Математическое моделирование автоматизированного позиционного гидропривода целевых механизмов машин

  • Вид работы:
    Контрольная работа
  • Предмет:
    Другое
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    2,52 Мб
  • Опубликовано:
    2016-01-07
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Математическое моделирование автоматизированного позиционного гидропривода целевых механизмов машин

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. СОЗДАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ

2. АЛГОРИТМ РЕАЛИЗАЦИЯ И РЕШЕНИЕ СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ   

3. АНАЛИЗ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ      

ВВЕДЕНИЕ

Развитие машиностроительной индустрии, определяется уровнем совершенствования автоматизированного технологического оборудования (АТО). Повышение требований к быстродействию и точности их функционирования обусловливают необходимость совершенствования действующих и создания новых позиционных систем. Применение позиционных гидроприводов, в силу известных преимуществ позволяет повысить эффективность таких систем. В позиционных гидросистемах программного регулирования, широкое применение нашли гидромеханические позиционеры - устройства организующие контур гидравлического управления. Они эффективно решают задачи оптимального управления выходного звена привода, используя гидравлические линии связи (ГЛС), позволяющие регулировать потоки жидкости на входе или выходе из гидродвигателя. В результате схемотехнического поиска разработана модульная гидромеханическая система, обладающая возможностью эффективного структурно-параметрического управления процессами позиционирования целевых механизмов машин. Структурная схема, показывающая взаимодействие ее силовой, гидравлической и механической подсистем, приведена на рисунке 1.

Рисунок 1 - Структурная схема позиционного гидропривода с ГЛС: АЗП - автоматический задатчик перемещений; ЭВМ - электронно-вычислительный модуль; ДПК - датчик положения координаты; УГП - устройство грубого перемещения; УТП - устройство точного перемещения; УУ - устройство управления; ИЛИ - логический элемент «или»; ЭСУ - энергосиловая установка; ГД - гидродвигатель; ИУ - исполнительное устройство; ТУ - тормозное устройство; ОУ - объект управления

Гидравлическую подсистему образуют: энергосиловая установка (ЭСУ), гидродвигатель (ГД) и тормозное устройство. ЭСУ формирует требуемые параметры потока рабочей жидкости p1,p2,Q1,Q2 и преобразует его энергию в движение выходного звена ГД с заданными скоростью ю1 и крутящим моментом МГМ.

Отработку требуемого алгоритма позиционного цикла обеспечивает блок контроля координаты (БКК). Его реализуют: датчик положения координаты (ДПК), кинематически связанный с гидродвигателем. Срабатывание ДПК и передача сигнала на устройство грубого перемещения (УГП) формирующего управляющие воздействие ру происходит в точке позиционирования, задаваемой автоматическим задатчиком перемещений АЗП [5].

Гидравлический сигнал на выходе УГП формируется за 0,001...0,003 с давлением для прямого управления гидромеханическим позиционером (ГМП) встроенным в гидравлическую силовую систему и управляющих основными потоком гидродвигателя. Передачу сигналов осуществляют управляющие гидролинии связи (УГЛС). ГМП образуют: устройство управления (УУ) преобразующее и направляющее управляющий сигнал к исполнительному устройству (ИУ) регулирующему противодавление на сливе ГМ.

Особенностью гидравлических связей ГМП, являются незначительные расходы управляющих потоков в УГЛС, что позволяет минимизировать объемы жидкости в контуре и повысить его быстродействие управляющего устройства (ГМП). Объединение нескольких исполнительных устройств в одно многофункциональное, так же повышает быстродействие и стабильность работы системы.

Возможности дальнейших исследований функционала предлагаемого схемотехнического решения ПГП, во многом зависят от качественного математического описания его гидромеханической системы.

Рисунок 2 - Расчетная схема динамической системы ПГП

При этом существенно сокращается время последующих испытаний и улучшается качество рабочих процессов реальных ПГП, сокращая затраты времени и средств. Для этого был выполнен динамический анализ позиционного гидропривода в соответствии с ниже приведенной методикой.

Для этого, на основании структурной и принципиальной гидравлических схем, разработана расчетная гидрокинематическая схема динамической системы ПГП представленная на рисунке 2.

1. СОЗДАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ

Математическое описание динамических процессов протекающих в гидравлических системах осложняется особенностями поведением потока рабочей жидкости. Поэтому при формировании математической модели позиционной гидросистемы, были приняты следующие допущения в порядке их значимости:

Механическую подсистему ГМУП в упрощённых моделях описывает одномассовая динамическая система, а в полной модели - двухмассовая;

Утечки малы и могут быть ограничены коэффициентом утечки Ку [3];

Трубопроводы короткие, гладкие, жесткие, что позволяет не учитывать волновые явления;

Жесткость гидравлического силового контура Сг ниже жесткости механической подсистемы См;

Динамические процессы протекают в окрестности точки нагрузочной характеристики привода: QН=const , рн=рклтах= const;

Рабочая жидкость сжимаемая, капельная, в каналах присутствует нерастворённый воздух. Полагаем, что состояние среды описывается зависимостями, справедливыми для смесей с осреднёнными свойствами. Сосредоточенный объём сжимаемой жидкости <Зсж для удобства расчётов считаем присоединенным к рабочей полости гидродвигателя;

Принимается, что сила вязкого трения в подвижных сопряжениях пропорциональна скорости, поскольку постоянная времени гидродинамического всплытия элемента больше времени переходного режима, то можно полагать, что сила трения пропорциональна скорости;

Совмещение рабочих окон вращающегося распределителя происходит мгновенно при релейном управлении и по экспоненциальному закону - при квазирелейном управлении;

Коэффициент расхода управляющего устройства ГУКа представлен аппроксимированной функциональной зависимостью от степени открытия золотника клапана µ=f(x) полученной экспериментально [5].

