Тема: Фракционный состав нефти

  • Вид работы:
    Реферат
  • Предмет:
    Химия
  • Язык:
    Русский
  • Формат файла:
    MS Word
  • Размер файла:
    18,53 Кб
Фракционный состав нефти
Фракционный состав нефти
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Министерство образования и науки РФ

Федеральное государственное автономное образовательное учреждение

высшего профессионального образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт нефти и газа








Реферат

По предмету: «Органическая химия топлив»

Тема: «Фракционный состав нефти»










Красноярск 2015

Содержание

Введение

1.Фракционный состав нефти

2.Бензиновые фракции

.1 Групповой состав

.2 Алканы

.3 Циклоалканы

.4 Арены

.5 Гетероатомные соединения

.Влияние химического состава бензинов на их антидетонационные свойства

.Заключение



Введение

Нефть представляет собой сложную смесь жидких органических веществ, в которых растворены различные твердые углеводороды и смолистые вещества. Кроме того, часто в ней растворены и сопутствующие нефти газообразные углеводороды. Разделение сложных смесей на более простые или в пределе - на индивидуальные компоненты называется фракционированием. Методы разделения базируются на различии физических, поверхностных и химических свойств разделяемых компонентов. При исследовании и переработке нефти и газа используются следующие методы разделения: физическая стабилизация (дегазация), перегонка и ректификация, перегонка под вакуумом, азеотропная перегонка, молекулярная перегонка, адсорбция, хроматография, применение молекулярных сит, экстракция, кристаллизация из растворов, обработка как химическими реагентами, так и карбамидом ( с целью выделения парафинов нормального строения). Всеми этими методами возможно получить различные фракции, по составу и свойствам резко отличающиеся от исходного продукта. Часто эти методы комбинируют. Так, например, абсорбция и экстракция при разделении смолистых веществ или экстракция и перегонка в процессе экстрактивной перегонки. При детальном исследовании химического состава нефти практически используются все перечисленные выше методы.

Наиболее распространенные методы и положены в основу заводской переработки нефти. В процессе перегонки при постепенно повышающейся температуре компоненты нефти отгоняются в порядке возрастания их температур кипения.

Для всех индивидуальных веществ температура кипения при данном давлении является физической константой. Так как нефть представляет собой смесь большого числа органических веществ, обладающих различным давлением насыщенных паров, то говорить о температуре кипения нефти нельзя.

В условиях лабораторной перегонки нефти или нефтепродуктов при постепенно повышающейся температуре отдельные компоненты отгоняются в порядке возрастания их температур кипения, или то же самое, в порядке уменьшения давления их насыщенных паров. Следовательно, нефть и ее продукты характеризуются не температурами кипения, а температурными пределами начала и конца кипения и выходом отдельных фракций, перегоняющихся в определенных температурных интервалах. По результатам перегонки и судят о фракционном составе.

1. Фракционный состав нефти

Поскольку нефть представляет собой многокомпонентную непрерывную смесь углеводородов и гетероатомных соединений, то обычными методами перегонки не удается разделить их на индивидуальные соединения со строго определенными физическими константами, в частности температурой кипения при данном давлении Принято разделять нефть и нефтепродукты путем перегонки на отдельные компоненты, каждый из которых является менее сложной смесью. Такие компоненты называют фракциями или дистиллятами. В условиях лабораторной или промышленной перегонки отдельные нефтяные фракции отгоняются при постоянно повышающейся температуре кипения. Следовательно, нефть и ее фракции характеризуются не температурой кипения, а температурными пределами начала кипения и конца кипения.

При исследовании качества новых нефтей (т. е. составлении технического паспорта), их фракционный состав определяют на стандартных перегонных аппаратах, снабженных ректификационными колоннами (например, на АРН-2 по ГОСТ 11011-85). Это позволяет значительно улучшить четкость погоноразделения и построить по результатам перегонки так называемую кривую истинной температуры кипения в координатах температура - выход фракций в % мас., (или % об.).

Нефти различных месторождений значительно различаются по фракционному составу и, следовательно, по потенциальному содержанию дистиллятов моторного топлива и смазочных масел. Большинство нефтей содержит 10-30 % бензиновых фракций, выкипающих до 200 % и 40-65% керосиногазойлевых фракций, перегоняющихся до 350 °С. Известны месторождения легких нефтей с высоким содержанием светлых (до 350 °С). Так, Самотлорская нефть содержит 58 % светлых, а газоконденсаты большинства месторождений почти полностью (85-90 %) состоят из светлых. Добываются также очень тяжелые нефти, состоящие в основном из высококипящих фракций (например, нефть Ярегского месторождения, добываемая шахтным способом).

