Математическое моделирование нестационарного электрического поля анодной защиты

  • Вид работы:
    Статья
  • Предмет:
    Математика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    70,76 kb
  • Опубликовано:
    2009-01-12
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Математическое моделирование нестационарного электрического поля анодной защиты

Математическое моделирование нестационарного электрического поля анодной защиты

Болотнов А.М.

=D S,

Зависимость приложенного напряжения от времени U(t) предполагается линейной, в этом случае скорость пуска V=dU/dt постоянна и играет роль числового параметра. Потенциал электрического поля (p)определяется решением уравнения Лапласа [7]:

,

pD,

(1)

где p(x, y, z) в трехмерном случае и p(x, y) – в двумерном.

В электролите выполняется закон Ома, который на границе области записывается в виде:

,

pSe,

e=a, k, i,

(2)

где j - нормальная составляющая плотности тока;  - электропроводность среды; n - внутренняя нормаль к границе S; индекс e равен a для анодов, k - катодов и i - изоляторов.

Соотношения для поляризации электродов представляются в виде [8]:

(p)=–(p),

pSk,

(3)

(p)=U–(p),

pSa,

(4)

где U=U(t) - межэлектродное напряжение.

Катодная поляризационная кривая описывается функцией:

Jk()=k1[exp(k2)],

(5)

где k1, k2 - константы, определяемые по экспериментальным данным.

Для описания анодных поляризационных кривых предложена функция:

х

(6)

где a1, ..., a4 - константы, определяемые по экспериментальным данным; V - скорость развертки напряжения.

Таким образом, для уравнения (1) сформулированы граничные условия: на катодах - (3), (5); на анодах - (4), (6); на изоляторах -

j(p)=0,

pSi.

(7)

Характеризующий коррозионные потери суммарный электрический заряд Q, проходящий через защищаемые поверхности Sa за время tp, определяется интегралом:

qSa.

(8)

Если ставить задачу минимизации коррозионных потерь при пуске анодной защиты, то оптимальными в этом смысле следует считать такое количество и расположение катодов, при которых для выбранной скорости V электрический заряд Q, определяемый интегралом (8), минимален.

Вопросы численной реализации

Задача (1)-(7) решалась в трех- и двумерных областях для емкостей различной геометрии. Распределение потенциала определялось решением нелинейного интегрального уравнения, построенного на основе формулы Грина [9], которую с учетом (1) можно записать в виде:

,

(9)

где p, q S; =(m–1) , m - размерность задачи; G(p, q)=1/R(p, q) при m=3, G(p, q)= –ln[R(p, q)] при m=2; R(p, q) - расстояние между точками p и q. Из формулы (9) с учетом (2) получено интегральное уравнение:

,

 

для решения которого применяется итерационная процедура:

,

(11)

где l - номер итерации; ядро KK [p, q, (q)] определяется соотношениями:

K=.G/n+Je(, V).G/,

qSe; e=a, k, i.

При выбранной скорости V счет проводился по времени t от 0 до tmax, при этом напряжение увеличивалось от 0 до Umax=V tmax. Затем знак V менялся на противоположный, t уменьшалось от tmax до 2 tmax, напряжение - от Umax до 0. По результатам расчета определялись границы пассивной зоны (U1, U2) и напряжение U, соответствующее минимальной плотности тока. Далее по формуле (8) определялся общий заряд пуска.

Итерационный процесс (11) оценивался по условию для всех pS. При выполнении очередного цикла итераций (11) для каждого t контролировалось выполнение балансового соотношения по току с относительной погрешностью  1 %.

Для определения параметров в формулах (5), (6) были использованы данные, приведенные в [6] для стали 18 % Cr – 8 % Ni в 1N H2SO4 при 250 C. При этом получены значения параметров: k1=0.04315, k2=17.25, a1=350, a2=0.3, a3=17, a4=0.3.

