Принцип работы и применение регуляторов напряжения для повышения эффективности функционирования электротехнических устройств

  • Вид работы:
    Реферат
  • Предмет:
    Информатика, ВТ, телекоммуникации
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    49,04 Кб
  • Опубликовано:
    2015-11-03
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Принцип работы и применение регуляторов напряжения для повышения эффективности функционирования электротехнических устройств

Содержание

Введение

. Описание прибора

. Основное назначение и область применения

. Виды регуляторов напряжений

.1 Регуляторы переменного напряжения на основе тиристоров

.2 Регуляторы переменного напряжения на основе магнитных усилителей

.3 Регуляторы переменного напряжения на основе транзисторов

.4 Синхронный компенсатор: назначение, принцип работы

. Принцип работы регулятора напряжения

Заключение

Список литературы

Введение

Регулирование напряжения позволяет не только повысить качество электроэнергии, но и улучшить ход производственных процессов на промышленных предприятиях: снизить брак продукции, повысить ее качество, увеличить производительность труда людей и производительность механизмов, а также в отдельных случаях сократить потери энергии. В настоящее время задачи регулирования напряжения получили материальную основу в виде регулирующих и компенсирующих устройств. Расчеты показывают, что как правило, дополнительные затраты, связанные с применением регулирующих устройств и их автоматизацией, окупаются той экономией, которая достигается при улучшении режимов напряжений в электрических сетях и системах. Постоянство напряжения в каждой точке сети можно обеспечить применением локальных регуляторов в электрических цепях. Таким образом, возникает вопрос о создании локальных систем автоматического регулирования напряжения в электрической сети. Представляется целесообразным построение локальной системы автоматического регулирования с применением транзисторов.

Цель исследования: Изучить принцип работы и применения регуляторов напряжения для повышения эффективности функционирования электротехнических устройств.

Задачи исследования:

.        Узнать область назначения и применения регулятора напряжения.

.        Определить виды регуляторов напряжения.

.        Изучить принцип работы регуляторов напряжения.

.        Сделать выводы о проделанной работе.


Регулятор напряжения представляет собой электрический прибор, который регулирует электрическое напряжение, вырабатываемое генератором переменного тока или генератором постоянного тока в интервале от 14 до 14,4 В при номинальном напряжении сети 12 В и от 7 до 7,2 В при номинальном напряжении сети 6 В.

Регулируемое в указанном интервале напряжение обеспечивает правильную работу батареи и защиту приборов от разрушения. Предпосылкой правильной работы является недопущение возможности перегрузки электрической мощности регулятора. Например: Регулятор имеет максимальную электрическую мощность 200 Вт. Это значит, что мощность генератора переменного тока должна быть P alt <= 200 Вт. Далее, суммарное электропотребление приборов в сети транспортного средства не должно превышать 200 Вт. При перегрузке может наступить разрушение регулятора, либо разряд и разрушение батареи.

Регулятор напряжения переменного тока обеспечивает среднее значение напряжения в указанном интервале. Это означает, что, например, измеряемое осциллоскопом напряжение меняется периодически на большую величину, чем номинальное напряжение. Например, от +- 20 до 30 В. Это среднее значение гарантирует, что приборы типа электрических лампочек не разрушатся. Однако действует такое правило, по которому сумма электропотребления приборов должна быть Ps[Вт] <= Preg[Вт]. То есть, регулятор необходимо выбирать согласно номинальному напряжению [В] и макс. электропотреблению [Вт].

2. Основное назначение и область применения

Регулирование напряжения позволяет не только повысить качество электроэнергии, но и улучшить ход производственных процессов на промышленных предприятиях: снизить брак продукции, повысить ее качество, увеличить производительность труда людей и производительность механизмов, а также в отдельных случаях сократить потери энергии. Существуют различные способы регулирования напряжения. Разнообразие решений обусловлено требованиями по устойчивости, необходимой точности регулирования, параметрами нагрузок, экономическими и другими факторами.

Регулирование в источниках вторичного электропитания

Величину выпрямленного напряжения в ряде случаев нужно изменять. Такая необходимость может возникнуть при включении мощных двигателей, накала генераторных ламп, для уменьшения бросков тока при включении.

Регулирование выпрямленного напряжения можно осуществлять на стороне переменного тока (входе), на стороне постоянного тока (выходе) и в самом выпрямителе применением регулируемых вентилей.

В качестве регуляторов напряжения на стороне переменного тока применяются:

регулируемые трансформаторы или автотрансформаторы.

регулирующие дроссели (магнитные усилители).

В регулируемом трансформаторе или автотрансформаторе первичная или вторичная обмотка выполняются с несколькими выводами.

С помощью переключателя изменяется число витков обмотки и, следовательно выходное напряжение трансформатора или автотрансформатора.

При коммутации обмоток часть витков может оказаться замкнутой накоротко движком переключателя, что приведет к созданию в замкнутых витках чрезмерно больших токов и к выходу трансформатора из строя. Поэтому такую коммутацию рекомендуется производить после отключения трансформатора из сети. Это является большим недостатком.