3.

2.Бензиновая фракция

Эта фракция используется для получения различных сортов моторного топлива. Она представляет собой смесь различных углеводородов, в том числе неразветвленных и разветвленных алканов. Поэтому бензиновую фракцию нередко подвергают термическому риформингу, чтобы превратить неразветвленные молекулы в разветвленные.Качество бензина как моторного топлива определяется его октановым числом. ( Октановое число указывает процентное объемное содержание 2,2,4-триметилпентана (изооктана) в смеси 2,2,4-триметилпентана и гептана (алкан с неразветвленной цепью), которая обладает такими же детонационными характеристиками горения, как и испытуемый бензин.


Плохое моторное топливо имеет нулевое октановое число, а хорошее топливо-октановое число 100. Октановое число бензиновой фракции, получаемой из сырой нефти, обычно не превышает 60. Характеристики горения бензина улучшаются при добавлении в него антидетонаторной присадки, в качестве которой используется тетраэтилсвинец(IV), Рb(С2Н5)4. Тетраэтилсвинец представляет собой бесцветную жидкость, которую получают при нагревании хлороэтана со сплавом натрия и свинца:

При горении бензина, содержащего эту присадку, образуются частицы свинца и оксида свинца(II). Они замедляют определенные стадии горения бензинового топлива и тем самым препятствуют его детонации. Вместе с тетраэтилсвинцом в бензин добавляют еще 1,2-дибромоэтан. Он реагирует со свинцом и свинцом(II), образуя бромид свинца(II). Поскольку бромид свинца(II) представляет собой летучее соединение, он удаляется из автомобильного двигателя с выхлопными газами.)

.1 Групповой состав нефтей

Из элементного состава следует, что нефть в основном состоит из углеводородов. Наиболее широко в нефти представлены углеводороды трёх классов: алканы, циклоалканы и арены.

Присутствуют также углеводороды смешанного строения. Сравнительно жёсткие условия, в которых в природе находится нефть (температура до 200 0 С и более), обусловливает незначительное содержание лишь в некоторых нефтях таких химически активных углеводородов, как алкены и алкины.

Соединения с циклическими и полициклическими структурами преобладают в нефтях, приуроченным к относительно молодым отложениям (третичным), а алифатические структуры более характерны для нефтей из палеозойских отложений.

Из неуглеводородных компонентов нефтей известны кислородные, сернистые, азотистые соединения, также смолы и асфальтены, содерджащие и кислород, и серу, и азот, но с не вполне ясной химической природой. Имеются и некотрые другие элементно - органические соединения, но характер их тоже пока не совсем ясен.


.2 Алканы

Углеводный состав нефти - является наиболее важным показателем их качества, определяющим выбор метода переработки, ассортимент и эксплуатационные свойства получаемых нефтепродуктов. В исходных нефтях содержатся в различных соотношениях все классы углеводов, кроме алкенов: алканы, цикланы, арены, а также гетероатомные соединения. Алканы (СnН2n+2) - парафиновые углеводы - составляют значительную часть групповых компонентов нефтей, газоконденсатов и природных газов. Общее содержание их в нефтях составляет 25-75 % маc. и только в некоторых парафинистых нефтях типа Мангышлакской достигает 40-50 %. С повышением молярной фракций нефти содержание в них алканов уменьшается. Попутные нефтяные и природные газы практически полностью, а прямогонные бензины чаще всего на 60-70 % состоят из алканов. В масляных фракциях их содержание снижается до 5-20 % маc. Из алканов в бензинах преобладают 2- и 3-монометилзамещенные, при этом доля изоалканов с четвертичным углеродным атомом меньше, а этил- и пропилзамещенные изоалканы практически отсутствуют. С увеличением числа атомов углерода в молекуле алканов свыше 8 относительное содержание монозамещенных снижается. В газойлевых фракциях (200-350 °С) нефтей содержатся алканы от додекана до эйкозана. Установлено, что среди алканов в них преобладают монометилзамещенные и изопреноидные (с чередованием боковых метильных групп через три углеродных атома в основе углеродной цепи) структуры. В среднем содержание алканов изопреноидного строения составляет около 10-11 %.

