Понятие о термической обработке (закалка, отжиг, нормализация)

  • Вид работы:
    Реферат
  • Предмет:
    Другое
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    164,08 Кб
  • Опубликовано:
    2016-09-21
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Понятие о термической обработке (закалка, отжиг, нормализация)

Государственное автономное профессиональное образовательное учреждение

Чувашской Республики «Канашский транспортно-энергетический техникум»

Министерства образования и молодёжной политики Чувашской Республики




Реферат

на тему «Понятие о термической обработке (закалка, отжиг, нормализация)»

Выполнил Миронов А.

Студент группы СП 02-15

Специальность: Сварочное производство







Канаш - 2016

СОДЕРЖАНИЕ

Введение

. Отжиг

. Закалка

. Нормализация

. Виды закалки

. Дефекты при закалке

. Виды отжига

Заключение

Список источников и литературы

ВВЕДЕНИЕ

Термическую обработку можно разделить на несколько основных видов, исходя из сущности происходящих в металле процессов. Такими основными видами являются: отжиг первого рода, отжиг второго рода, закалка (с полиморфным превращением и без него), отпуск (старение). Во всех этих процессах на металл оказывается только тепловое воздействие. Имеются еще два вида термической обработки, в которых, кроме теплового воздействия, металл подвергается еще химическому воздействию (химико-термическая обработка) и пластическому деформированию (термомеханическая обработка).

1. ОТЖИГ

Представляет собой операцию термической обработки, заключающуюся в нагреве стали, выдержке при данной температуре и последующем медленном охлаждении вместе с печью или в песке со скоростью 2-3° в минуту. В результате отжига образуется устойчивая структура, свободная от остаточных напряжений.

Отжиг является одной из важнейших массовых операций термической обработки стали.

Цель отжига:

) снижение твердости и повышение пластичности для облегчения обработки металлов резанием;

) уменьшение внутреннего напряжения, возникающего после обработки давлением (ковка, штамповка), механической обработки и т. д.;

) снятие хрупкости и повышение сопротивляемости ударной вязкости;

) устранение структурной неоднородности состава материала, возникающей при затвердевании отливки в результате ликвации;

) изменение свойств наклепанного металла.

В зависимости от поставленных задач отжиг производится при различных температурах и бывает двух видов: неполный и полный.

Температура отжига, как правило, должна быть на 20-30° выше 723° (критической точки), при которой происходит основное изменение внутреннего строения стали.

Скорость нагрева детали до температуры отжига зависит от химического состава, формы и размеров детали. При больших размерах и сложной форме детали нагрев должен быть медленным. Скорость охлаждения при отжиге должна быть малой. Углеродистые стали охлаждаются при отжиге со скоростью 100- 200° в час, низкоуглеродистые - со скоростью 50-60° в час, высоколегированные - еще медленнее. На практике при отжиге детали обычно охлаждаются вместе с печью до комнатной температуры.

При неполном отжиге, цель которого состоит только в устранении внутренних напряжений, сталь с любым содержанием углерода нагревают до 750-760°.

Для полного отжига сталь с содержанием углерода более 0,8% нагревают также до 750-760°, а при меньшем содержании требуется постепенное повышение температуры отжига до 930-950°. Детали выдерживаются при указанных температурах до полного нагрева. Время выдержки зависит от формы деталей. Затем их медленно охлаждают до комнатной температуры (20°). Качество отжига определяют по виду излома.

. ЗАКАЛКА

Еще древние мастера, работавшие в кузнях, замечали, как тепловое воздействие в разной степени влияет на металл, меняя его структуру и свойства. С помощью термообработки можно улучшить механические характеристики детали, сделать ее более долговечной и даже уменьшить вес за счет увеличения прочности! Термообработка позволяет даже изготавливать качественные детали из более дешевых сплавов, улучшая их характеристики до нужной отметки. Закалка стали - процесс термообработки, в результате которого сталь нагревается до критической температуры и быстро охлаждается. Цель такой обработки - повышение твердости и прочности детали с уменьшением ее пластичности.

