Инфракрасное излучение

  • Вид работы:
    Реферат
  • Предмет:
    Безопасность жизнедеятельности
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    7,92 Кб
  • Опубликовано:
    2015-11-30
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Инфракрасное излучение

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

Российская академия народного хозяйства и государственной службы

при Президенте Российской Федерации

Факультет финансов и банковского дела








РЕФЕРАТ

по дисциплине «Безопасность Жизнедеятельности»

на тему: "Инфракрасное излучение"


Выполнил:

студентка 1 курса

Сулейманова Гульнара




Москва - 2015

Содержание

Введение

. Характеристика инфракрасного излучения

. Поражающие факторы инфракрасного излучения

. Способы защиты от вредного воздействия инфракрасного излучения

Заключение

Список литературы

Введение

Единственное отличие заключается в том, что при попадании на предметы видимая часть спектра становится освещением, а инфракрасное излучение поглощаются телом, превращаясь при этом в энергию тепла. Без него немыслима жизнь на нашей планете. При распространении инфракрасного излучения в пространстве практически не происходит потерь энергии. По сути, это природный и самый совершенный метод обогрева. Поэтому для теплоэнергетики вопрос использования инфракрасного излучения является весьма интересным.

Целью данной работы является проведение исследования характеристики инфракрасного излучения и защиты от инфракрасного излучения. Для достижения поставленной цели необходимо решить следующие задачи:

.Рассмотреть характеристику инфракрасного излучения.

.Проанализировать поражающие факторы инфракрасного излучения.

.Изучить способы защиты от вредного воздействия инфракрасного излучения.

1. Характеристика инфракрасного излучения и источники

Инфракрасное излучение генерируется любым нагретым телом, температура которого определяет интенсивность и спектр излучаемой электромагнитной энергии. Нагретые тела, имеющие температуру выше 100oС, являются источником коротковолнового инфракрасного излучения. Одной из количественных характеристик излучения является интенсивность теплового облучения, которую можно определить как энергию, излучаемую с единицы площади в единицу времени (ккал/(м2· ч) или Вт/м2). Измерение интенсивности тепловых излучений иначе называют актинометрией (от греческих слов асtinos - луч и metrio - измеряю), а прибор, с помощью которого производят определение интенсивности излучения, называется актинометром. В зависимости от длины волны изменяется проникающая способность инфракрасного излучения. Наибольшую проникающую способность имеет коротковолновое инфракрасное излучение (0,76-1,4 мкм), которое проникает в ткани человека на глубину в несколько сантиметров. Инфракрасные лучи длинноволнового диапазона (9-420 мкм) задерживаются в поверхностных слоях кожи. [1, c. 55]

Источники инфракрасного излучения. В производственных условиях выделение тепла возможно от:

плавильных, нагревательных печей и других термических устройств;

остывания нагретых или расплавленных металлов;

перехода в тепло механической энергии, затрачиваемой на привод основного технологического оборудования;

перехода электрической энергии в тепловую и т.п.

Около 60% тепловой энергии распространяется в окружающей среде путём инфракрасного излучения. Лучистая энергия, проходя почти без потерь пространство, снова превращается в тепловую. Тепловое излучение не оказывает непосредственного воздействия на окружающий воздух, свободно пронизывая его. Производственные источники лучистой теплоты по характеру излучения можно разделить на четыре группы:

с температурой излучающей поверхности до 500oС (наружная поверхность печей и др.); их спектр содержит инфракрасные лучи с длиной волны 1,9-3,7 мкм;

с температурой поверхности от 500 до 1300oС (открытое пламя, расплавленный чугун и др.); их спектр содержит преимущественно инфракрасные лучи с длиной волны 1,9-3,7 мкм;

с температурой от 1300 до 1800oС (расплавленная сталь и др.); их спектр содержит как инфракрасные лучи вплоть до коротких с длиной волны 1,2-1,9 мкм, так и видимые большой яркости;