.3 Циклоалканы

Циклоалканы (ц. СnН2n) - нафтеновые углеводы - входят в состав всех фракций нефтей, кроме газов. В среднем в нефтях различных типов они содержатся от 25 до 80 % мас. Бензиновые и керосиновые фракции представлены в основном гомологами циклопентана и циклогексана, преимущественно с короткими (C1 - С3) алкилзамещенными цикланами. Высококипящие фракции содержат преимущественно полициклические гомологи цикланов с 2-4 одинаковыми или разными цикланами сочлененного или конденсированного типа строения. Распределение цикланов по фракциям нефти самое разнообразное. Их содержание растет по мере утяжеления фракций и только в наиболее высококипящих масляных фракциях падает. Можно отметить следующее распределение изомеров цикланов: среди С7 - циклопентанов преобладают 1,2 - и 1,3-диметилзамещенные; С8 - циклопентаны представлены преимущественно триметилзамещенными; среди алкилциклогексанов преобладает доля ди- и триметилзамещенные, не содержащие четвертичного атома углерода.

Цикланы являются наиболее высококачественной составной частью моторного топлива и смазочных масел. Моноциклические цикланы придают моторному топливу высокие эксплуатационные свойства, являются более качественным сырьем в процессах каталитического реформинга. В составе смазочных масел они обеспечивают малое изменение вязкости от температуры (т. е. высокий индекс). При одинаковом числе углеродных атомов цикланы по сравнению с алканами характеризуются большей плотностью и, что особенно важно, меньшей температурой застывания.

.4 Арены

Арены (ароматические углеводороды) с эмпирической формулой СnНn+2-2Ка (где Ка - число ареновых колец) - содержатся в нефтях обычно в меньшем количестве (15-50 %), чем алканы и цикланы, и представлены гомологами бензола в бензиновых фракциях. Распределение их по фракциям различно и зависит от степени ароматизированности нефти, выражающейся в ее плотность. В легких нефтях содержание аренов с повышением температуры кипения фракции, как правило, снижается. Нефти средней плотности цикланового типа характеризуются почти равномерным распределением аренов по фракциям. В тяжелых нефтях содержание их резко возрастает с повышением температуры кипения фракций. Установлена следующая закономерность распределения изомеров аренов в бензиновых фракциях: из C8-аренов больше 1,3-диметилзамещенных, чем этилбензолов; С9-аренов преобладают 1,2,4-триметилзамещенные. Арены являются ценными компонентами в автобензине (с высокими октановым числом), но нежелательными в реактивном топливе и дизельном топливе. Моноциклические арены с длинными боковыми алкильными цепями придают смазочным маслам хорошие вязкостно-температурные свойства.

.5 Гетероатомные соединения

Гетероатомными называют соединения, в которых кроме атомов углерода содержатся гетероатомы (O, S, N). Во всех нефтях присутствуют гетероатомные соединения: кислородные, сернистые, азотистые. В нефтях содержатся гетероатомные соединения как циклического, так и в значительно меньшей степени ациклического характера. Содержание и соотношение их зависит от возраста и происхождения нефти.

Количество гетероатомных соединений в низкомолекулярной части нефти невелико (до 10%). Основная их масса концентрируется в высокомолекулярной части (до 40%) нефти и особенно в смолисто-асфальтовом остатке (до 100%).

Смолисто-асфальтовых веществ больше в молодых нефтях, и поэтому они обычно содержат больше гетероатомных соединений.

Присутствие определённых гетероатомных соединений и их содержание в нефтях имеет большое значение для решения вопроса об исходном материале нефти и процессов её преобразования в период созревания.

.Влияние химического состава бензинов на их антидетонационные свойства

органический топливо моторный нефть

Антидетонационные свойства бензиновых фракций нефтей определяются, в основном, соотношением групп алканов, изоалканов, циклопентанов, цкклогексанов и аренов. Физико-химические свойства автомобильных бензинов и регулировочные параметры двигателей должны быть тщательно увязаны друг с другом.

К основным характеристикам автомобильных бензинов относят:

·детонационную стойкость;

·испаряемость (фракционный состав и давление насыщенных паров);

·плотность;

·углеводородный состав.

