9,4) + 3,2 + 1,0 = 28,05 м
Rmax = 0,5(10,5 + 27,8 +
9,4) + 3,2 + 1,0 + 1,5 = 29,55 м ,
Конструктивная высота (над уровнем причала) шарнира крепления
стрелового конвейера на портале:
HС.К.К = H С.К.Т + Н1, где H С.К.Т – расстояние между стреловым конвейером и поверхностью
причала (судно в балласте):
H С.К.Т = Hс + hк + hб –
Тп – hГР, где hб = 1,0 м – зазор между стреловым конвейером (в крайнем нижнем
положении) и комингсом люка; hГР = 2,0 м – возвышение кордона причала над средним многолетним
уровнем воды акватории порта за навигационный период (для «неприливного»
моря – с величиной прилива менее 0,5 м);
H С.К.Т = 15,6 + 1,5 + 1,0
– 2,8 – 2,0 = 13,3 м,
Н1= 0 (так как H С.К.Т > 9 м) – расстояние, зависящее от
конструктивного исполнения и схемы компоновки портала и других узлов СРМ
(опорно-поворотного и пересыпного устройств и т.д.), а также расположения
приемных устройств (бункеров) береговых транспортных средств.
HС.К.К = 13,3 м + 0 =
13,3 м,
Длина стрелового конвейера:
LК = RС.К./ cos ?, где ? – угол наклона стрелового конвейера tg ? = Н1/ RС.К. ,
Так как Н1= 0, угол наклона стрелового конвейера ? = 0 ?.
LК = RС.К. = 28.05 м.
Принципиальная схема судоразгрузочной машины приведена на рис.1