с температурой выше 1800oС (пламя электродуговых печей, сварочных аппаратов и др.); их спектр излучения содержит, наряду с инфракрасными и видимыми, ультрафиолетовые лучи. [2, c. 312]

. Поражающие факторы инфракрасного излучения

Инфракрасное излучение, присущее любому нагретом телу, является составной солнечного излучения. Характер его воздействия на организм человека в значительной степени определяется длиной волны. Коротковолновое инфракрасное излучение способно проникать в ткани тела на 2-3 см, в то время как длинноволновое практически полностью поглощается эпидермисом кожи. Глубоко проникает инфракрасное излучение с длиной волны 0,76-0,85 мкм. По мере увеличения длины волны проникающая способность инфракрасного излучения снижается и начиная с длины волны 2,4 мкм оно полностью задерживается кожей. Механизм теплового воздействия инфракрасного излучения на организм человека состоит в том, что энергия инфракрасного излучения, которое глубоко проникает в ткани, превращается основном на тепловую энергию.

При этом в тканях происходят фотохимические реакции, накапливаются специфические высокоактивные вещества, в частности гистамины, которые попадают в кровь. В крови увеличивается содержание общего и остаточного азота, полипептидов и аминокислот. Предполагают, что инфракрасное излучение, проникая в клетку, может влиять на резонирующие клеточные субстанции, вызывая распад белковой молекулы. Продукты распада, поступивших в кровяное русло, длительное время действуют на различные органы и системы непосредственно или через нервную систему.

Под воздействием инфракрасного излучения наряду с повышением температуры поверхности тела, облучаемого, при определенных условиях (длительного облучения значительной площади) может наблюдаться повышение температуры кожи и отдаленных участках. Повышение температуры кожи до 40-45°С является пределом переношуваности инфракрасного излучения. Общая температура тела под воздействием инфракрасного излучения изменяется несущественно. Она может повыситься на 1,5-2°С, если инфракрасного излучения испытывает значительная площадь поверхности тела или человек выполняет тяжелую физическую работу.

Инфракрасное излучение действует, как правило, в сочетании с высокой температурой окружающего воздуха. При этом теплоотдача конвекцией и излучением практически исключена, и остается единственный путь теплоотдачи - испарением влаги с поверхности тела и дыхательных путей.

Если в производственных условиях с высокой температурой и влажностью окружающей среды теплоотдача затруднена, организм человека может перегреться. Такое явление называют гипертермией. При гипертермии существенно повышается температура тела, наблюдаются интенсивное потоотделение, головная боль, чувство слабости, жажда, нарушение восприятия цвета предметов. При быстром нарастании симптомов в особо тяжелых случаях температура тела достигает 41-42°С, кожа становится бледной, синюшной, зрачки расширяются, дыхание становится частым, поверхностным (50-60 раз в минуту), ускоряется частота пульса (120-160 ударов в минуту), иногда возникают судороги, снижается артериальное давление, возможна потеря сознания. Если пострадавшему своевременно не подать медицинскую помощь, он может умереть.

Тяжелые формы гипертермии (тепловой удар) развиваются по особо неблагоприятным условиям работы при сочетании метеорологических условий, негативно влияющих на организм, с тяжелым физическим трудом и при других вредных факторах производственной среды. [2, c. 98]

Солнечный удар является следствием влияния инфракрасного излучения как составной видимого света на центральную нервную систему. Солнечный удар вызывается непосредственным действием солнечного излучения (чаще всего страдают строители, работники карьеров, сельскохозяйственные работники). Выздоровление после солнечного удара зависит от степени теплового поражения оболочек мозга и других структур центральной нервной системы. Симптомы солнечного удара - головная боль, головокружение, ускорение частоты пульса и дыхания, потеря сознания, нарушение координации движений. Температура тела у пострадавшего, как правило, не повышается. Проникая в ткани на значительную глубину (2-3 см), инфракрасное излучение может вызывать заболевания менингит и энцефалит. Заметим, что в условиях производства такая патология не развивается даже при высокой интенсивности инфракрасного излучения.