Бензин прямой перегонкивосточных сернистых нефтей являются низкооктановыми (ОЧ = 43-53). В них содержится 5-11% ароматических углеводородов, 10-30% нафтеновых, 60-80% - нормальных парафиновых, 1,2% олефиновых и 0,048-0,2% серы. Высокостабильны. Содержат мало фактических смол. Используются для производства автомобильных бензинов.

Бензин прямой перегонкималосернистых нефтей типа бакинских, майкопских, эхабинских, туркменских обладают большей детонационной стойкостью (ОЧ = 62-70). Почти не содержат серы.

Бензины термического крекинга (ОЧ = 66-70) получают из остатков переработки нефти (мазута). Содержат много олефиновых углеводородов и серы (0,3-0,4%) и обладают низкой химической стабильностью. Ароматические углеводороды 2,5-14%, Олефины 21-52%, нафтены 8-10%, парафины 35-60%. При хранении и транспортировании образуются смолы, их октановое число понижается.

Бензины каталитического крекинга получают из легкого сырья - керосино-газойлевой фракции прямой перегонкой (авиационный бензин) и из тяжелого дистиллята - вакуумного газойля (фракции 320-4200С) (автомобильный бензин). Высокая детонационная стойкость (ОЧ = 75-77). Содержат ароматические углеводороды 20-26%, олефины 12-28%, нафтены 10-18%, паврафины и изопарафины 33-48%.

Разработка методов оценки антидетонационных свойств бензиновначалась в 1918-1919 гг. почти одновременно с изучением явления детонации в двигателях, когда Г. Рикардо создал двигатель с переменной степенью сжатия и предложил оценивать топливо значением степени сжатия, при котором двигатель развивает максимальную мощность. Этот показатель был назван наивысшей полезной степенью сжатия.

Дальнейшие исследования показали несостоятельность метода, так как значение наивысшей полезной степени сжатия не только не оставалось постоянным при переходе на другой двигатель, но изменялось даже при работе на одном и том же двигателе в зависимости от условий окружающей среды.

Позже был разработан метод оценки детонационной стойкости топлива с помощью топливных эквивалентов, основанный на сравнении антидетонационных качеств испытуемого топлива с антидетонационными свойствами некоторых определенных видов топлива, принятых за эталон.В качестве эталонных видов топлива выбирались два: одно из которых детонирует слабо, а другое - сильно, с таким расчетом, что все виды топлива, подлежащие испытанию, по своей склонности к детонации находились между выбранными эталонами. За величину, характеризующую антидетонационные качества топлива, было принято процентное содержание слабодетонирующего топлива в эталонной смеси, эквивалентной по детонационной стойкости исследуемому образцу.

Введение сравнительной оценки антидетонационных свойств бензина дало возможность оценивать эти качества с помощью некоторой условной единицы, а также контролировать антидетонационные качества топлива на специальных одноцилиндровых моторных установках, что существенно упростило испытания.

Сравнительные испытания проводили на разнообразных установках (двигателях) и при различных режимах работы. В качестве эталонных топлив применяли бензол, толуол, спирт, которые смешивали с каким-либо легкодетонирующим бензином. Однако такие эталоны не позволяли получать удовлетворительные результаты, так как условия работы двигателя на бензоле, толуоле и спирте значительно отличаются от условий работы на товарных бензинах.

Кроме того, при использовании в качестве легкодетонирующего эталона промышленного бензина невозможно повсеместно обеспечить строгое постоянство его антидетонационных качеств. Накопленный опыт показал, что относительное расположение топлива по антидетонационным свойствам не является постоянным, а зависит в значительной степени от режима работы испытательной установки, метода сравнения топлива с эталоном, состава сравниваемых видов топлива и т. д. В связи с этим возникла необходимость установить единую единицу измерения, оценивающую антидетонационные качества топлив, а также разработать единообразные условия испытания.

Мерой детонационной стойкости бензина является октановое число(ОЧ) по условно принятой шкале. В этой шкале в качестве эталонного топлива стали применять химически чистые углеводороды - сильно детонирующий нормальный гептан(С7Н16) и слабо детонирующий изооктан(2,2,4-триметилпентан) (С8Н18) и их смеси, удовлетворяющие основным требованиям к эталонному топливу:

·постоянный состав и возможность получения идентичного качества;

·длительный срок хранения;

·антидетонационные свойства, охватывающие весь диапазон бензинов;

·близость условий сгорания в двигателе к условиям сгорания товарных бензинов.