Используя основные принципы и правила математического описания динамических подсистем с механическими связями, обоснованных работами В.А. Кудинова, А.С. Проникова, В.Э. Пуша и др. [1], гидравлических силовых и управляющих подсистем, подтвержденных исследованиями О.Н. Трифонова, Д.Н. Попова и др. [3], составлена математическая модель, представляющая систему нелинейных дифференциальных уравнений, описывающих поведение ее подсистем.

. Уравнения движения двухмассовой механической подсистемы:


. Гидравлическая силовая подсистема с дроссельным управлением описывается уравнениями баланса расходов характеризующими напорную и сливную линии:


Зависимость дросселирования расхода рабочей жидкости Q3 через окна золотников гидрораспределителей, от изменения их проходного сечения и перемещения золотника Хр при перепаде давлений Ар определяется с помощью выражения:


Преобразуя уравнения (7), (8) и выполнив подстановку значений расходов, получим уравнения характеризующие изменения давлений для напорной и сливной гидролиний:


. Управляющая подсистема реализуется контуром гидравлического управления КГУ, описываемым подмоделями ВР, движением золотника ГУКа и управляющими гидролиниями.

а) Уравнение движения золотника распределителя Р4, управляющего ГУК:


б) Уравнение движения золотника гидроуправляемого клапана:


в) Уравнение управляющего давления распределителя Р4:


 

Математическая модель системы ПГП исследовалась с использованием программного пакета Matlab 2011a и её подсистемы модульного моделирования динамических процессов simulink. При решении, применяли прямой численный метод Рунге-Кутта и Эйлера с постоянным шагом интегрирования равным 0,00001. При этом принятые начальные условия, параметры контура гидравлического управления (Таблица 1) и управляющие воздействия (хг), имели функциональную зависимость от координаты выходного звена (<р).

2. АЛГОРИТМ РЕАЛИЗАЦИЯ И РЕШЕНИЕ СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Реализация и решение системы дифференциальных уравнений описывающих динамическую систему позиционного гидропривода, в программе Matlab, выполнялось по следующему алгоритму:

. Составление вычислительного блока для решения одномассовой матмодели позиционного гидропривода.

. Введение в модель, подмодели гидравлического силового контура в составе которого участвуют гидрораспределители ВР, Р2 и Р3 с релейной схемой включения (учитывая реальное время срабатывания ^р=0,002.. Д003с) [2].

. Введение в модель, подмодели гидравлического контура управления с гидролининиями связи - распределителя Р4, с квази-релейной схемой переключения.

. Интеграцию в КГУ, модели гидравлического устройства управления - ГУКа, с аппроксимацией зависимости µ=f(x) соответствующей реальным гидродинамическим процессам, полученную с учетом динамических характеристик измерительных устройств [6].

. Выбор метода решения системы дифференциальных уравнений математической модели и соответствующего размера шага.

При решении дифференциальной системы уравнений, для исполнительного элемента КГУ - гидроуправляемого клапана, вначале использовались релейный (рисунок За), квази-релейный (рисунок Зб) и на завершающей стадии - реальный законы (рисунок Зв) перемещения управляющего элемента (золотника).

Таблица 1 - Параметры устройств КГУ

№ п/п

Параметры

Обозначе ние

Размер­ность

Диапазоны изменения

1

Sp

М2

0-0,0000785

2

Коэффициент расхода распределителя

µз


0,8

3

Проводимость управляющего распределителя

Кур


1Д3-10-4

4

Жесткость пружины ГУКа

Спр

Н/м

24220

5

Предварительное натяжение пружины ГУКа

Х0

м

0,0095

6

Давление контура гидравлического управления

Ру

Па

1,6-6,3-106

7

Расход через ВР

Qвр

М3/с

0,0015-0,0138

гидропривод математический модель уравнение

Исходные данные, принятые для моделирования позиционного гидропривода приведены в таблице 2. Исследования проводились при различных диапазонах функционирования гидромеханической системы привода. Был определен базовый режим работы, характерный для большинства поворотно-делительных механизмов АТО.


В результате выполненной отладки и апробации вычислительных блоков программы, реализованной в подсистеме Simulink, получены осциллограммы зависимостей выходных параметров: φ, ω - механической подсистемы, а так же задающих воздействий- хГУК и xP2, xP4 - перемещения управляющих элементов КГУ.