Для каждого вида закалки металла существует отдельный режим, определяющий исход процесса. Нужно учесть температуру нагрева, вычислить точное время и скорость нагрева, продолжительность выдержки детали при максимальном значении температуры, скорость охлаждения. На атомном уровне при достижении критической температуры перестраивается атомная решетка. Для разных марок стали существует своя критическая температура, в зависимости от уровня содержания углерода и примесей. Закалка делает металл твердым, но в то же время хрупким. Поверхность изделия теряет углероды и покрывается окалиной, поэтому очень важно учитывать припуск для дальнейшей обработки, иначе деталь в процессе закалки можно испортить.

Охлаждение детали должно проходить быстро, чтобы атомная структура не преобразовалась в промежуточные. При этом слишком быстрое охлаждение может привести к растрескиванию стали или короблению. Во избежание брака скорость охлаждения при достижении порога в 200 °С замедляют. Углеродистая сталь и изделия из нее прогреваются в камерных печах. Печь для закалки прогревается в среднем на 800 °С, хотя некоторые марки стали закаляются и при более высоких температурных режимах (1250-1300 °С). Эти марки не подвержены растрескиванию, поэтому в предварительном подогреве они не нуждаются. Сложные детали, которые имеют резкие переходы или тонкие грани, предварительно подогревают в отдельных печах или соляных ваннах. Температура подогрева - до 500 °С.

Очень важно обеспечить равномерный нагрев всего изделия. Часто это сделать невозможно за один подход, поэтому могут быть проделаны две выдержки. Если прогреваются несколько изделий, время увеличивается, если одно - то уменьшается. Например, одну дисковую фрезу (24 мм) будут прогревать 10-13 минут, тогда как десяток таких изделий, помещенных в печь вместе, нужно выдержать все 15-18 минут.


Нормализация является разновидностью отжига и отличается от него тем, что охлаждение обрабатываемых деталей производится после нагрева и выдержки на воздухе. Нормализации подвергаются штампованные и кованые заготовки, как из углеродистой, так и легированной стали, а также цементированные детали.

Цель нормализации - улучшение микроструктуры стали, повышение механических свойств и подготовка к последующей термической обработке. Нормализацией можно исправить структуру после ковки и штамповки деталей, уничтожить перегрев после сварки деталей и снятия напряжения в сварном шве. После нормализации отливки имеют высокий предел текучести и прочности, а также повышенную ударную вязкость. Для некоторых марок углеродистых и специальных сталей нормализация является окончательной операцией термической обработки, так как в результате нормализации эта сталь приобретает требуемые свойства.

При нормализации доэвтектоидные стали нагреваются до температуры на 50 °C выше критической точки завершения превращения избыточного феррита <https://ru.wikipedia.org/wiki/%D0%A4%D0%B5%D1%80%D1%80%D0%B8%D1%82_(%D1%84%D0%B0%D0%B7%D0%B0)> в аустенит <https://ru.wikipedia.org/wiki/%D0%90%D1%83%D1%81%D1%82%D0%B5%D0%BD%D0%B8%D1%82>AC3, а заэвтэктоидные до температуры на 50 °C выше точки завершения превращения избыточного цементита <https://ru.wikipedia.org/wiki/%D0%A6%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D0%B8%D1%82> в аустенит Aст. Нагревание ведется до полной перекристаллизации. Охлаждение производится на воздухе в цехе. В результате сталь приобретает мелкозернистую, однородную структуру. Твердость, прочность стали после нормализации выше на 10-15 %, чем после отжига.

Структура низкоуглеродистой стали после нормализации феррито-перлитная <https://ru.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D0%BB%D0%B8%D1%82_(%D0%BC%D0%B5%D1%82%D0%B0%D0%BB%D0%BB%D0%BE%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5)>, такая же, как и после отжига, а у средне- и высокоуглеродистой стали - сорбитная <https://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D1%80%D0%B1%D0%B8%D1%82_(%D0%BC%D0%B5%D1%82%D0%B0%D0%BB%D0%BB%D1%83%D1%80%D0%B3%D0%B8%D1%8F)>. В некоторых случаях нормализация может заменить для низкоуглеродистой стали отжиг, а для высокоуглеродистой - улучшение <https://ru.wikipedia.org/wiki/%D0%A3%D0%BB%D1%83%D1%87%D1%88%D0%B5%D0%BD%D0%B8%D0%B5_(%D1%82%D0%B5%D1%80%D0%BC%D0%BE%D0%BE%D0%B1%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B0)> (закалку <https://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%B0%D0%BB%D0%BA%D0%B0_(%D0%BC%D0%B5%D1%82%D0%B0%D0%BB%D0%BB%D1%83%D1%80%D0%B3%D0%B8%D1%8F)> с высоким отпуском <https://ru.wikipedia.org/wiki/%D0%9E%D1%82%D0%BF%D1%83%D1%81%D0%BA_(%D0%BC%D0%B5%D1%82%D0%B0%D0%BB%D0%BB%D1%83%D1%80%D0%B3%D0%B8%D1%8F)>). Часто нормализацию используют для подготовки стали к закалке. Нормализация обеспечивает большую производительность и лучшее качество поверхности при обработке резанием.

