Основная теорема алгебры

  • Вид работы:
    Реферат
  • Предмет:
    Математика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    39,23 kb
  • Опубликовано:
    2009-01-12
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Основная теорема алгебры

Основная теорема алгебры

Всякий многочлен с любыми комплексными коэффициентами , степень которого не меньше единицы имеет хотя бы один корень, в общем случае комплексный.

                                                  

План доказательства.

Лемма №1. Многочлен  f(x) является непрерывной  функцией комплексного переменного x.

Лемма №2. Если данн многочлен  n-ой степени, n>0,

                           f(x)=a0xn+a1xn-1+…+an

с произвольными комплексными коэффициентами и если  k- любое положительное действительное число, то для достаточно больших  по модулю значений

                           |anxn|>k|axn-1+anxn-2+….+a0|

Лемма №3.

Лемма №4.(Лемма  Даламбера).

 

Лемма №5.

Если действительная функция комплексного переменного f(x) непрерывна в замкнутом круге Е, то она ограничена.

 

Лемма №6.

Действительная функция комплексного переменного f(x) непрерывная в замкнутом круге  Е достигает своего минимума и максимума.

 

Доказательство основной теоремы.

                          

Лемма  №1.

Надо доказать, что   |f(x0+x)-f(x0)|<e.

Докажем Лемму №1 сначала для многочлена без свободного члена и при  x0=0

Если      A=max(|a0 |,|a1|,…,|a n-1|) и  (1)

то |f(x)|=|a0xn+…+an-1x|


                       ,


т.к |x|<б ,и из (1) б<1, то

т.к. a0=0 то f(0)=0

Что и требовалось доказать.

Теперь докажем непрерывность любого многочлена.

f(x0+x)=a0(x0+x)n+…+an  

pаскрывая все скобки по формуле бинома и собирая вместе члены с

одинаковыми степенями x  получим

Многочлен g(x)-это многочлен от x при x0 =0  и а0=0 |f(x0+x)-f(x)|=|g(x)|<e

Лемма доказана.

Лемма №2

Если дан многочлен  n-ой степени, n>0,

                           f(x)=a0xn+a1xn-1+…+an

с произвольными комплексными коэффициентами и если  k- любое положительное действительное число, то для достаточно больших  по модулю значений x верно неравенство:

                           |a0xn|>k|a1xn-1+a2xn-2+….+an| (2)

                          

Доказательсво.

Пусть А=max(), тогда

пологая |x|>1, получим

                          

откуда

  

следовательно неравенство (2) будет выполняться если |x|>1 и

  

Лемма №2 доказана.

 Лемма №3.


Доказательство.

  (3)

применим лемму 2: при k=2 существует такое N1 , что при |x|> N1

|a0xn|>2|a1xn-1+a2xn-2+….+an|

откуда

               |a1xn-1+a2xn-2+….+an|<|a0xn|/2

тогда из (3)

              

при |x|>N=max(N1 ,N2)   |f(x)|>M что и тебовалось доказать.

              

Лемма №3(Лемма Даламбера).

Если при x=x0 многочлен f(x) степени n, не обращаеться в нуль, то существует такое приращение h, в общем случае комплексное, что

                           |f(x0+h)|<|f(x)|

                          

Доказательство.

По условию f(x0) не равно нулю, случайно может быть так, что x0 является корнем f’(x),..,f(k-1) (x). Пусть k-я производная будет первой, не имеющей x0 своим корнем. Такое k существует т.к.

                           f(n)( x0)=n!a0


Т.к f(x0) не равно нулю то поделим обе части уравнения на f(x0)

и обозначим



Теперь будем выбирать h. Причем будем отдельно выбирать его модуль и его аргумент.

По лемме№1:  

С другой стороны при

                 (4)

Пусть |h|<min(б1, б2), тогда

             

Теперь выберем аргумент h так, чтобы ckhk было действительным отрицательным числом.

При таком выборе ckhk=-| ckhk| следовательно учитывая (4) получим

  

Что доказывает лемму Даламбера.

Лемма №5.

Если действительная функция комплексного переменного  f(x) непрерывна в замкнутом круге Е, то она ограничена.

Доказательство.

Предположим, что это не верно тогда

                                      

получена бесконечная ограниченная последовательность xn,

из нее можно выбрать сходящуюся подпоследовательность , пусть ее предел равен x0. Так как круг Е замкнут, то x0 пренадлежит Е. Тогда так как f(x) непрерывна

получено противоречие, следовательно неверно, предположение о неограничености f(x).

Лемма №6.

Действительная функция комплексного переменного f(x) непрерывная в замкнутом круге  Е достигает своего минимума и

максимума.

Доказательство.

Докажем это утверждение для максимума.

 Так как f(x) непрерывна в Е, то она ограничена и следовательно существует M=sup{ f(x)}. Рассмотрим функцию .

Если f(x) не достигает своего максимума, то M> f(x) следовательно M-f(x)>0 , следовательно g(x) непрерывна в Е.

  

Полученое противоречит тому, что M=sup{ f(x)}. Следовательно функция достигает свего максимума. Аналогично доказывается достижение минимума.

 

Доказательство основной теоремы.

Пусть дан многочлен f(x), очевидно что если an-свободный член, то f(0)= an. Теперь применим лемму№3: возьмем М=|f(0)| =|an| тогда существует такое N, что при |x|>N |f(x)|>M. Теперь возьмем круг Е ограниченный окружностью с центром в нуле и радиусом N, включая границы круга. Так как (по лемме №1) многочлен f(x)-непрерывен, то и |f(x)|-непрерывен внутри замкнутого круга Е, следовательно(по лемме №6), существует такая точка x0, что для всех x из E выполняется неравенство |f(x)|>=|f(x0)|. x0 является точкой минимума для |f(x)| внутри E. Т.к для любого x:|x|>N |f(x)|>M>|f(0)|>|f(x0)| точка x0 является точкой минимуа |f(x)| на всей комплексной плоскости.

|f(x0)|=0 т.к по лемме Даламбера если |f(x0)|¹0 то x0 не точка минимума для |f(x)|Þ x0-корень многочлена f(x).

Теорема доказана.


Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!