Конфигурация интерфейса составленной программы позволила работать в диалоговом режиме, варьируя исходные данные (приведенные в Таблице 2), осуществлять выбор структуры задачи и мониторинг выходных характеристик. В ходе математического эксперимента, проводилась оценка погрешностей и статистическая обработка полученных численных данных по известной методике [7].

После каждого математического эксперимента, его результаты автоматически образовывали массив данных, со следующими параметрами:

Движение одномассовой механической подсистемы, характеризует фазовый портрет координаты перемещения выходного звена (рис.3). Движение приведенных масс /, в момент завершения процесса позиционирования, сопряжено с колебаниями (0,37 c), которые благодаря включению гидромеханического тормозного устройства - гасятся, в области Δφ.

Таблица 2 - Исходные данные для моделирования ПГП

№№

Параметры

Обозна

Размер-

Диапазоны

Базовый

п/п


чение

ность

изменения

режим

1

Скорость

ωi

Рад./с

5-20

10

2

Обобщенная сила сухого трения гидродвигателя

Мт01

Н·м

1-8

4,5

3

Обобщенная сила гидро­механического тормоза

Мтз(t)

Н·м

10-100

32

4


м3/рад

3*10-6-25*10-6

5,57*10-6

5

Коэффициент вязкого трения гидродвигателя

Ктм

Н·мс/рад

0,05-0,35

0,11

6

Приведенный коэффициент жесткости

Н·м/рад

0-15000


7

Перемещаемые ведущие массы

J1

кг м2

39*10-4-0,024

0,0034

8

Приведенный момент инерции

Jп

Н·м·с2

0,01-0,1

0,033

9

Давление насоса

Рн

Па

1,5*106-6,3*106

5,5*106

10

Давление в сливой гидролинии

Рсл

Па

0,5*106-1,5*106

0,5*106


3. АНАЛИЗ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ

За точность позиционирования принимаем путь торможения вала гидромотора и планшайбы стола поворотно-делительного механизма с момента начала совмещения рабочих окон вращающегося распределителя ВР.

Рис. 4 - Результаты моделирования динамической системы ПГТ

При дальнейшем перемещении втулки образуется проходное сечение и управляющий сигнал py2 на Р4. Последний, переключаясь, соединяет заклапанную полость ГУК со сливом, который закрывается, перекрывая слив гидромотора, что приводит к его останову. Точность позиционирования φпз определяли выражением φпз = φв ± Δφ, где φв -положительный выбег гидромотора, Δφ - его рассеяние, обусловленное влиянием случайных факторов.

Таблица 3 - Результаты сравнения ПГП с различной структурой КГУ

Устройство позиционер

Ру, МПа

об/мин

nоу, об/мин

Мгм, Нм

рад

Афгм, рад

Афоу, рад

с

Вт, с

Гидрозамок

-

140

11,6

10

0,345

0,052

0,004

0,055

0,07

МФУУ (регулятор потока)

1,7




0,215

0,01

0,003

0,42


3




0,108

0,029

0,002

0,46

0,41

ГУКП (клапан)

3

150

12,5

10

0,102

0,023

0,0017

0,39

0,37


6,3




0,103

0,02

0,0015

0,042

0,27

ЗАКЛЮЧЕНИЕ

По результатам моделирования, при заданных режимах ip, ij,, nгм, Мгм очевидна эффективность процесса позиционирования с применением ГУКП. В среднем, точность позиционирования повышается ~ на 40 %, а быстродействие на 33%, по сравнению с конкурирующими решениями на основе МФУУ (Таблица 3), что подтверждает эффективность предлагаемого схемотехнического решения.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

1. Кудинов В.А. Динамика станков. - М.: Машиностроение, 1967. - 359с.

. Сидоренко В.С. Синтез быстродействующих позиционирующих гидромеханических устройств / СТИН - 2003, - №8 с.16-20.

. Попов Д.Н. Механика гидро- и пневмоприводов: учеб. для вузов. - М.:Изд-во МГТУ им Н.Э.Баумана,2001.-320с.,ил.

. Цуханова Е.А. Динамический синтез дроссельных управляющих устройств гидроприводов. М., «Наука», 1978.

. Сидоренко В.С., Полешкин М.С. Многофункциональное гидромеханическое устройство позиционирования целевых механизмов станочных систем повышенного быстродействия и точности / Вестник ДГТУ. - 2009. -Т.9. - Спец. вып.

6. Иосифов В.П. Имитационный подход к проблеме определения динамических характеристик средств измерений / Инженерный Вестник Дона [Электронный ресурс]. - Ростов-на-Дону: Ростовское региональное отделение Российской Инженерной Академии - №4, 2010. - Шифр Информрегистра: 0421100096. -URL: <http://www.ivdon.ru/magazine/archive/n4y2010/308/> - 5 с.

. Джонсон Н., Лион Ф. Статистика и планирование эксперимента в технике и науке. Методы обработки данных. - М.: Мир, 1980. - 602 с.

Похожие работы на - Математическое моделирование автоматизированного позиционного гидропривода целевых механизмов машин

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!