3. Виды регуляторов напряжений

. По количеству узлов в одном корпусе:

·          только регулятор напряжения

·        регулятор напряжения вместе с выпрямителем электрического тока

·        комбинированный регулятор для напряжения переменного тока и напряжения постоянного тока с выпрямителем

2. По номинальному напряжению в сети транспортного средства и изменению напряжения:

·        напряжение переменного тока или напряжение постоянного тока

3. По электрической мощности (нагрузке) регулятора

. По числу фаз на 1-фазные и 3-фазные

. По типу регулируемого генератора постоянного тока - для генераторов с независимым возбуждением и генераторов с постоянными магнитами.

.1 Регуляторы переменного напряжения на основе тиристоров

Тиристорные регуляторы позволяют значительно уменьшить физические размеры устройства, снизить его стоимость и сократить потери электроэнергии, но они обладают существенными недостатками, ограничивающими их возможности. Во-первых, они вносят достаточно заметные помехи в электрическую сеть, что нередко отрицательно сказывается на работе телевизоров, радиоприемников, магнитофонов. Тиристорные регуляторы переменного напряжения широко применяются в электроприводе, также для питания электротермических установок. Применение тиристоров для коммутации статорных цепей асинхронных двигателей с короткозамкнутым ротором позволяет решить задачу создания простого и надежного бесконтактного асинхронного электропривода. Можно эффективно воздействовать на процессы разгона, замедления, осуществлять интенсивное торможение и точную остановку. Безыскровая коммутация, отсутствие подвижных частей, высокая степень надежности позволяют применять тиристорные регуляторы во взрывоопасных и агрессивных средах.

Обобщенная схема тиристорного регулятора переменного напряжения приведена на рис. 1:


.2 Регуляторы переменного напряжения на основе магнитных усилителей

Рассмотрим регуляторы переменного напряжения на основе магнитных усилителей, тиристоров и транзисторов.

Магнитный усилитель (МУ) представляет собой статический электромагнитный аппарат, позволяющий при помощи управляющего сигнала постоянного тока небольшой мощности управлять значительными мощностями в цепи переменного тока. Регулирующий дроссель (или магнитный усилитель) включается на входе выпрямителя. Если обмотки переменного тока магнитного усилителя включить последовательно с нагрузкой и изменить ток в обмотке управления, то будет изменяться индуктивное сопротивление обмоток дросселя и падение напряжения на этих обмотках.

Следовательно, будет изменяться. При увеличении , уменьшается , уменьшается , уменьшается и растет .


Регуляторы напряжения, построенные на основе магнитных усилителей, обладают рядом достоинств: практически неограниченный срок службы, простота эксплуатации, высокая температурная и временная стабильность характеристик, высокий КПД. Несмотря на ряд достоинств, регуляторы, построенные на базе магнитных усилителей, редко применяются в современных системах управления, так как существенным недостатком таких устройств являются их большие габариты и масса, вызванные конструктивными особенностями магнитных усилителей.

.3 Регуляторы переменного напряжения на основе транзисторов

Транзисторный регулятор напряжения не вносит помех в электрическую сеть и его можно применять для управления нагрузкой, как с активным, так и индуктивным сопротивлением. Регулятор можно использовать для регулировки яркости свечения люстры или настольной лампы, температуры нагрева паяльника или электроплитки, скорости вращения электродвигателя вентилятора или дрели, напряжения на обмотке трансформатора.

Обобщенная схема транзисторных регуляторов переменного напряжения приведена на рисунке 2:


.4 Синхронный компенсатор: назначение, принцип работы

Понимание того, насколько важно качество электроэнергии (соотношение ее активной и реактивной составляющих - коэффициент мощности), постоянно растет, и вместе с ним будет расти и применение компенсации коэффициента мощности (ККМ). Улучшение качества электроэнергии путем увеличения ее коэффициента мощности уменьшает расходы и гарантирует быстрое возвращение затраченных капиталов. В распределении мощности в сетях с малым и средним напряжением ККМ уделяет основное внимание соотношению активной и реактивной составляющих мощности (cosφ) и оптимизации стабильности напряжения, путем генерации реактивной мощности с целью увеличения качества и стабильности напряжения на распределительном уровне.

Любое электрооборудование, использующее магнитные поля (двигатели, дроссели, трансформаторы, оборудование индукционного нагрева, генераторы для дуговой сварки) подвержено определенному запаздыванию при изменении тока, которое называется индуктивностью. Это запаздывание электрооборудования сохраняет направление тока на определенное время, не смотря на то, что отрицательное напряжение пытается его переменить. Пока этот фазовый сдвиг сохраняется, ток и напряжение имеют противоположные знаки. Производящаяся все это время отрицательная мощность отдается обратно в сеть. Когда ток и напряжение по знаку снова уравниваются, необходима такая же энергия, чтобы восстановить магнитные поля индукционного оборудования. Эта магнитная реверсионная энергия называется реактивной мощностью. В сетях с напряжением переменного тока (50/60 Hz) такой процесс повторяется 50-60 раз в секунду. Очевидным выходом из данной ситуации является накопление реверсионной магнитной энергии в конденсаторах с целью освобождения сети (линии питания). Именно поэтому автоматические системы компенсации реактивной мощности (расстроенные / стандартные) устанавливаются на мощную нагрузку, например, на заводах. Такие системы состоят из нескольких конденсаторных блоков, которые могут быть подключены и отключены по мере надобности, и управляются контролером ККМ на основании данных трансформатора тока.