. ВИДЫ ЗАКАЛКИ

Существует несколько способов закалки, применяемых в зависимости от состава стали, характера обрабатываемой детали, твердости, которую необходимо получить, и условий охлаждения.

Закалка в одной среде схематично показана на рис. 1 в виде кривой 1. Такую закалку проще выполнять, но ее можно применять не для каждой стали и не для любых деталей, так как быстрое охлаждение деталей переменного сечения в большом интервале температур способствует возникновению температурной неравномерности и больших внутренних напряжений, что может вызвать коробление детали, а иногда и растрескивание (если величина внутренних напряжений превзойдет предел прочности).

Чем больше углерода в стали, тем больше объемные изменения и структурные напряжения, тем больше опасность возникновения трещин.

Рис. 1. Кривые охлаждения для различных способов закалки

Заэвтектоидные стали закаливают в одной среде, если детали имеют простую форму (шарики, ролики и т. д.). Если детали сложной формы, применяют либо закалку в двух средах, либо ступенчатую закалку.

Закалку в двух средах (кривая 2)применяют для инструмента из высокоуглеродистой стали (метчики, плашки, фрезы). Сущность способа состоит в том, что деталь вначале замачивают в воде, быстро охлаждая ее до 300-400° С, а затем переносят в масло, где оставляют до полного охлаждения.

Ступенчатую закалку (кривая 3) выполняют путем быстрого охлаждения деталей в соляной ванне, температура которой намного выше температуры начала мартенситного превращения (240-250° С). Выдержка при этой температуре должна обеспечить выравнивание температур по всему сечению детали. Затем детали охлаждают до комнатной температуры в масле или на спокойном воздухе, устраняя тем самым термические внутренние напряжения.

Ступенчатая закалка уменьшает внутренние напряжения, коробление и возможность образования трещин.

Недостаток этого вида закалки в том, что горячие следы не могут обеспечить большую скорость охлаждения при температуре 400-600° С. В связи с этим ступенчатую закалку можно применять для деталей из углеродистой стали небольшого сечения (до 8-10 мм). Для легированных сталей, имеющих небольшую критическую скорость закалки, ступенчатая закалка применима к деталям большого сечения (до 30 мм).

Изотермическую закалку (кривая 4)проводят так же, как ступенчатую, но с более длительной выдержкой при температуре горячей ванны (250-300° С), чтобы обеспечить полный распад аустенита. Выдержка, необходимая для полного распада аустенита, определяется по точкам а и b и по S-образной кривой (см. рис. 1). В результате такой закалки сталь приобретает структуру игольчатого троостита с твердостью HRC45 55 и с сохранением необходимой пластичности. После изотермической закалки охлаждать сталь можно с любой скоростью. В качестве охлаждающей среды используют расплавленные соли: 55% KNO3 + 45% NaNO2 (температура плавления 137° С) и 55% KNO3 + 45% NaNO3 (температура плавления 218° С), допускающие перегрев до необходимой температуры.

Изотермическая закалка имеет следующие преимущества перед обычной: минимальное коробление стали и отсутствие трещин; большая вязкость стали.

В настоящее время широко используют ступенчатую и изотермическую светлую закалки.

Светлую закалку стальных деталей проводят в специально оборудованных печах с защитной средой. На некоторых инструментальных заводах для получения чистой и светлой поверхности закаленного инструмента применяют ступенчатую закалку с охлаждением в расплавленной едкой щелочи. Перед закалкой инструмент нагревают в соляной ванне из хлористого натрия при температуре на 30-50° С выше точки АС1 и охлаждают при 180-200° С в ванне, состоящей из смеси 75% едкого калия и 25% едкого натра сдобавлением 6-8% воды (от веса всей соли).