Вследствие перегревания организма и потери им большого количества жидкости с потом возможно нарушение водно-электролитного обмена, что проявляется судорожной болезнью. Основным симптомом этой патологии является боль в мышцах конечностей, что приводит к тоническим судорогам. При этом температура тела повышается незначительно. Нарушения водно-электролитного обмена под влиянием высокой температуры окружающей среды может вызывать также заболевания почек, пищеварительного тракта, печени.

Установлено, что у работников, длительно работающих в горячих цехах, наблюдается дисфункция центральной нервной системы (симптомы - головная боль, нарушение сна, раздражительность, общая слабость), в частности ее подкорковых образований - гипоталамуса, полосатого тела, продолговатого мозга (снижение резистентности капилляров, патологическая асимметрия температуры кожи и т.д.). Выявлены также изменения в вегетативной нервной системе, в частности дрожание век и пальцев вытянутых рук. Почти у трети работников горячих цехов наблюдаются значительные дистрофические изменения сердечной мышцы, угнетение функции панкреатических островков. Учитывая приведенное к профессиональным заболеваниям начали зачислять хроническое перегрева, что часто наблюдается у работников металлургического производства и глубоких (1000 м и более) шахт и приводит к вегетососудистой дисфункции с нарушениями терморегуляции, снижением термостойкости эритроцитов, нарушением электролитного обмена. Уровень заболеваемости с временной утратой трудоспособности среди работников горячих цехов на 20-25% выше, чем у работников холодных цехов, а индекс здоровья на 48-50% ниже. [3, c. 156]

. Способы защиты

Основные мероприятия, направленные на снижение опасности воздействия инфракрасного излучения, состоят в следующем:

Снижение интенсивности излучения источника (замена устаревших технологий современными и др.).

Защитное экранирование источника или рабочего места (создание экранов из металлических сеток и цепей, облицовка асбестом открытых проёмов печей и др.).

Использование средств индивидуальной защиты (использование для защиты глаз и лица щитков и очков со светофильтрами, защита поверхности тела спецодеждой из льняной и полульняной пропитанной парусины).

Лечебно-профилактические мероприятия (организация рационального режима труда и отдыха, организация периодических медосмотров и др.) [2, c. 69]

инфракрасный излучение теплота

Заключение

Подводя итог, можно сказать, что инфракрасное излучение нашло широкое применение в таких областях как фотография, военное дело, научные исследования, промышленность, пищевая промышленность.

Инфракрасное излучение способно оказывать влияние на человеческий организм, величина оказываемого влияния зависит от длины волны. Это влияние может быть положительным, в связи с чем, излучение широко применяется в медицине, а также отрицательным (солнечный удар, катаракты, энцефалит и т.д.).

Существует большое количество средств индивидуальной и коллективной защиты. Основными методами защиты являются: теплоизоляция рабочих поверхностей источников излучения теплоты, экранирование источников или рабочих мест, воздушное душирование рабочих мест, радиационное охлаждение, мелкодисперсное распыление воды с созданием водяных завес, общеобменная вентиляция, кондиционирование. Все средства защиты должны выполнять технические требования, прописанные в ГОСТе 12.4.123-83 ССБТ. [4, c. 351 ]

Список литературы

1.Безопасность жизнедеятельности: учеб. для вузов под ред. Э.А. Арустамова 12-е изд., перераб. и доп. - М.: Дашков и К, 2010. - 456 с.

.Зотов Б.И. Безопасность жизнедеятельности: учеб. для вузов - М.: Колос, 2011. - 424 с.

.ГОСТ 12.4.123-83 Система стандартов безопасности труда. Средства коллективной защиты от инфракрасного излучения. Хотунцев Ю.Л. Экология и экологическая безопасность: Учеб. пособие. - М.: ACADEMA, 2011. - 480с.


Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!