Низкий коэффициент мощности (cosφ) приводит: к повышению затрат и потребления энергии, уменьшению мощности, передающейся по сети, потерям мощности в сети, повышению потерь трансформатора, повышенному падению напряжения в распределенных сетях питания. Увеличение коэффициента мощности может быть достигнуто путем: компенсации реактивной мощности конденсаторами, активной компенсации - использование полупроводников, перевозбуждением синхронных машин (двигатель / генератор)

В системе электроснабжения потери в сетях составляют 8-12% от объема производства. Для уменьшения этих потерь необходимо: правильно определять электрические нагрузки; рационально передавать и распределять электрическую энергию; обеспечивать необходимую степень надежности; обеспечивать необходимое качество электроэнергии; обеспечивать электромагнитную совместимость приемника с сетью; экономить электроэнергию. Мероприятия, могущие обеспечить вышеперечисленные задачи это - создание быстродействующих средств компенсации реактивной мощности, улучшающей качество; сокращение потерь достигается компенсацией реактивной мощности, увеличением загрузки трансформаторов, уменьшением потерь в них, приближением трансформаторов к нагрузкам, использование экономичного оборудования и оптимизация его режимов работы. Режим работы энергосистемы характеризуется тремя параметрами: напряжением, током и активной мощностью. Вспомогательный параметр - реактивная мощность. Реактивная мощность и энергия ухудшают показатели работы энергосистемы, загрузка реактивными токами генераторов электростанций увеличивает расход топлива; увеличиваются потери в подводящих сетях и приемниках; увеличивается падение напряжения в сетях. Реактивную мощность потребляют такие элементы питающей сети как трансформаторы электростанций; главные понизительные электростанции, линии электропередач - на это приходится 42% реактивной мощности генератора, из них 22% на повышающие трансформаторы; 6,5% на линии электропередач районной системы; 12,5% на понижающие трансформаторы. Основные же потребители реактивной мощности - асинхронные электродвигатели, которые потребляют 40% всей мощности совместно с бытовыми и собственными нуждами. Говоря иначе, существуют приемники электроэнергии, нуждающиеся в реактивной мощности. Одной реактивной мощности, выдаваемой генератором явно недостаточно. Увеличивать реактивную мощность, выдаваемую генератором нецелесообразно из-за вышеперечисленных причин, т.е. нужно выдавать реактивную мощность именно там, где она больше всего нужна.

регулятор напряжение транзистор компенсатор

4. Принцип работы регулятора напряжения

В настоящее время все генераторные установки оснащаются полупроводниковыми электронными регуляторами напряжения, как правило встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков. При подключении регулятора к электросети не допускается менять полюса + и - батареи. Регулятор может разрушиться.

Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки - тем меньше это напряжение.

Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно, можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения. Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить - увеличивается.

Заключение

Регулирование напряжения позволяет не только повысить качество электроэнергии, но и улучшить ход производственных процессов на промышленных предприятиях: снизить брак продукции, повысить ее качество, увеличить производительность труда людей и производительность механизмов, а также в отдельных случаях сократить потери энергии.

Сделав выводы об устройстве и применении регулятора напряжения переменного тока можно с уверенностью сказать, что данное устройство может достаточно облегчить работу как радиотехника так и обычного человека в его использовании для улучшения качество потребляемой электроэнергии.

Список литературы

1.      Бутов А. "Устройство защиты маломощных ламп накаливания", Журнал "Радио" №2, 2004 г.

.        Чекаров А. "Беспомеховый регулятор напряжения" Журнал "Радио", №11, 1999 г.

.        Основы радиотехники [Текст] / Н.М. Изюмов, Д.П. Линде. - 4-е изд., перераб. и доп. - М.: Радио и связь, 1983. - 376 с.: ил. - (Массовая радиобиблиотека; вып. 1059). - Б. ц.

.        Радиотехника [Текст]: к изучению дисциплины / И.П. Жеребцов. - 4-е изд., перераб. и доп. - М.: [б. и.], 1958. - 495 с. - Б. ц.

.        Практикум по электротехнике и радиотехнике [Текст]: пособие для студ. пед. ин-тов / Под ред. Н.Н. Малова. - М.: Учпедгиз , 1958. - 166 с. - Б. ц.

.        Курс электротехники и радиотехники [Текст]: учебное пособие: для пед. ин-тов / Н.Н. Малов. - М.: Госфизмат, 1959. - 424 с. - Б. ц.

Похожие работы на - Принцип работы и применение регуляторов напряжения для повышения эффективности функционирования электротехнических устройств

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!