Смесь имеет температуру плавления около 145° С и, благодаря тому что в ней находится вода, обладает очень высокой закаливающей способностью.

Закалка с самоотпуском широко применяется в инструментальном производстве. Сущность ее состоит в том, что детали не выдерживают в охлаждающей среде до полного охлаждения, а в определенный момент извлекают из нее, чтобы сохранить в сердцевине изделия некоторое количество тепла, за счет которого производится последующий отпуск. После достижения требуемой температуры отпуска за счет внутреннего тепла деталь окончательно охлаждают в закалочной жидкости.

. ДЕФЕКТЫ ПРИ ЗАКАЛКЕ

Недостаточная твердость закаленной детали - следствие низкой температуры нагрева, малой выдержки при рабочей температуре или недостаточной скорости охлаждения.

Исправление дефекта: нормализация или отжиг с последующей закалкой; применение более энергичной закалочной среды.

Перегрев связан с нагревом изделия до температуры, значительно превышающей необходимую температуру нагрева под закалку. Перегрев сопровождается образованием крупнозернистой структуры, в результате чего повышается хрупкость стали.

Исправление дефекта: отжиг (нормализация) и последующая закалка с необходимой температуры.

Пережог возникает при нагреве стали до весьма высоких температур, близких к температуре плавления (1200-1300° С) в окислительной атмосфере. Кислород проникает внутрь стали, и по границам зерен образуются окислы. Такая сталь хрупка и исправить ее невозможно.

Окисление и обезуглероживание стали характеризуются образованием окалины (окислов) на поверхности деталей и выгоранием углерода в поверхностных слоях. Этот вид брака термической обработкой неисправим. Если позволяет припуск на механическую обработку, окисленный и обезуглероженный слой нужно удалить шлифованием. Чтобы предупредить этот вид брака, детали рекомендуется нагревать в печах с защитной атмосферой.

Коробление и трещины - следствия внутренних напряжений. Во время нагрева и охлаждения стали наблюдаются объемные изменения, зависящие от температуры и структурных превращений (переход аустенита в мартенсит сопровождается увеличением объема до 3%). Разновременность превращения по объему закаливаемой детали вследствие различных ее размеров и скоростей охлаждения по сечению ведет к развитию сильных внутренних напряжений, которые служат причиной трещин и коробления деталей в процессе закалки.

Образование трещин обычно наблюдается при температурах ниже 75-100° С, когда мартенситное превращение охватывает значительную часть объема стали. Чтобы предупредить образование трещин, при конструировании деталей необходимо избегать резких выступов, заостренных углов, резких переходов от тонких сечений к толстым; следует также медленно охлаждать сталь в зоне образования мартенсита (закалка в масле, в двух средах, ступенчатая закалка). Трещины являются неисправимым браком, коробление же можно устранить последующей рихтовкой или правкой.

. ВИДЫ ОТЖИГА

термический обработка металл закалка

Полному отжигу подвергают обычно доэвтектоидные стали, нагревая их до температур выше линии GS, выдерживая при них в течение 1/4 продолжительности нагрева и медленно охлаждая вместе с печью до 600 - 400° С. Углеродистые стали охлаждают со скоростью 100-150° в час, легированные - со скоростью 30-50° в час. Полный отжиг сопровождается фазовой перекристаллизацией, в результате чего крупнозернистая сталь получает мелкозернистую структуру, освобождается от внутренних напряжений, становится мягкой и вязкой. Для отжига изделия упаковывают в ящики, трубы или реторты, которые затем наполняют песком, чугунной стружкой или углем, чтобы предохранить поверхность изделий от обезуглероживания и окисления. Наилучшие результаты дает применение защитной атмосферы. Отжиг в защитной атмосфере называют светлым, так как при этом способе обезуглероживания и окисления почти не бывает и поверхность изделий остается относительно светлой.

Неполный отжиг является разновидностью отжига перекристаллизации. При неполном отжиге сталь нагревают до температуры, на 30-40° превышающей нижнюю критическую точку АС1 (см. рис. 1), т. е. до 750-760° С.