Заключение

органический топливо моторный нефть

Нефть, нефтяные фракции и нефтепродукты представляют собой, как правило, смеси очень большого числа близко кипящих компонентов. Число компонентов в бензиновых фракциях может достигать 500, а в масляных фракциях еще больше. Как правило, их разделяют путем перегонки на отдельные части, каждая из которых является менее сложной смесью. Нефтяные фракции, в отличие от индивидуальных соединений, не имеют постоянной температуры кипения. Они выкипают в определенных интервалах температур, то есть имеют температуры начала и конца кипения (Тнк и Ткк). Тнк и Ткк зависят от химического состава фракции. Таким образом, фракционный состав нефти и нефтепродукта показывает содержание в них (в объемных или весовых процентах) различных фракций, выкипающих в определенных температурных пределах. Этот показатель является важнейшей характеристикой нефтяных смесей и имеет большое практическое значение.

Полные данные о характеристике состава нефти и нефтепродуктов позволяют решать главные вопросы переработки: проводить сортировку нефти и нефтепродуктов на базах смешения, определять варианты переработки нефти (топливный, топливно-масляный, или нефтехимический), выбирать схемы переработки, определять глубину отбора масляных фракций от потенциала (отношение массы фракций, выделенных на установке, к их массе, содержащейся в нефти), выход отдельных фракций. Знание фракционного состава нефтепродукта позволяет рассчитать их важнейшие эксплуатационные характеристики. Вследствие особенностей химического состава нефтей разных месторождений, физико-химические характеристики идентичных по температуре кипения фракций будут неодинаковы. Каждая нефть имеет свою характерную кривую разгонки, обусловленную специфическим распределением в ней отдельных компонентов (углеводородных и неуглеводородных соединений) как по содержанию, так и по температуре кипения.

Изменения физико-химических характеристик взаимно коррелируют. На этом основаны многие методы определения характеристик и состава нефти и нефтепродуктов, и в настоящее время накоплен значительный объем информации о корреляционных взаимосвязях. Однако большинство из них нашли ограниченное применение из-за громоздкости и неприспособленности для использования в информационных технологиях.


1. Обрядчиков С. Н., Принципы перегонки нефти, М.- Л., 1940.

. Дияров И.Н., Батуева И.Ю., Садыков А.Н., Солодова Н.Л. Химия нефти. Руководство к лабораторным занятиям: Учебное пособие для вузов. - Л.: Химия, 1990.

. Богомолов А. И., Гайле А.А., Громова В.В. и др.Химия нефти и газа: Учебное пособие для вузов / Под ред. В. А. Проскурякова, А. Е. Драбкина.- 3-е изд., доп. и испр. - СПб: Химия, 1995.

. Батуева И. Ю., Гайле А.А., Поконова Ю.В. Химия нефти. Под редакцией 3. И. Сюняева. Ленинград: Химия, 1984.

.Соколов В. Л., Фурсов А. Я. Поиски и разведка нефтяных и газовых месторождений. - М.: Недра, 2000. - 296 с.

.Справочник нефтепромысловой геологии/Под ред. Н. Е. Быкова. - Москва: Недра, 2001. - 525 с.

7.Спутник нефтегазопромыслового геолога: Справочник/Под ред. И. П. Чаловского. - М.: Недра, 2000. - 376 с.

8.Буланов А.Н.«Регламент работы цеха первичной подготовки нефти на «Быстринском» НГДУ», Сургут, ОАО «Сургутнефтегаз», 1997

.Эрих В.Н., Расина М.Г., Рудин М.Г. "Химия и технология нефти и газа". Ленинград, "Химия", 1972.

.Скобло А.И., Трегубова И.А., Егоров Н.Н. "Процессы и аппараты, нефтеперерабатывающей и нефтехимической промышленности". Москва, Государственное научно-техническое изд., 1962.

.Нестеров И.И., Рябухин Г.Е. "Тайны нефтяной колыбели". Свердловск, Средне-Уральское книжное издательство, 1984.

.Судо М. М. "Нефть и горючие газы в современном мире". Москва, Недра, 1984.

Похожие работы

 

Не нашел материала для курсовой или диплома?
Пишем качественные работы
Без плагиата!