Замедленное охлаждение или длительная выдержка стали при температурах 680-750° С способствует образованию крупнопластинчатого перлита, облегчающего обрабатываемость стали резанием. Для мягких доэвтектоидных сталей, содержащих до 0,4-0,5% углерода, этот вид отжига применяют редко, так как они и без отжига достаточно хорошо обрабатываются резанием. Для инструментальных сталей, особенно заэвтектоидных, неполный отжиг является единственным видом отжига. Он способствует снятию внутренних напряжений и улучшению обрабатываемости резанием.

Отжигу на зернистый перлит подвергают эвтектоидные и заэвтектоидные стали. Для отжига сталь нагревают на 20-30° выше критической точки ACi(см. рис. 54) и после выдержки при рабочей температуре в течение 3-5 часов медленно охлаждают (со скоростью 30-50° в час) до 650-600° С. В результате длительной выдержки пластинчатый перлит превращается в зернистый; это явление называется сфероидизацией (округлением). Высокоуглеродистые инструментальные стали, содержащие более 0,65% углерода, со структурой зернистого перлита хорошо обрабатываются резанием и лучше поддаются закалке; они обладают меньшей склонностью к образованию трещин и короблению. В некоторых случаях, чтобы ускорить процесс сфероидизации перлита, нагрев и охлаждение повторяют несколько раз. Такой отжиг называется м а я т н и к о в ы м, или цикличным. При цикличном отжиге инструментальную сталь нагревают до 730-750° С и медленно охлаждают до 650° С; процесс повторяют несколько раз. Все заэвтектоидные (инструментальные) стали отжигают на зернистый перлит.

Изотермический отжиг заключается в нагреве стали выше критической точки АС3 и выдержке при этой температуре в течение времени, необходимого для полного и равномерного прогрева. Затем сталь относительно быстро охлаждают до температуры ниже Ar1(650-700° С). При этой постоянной (изотермической) температуре сталь выдерживают определенное время, необходимое для полного распада аустенита с образованием перлита (в доэвтек-тоидной стали - феррита и перлита), и затем охлаждают на воздухе. Изотермический отжиг имеет почти вдвое более короткий цикл, чем обычный отжиг.

Рис. 2. Интервал закалочных температур углеродистой стали

Преимущества изотермического отжига -однородность структуры и ускорение процесса, особенно при отжиге легированной стали. Для сталей, содержащих большое количество хрома, никеля и других элементов, только изотермический отжиг позволяет добиться превращения весьма устойчивого аустенита в перлит и феррит и обеспечить хорошую обрабатываемость стали режущим инструментом. Диффузионный отжиг применяют для слитков и крупных отливок, чтобы выравнять (путем диффузии) химический состав стали, имеющий внутрикристаллическую ликвацию.

Рекристаллизационным отжигом называется отжиг стали, прошедшей холодную прокатку, волочение или холодную штамповку, с выдержкой при температуре 680-700° С и последующим охлаждением. Этой температуры достаточно для того, чтобы возвратить стали свойства, которые она имела до холодной обработки давлением. В результате такого отжига понижается твердость и прочность, но повышаются показатели пластичности - относительное удлинение, ударная вязкость.

ЗАКЛЮЧЕНИЕ

Термическая обработка является одной из основных, наиболее важных операций общего технологического цикла обработки, от правильного выполнения которой зависит качество (механические и физико-химические свойства) изготовляемых деталей машин и механизмов, инструмента и другой продукции. Разработаны и рационализированы технологические процессы термической обработки серых и белых чугунов, сплавов цветных металлов

Перспективным направлением совершенствования технологии термической обработки является установка агрегатов для термической обработки в механических цехах, создание автоматических линий с включением в них процессов термической обработки, а также и разработка методов, обеспечивающих повышение прочностных свойств деталей, их надежности и долговечности.

СПИСОК ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

1)      Остапенко Н.Н.,Крапивницкий Н.Н. Технология металлов. М. Высшая школа,1970г.

)        И. И. Новиков. Термическая обработка

)        А. П. Гуляев. Металловедение

)        Суперсплавы II, Москва, «Металлургия», 1995

)        А. Ю. Маламут. Термопечи, Москва, 2010.

)        А. И. Климычев. Практикум по лабораторным работам

Похожие работы на - Понятие о термической обработке (закалка, отжиг, нормализация)

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!