Рис. 1. Анодные поляризационные зависимости, построенные по формуле (6) для скоростей V, В/час: 1 – 720; 2 – 360; 3 – 180; 4 – 90; 5 – 45; 6 – 22,5; 7 – 12; 8 – 6; 9 – 1,6; 10 – 0,4; 11 – 0,025. Точками обозначены экспериментальные данные для скоростей V, В/час: 720; 360; 12; 6; 1,6; 0,4; 0,025.

На рис. 1 представлены анодные поляризационные зависимости j(), построенные по формуле (6). Сплошной линией выделены кривые, для которых экспериментальные данные [6] при тех же значениях скорости V нанесены точками. Точки выбраны из трех участков: 1) участка максимальной плотности тока в области активного растворения; 2) переходного участка; 3) участка пассивного состояния анода. Из рисунка видно, что предложенная зависимость (6) качественно согласуется с экспериментальными данными в исследуемом диапазоне значений скорости развертки потенциала.

Результаты расчетов

Приведем некоторые результаты численных расчетов пусковых режимов анодной защиты стального цилиндра, заполненного серной кислотой и защищаемого одним цилиндрическим катодом (рис. 2).

Рис. 2. Схема электрохимической системы. Sa – защищаемая поверхность; Sk – поверхность катода; Ra, Rk – радиусы анода и катода; h – расстояние между центрами электродов;,– углы отсчета граничных точек на аноде и катоде; – нормаль к границе.

Радиусы границ имеют значения: Ra=10 см, Rk=2 см; электропроводность среды =10 см/м. Расстояние между центрами границ h изменялось от 0 до 7 см. Напряжение U изменялось от 0 до Umax=2.4 В, затем обратно от Umax до 0.

На рис. 3 представлены зависимости потенциала в различных точках анода (а) и катода (б) от приложенного напряжения при скорости пуска V=36 В/час. Стрелками указаны решения при прямой и обратной развертке напряжения. На участке U1<U2<U3 наблюдаются два решения: верхнее соответствует активному растворению, нижнее - пассивному состоянию анода. Из рисунка видно, что для достижения пассивного состояния анода (U=U) необходимо вначале увеличивать напряжение U от 0 до U2 (верхняя ветвь графика), а затем уменьшать от U2 до U (нижняя ветвь). Волна пассивации перемещается по поверхности анода от точки =0 к удаленной точке =, при этом защитный потенциал возрастает (от линии 1 к линии 4).

Рис. 3. Зависимость потенциала от приложенного напряжения при h=5 см; V=36 В/час на аноде (а) при углах, равных, рад: 1 – 0; 2 –/3; 3 – 2 /3; 4 –; и на катоде (б) при углах, равных, рад: 5 – 0; 6 –/2; 7 –  .

В табл. 1 приведены параметры пассивной зоны (U1, U2) при различных расстояниях h между центрами границ. Из таблицы видно, что с увеличением h меняется ширина пассивной зоны, причем наименьшее значение (0.6) соответствует h=3.

Таблица 1. Интервал пассивной зоны при различных расстояниях h между центрами электродов

h, см.

0

2

3

4

5

6

7

U2-U1, В

0.97

0.80

0.64

0.60

0.72

0.84

0.89

1.01

На рис. 4 представлены зависимости плотности тока от напряжения в точках электродов, наименее удаленных друг от друга: (а) – в анодной точке =0, (б) – в катодной точке =0 при различных h.

Рис. 4. Зависимость анодной (а) и катодной (б) плотности тока от приложенного напряжения при V = 36 В/час; =0, =0; и h, равных, см: 1 – 7; 2 – 5; 3 – 3; 4 – 1.

Из рисунка видно, что по мере сближения центров окружностей: 1) напряжение, соответствующее максимальной плотности тока, увеличивается (от линии 1 к линии 4); 2) напряжение, соответствующее минимальной плотности тока в пассивном состоянии анода (U1.5), практически не зависит от h; 3) на аноде максимальная плотность тока не зависит от h и совпадает с критической плотностью тока на анодной поляризационной кривой; на катоде максимум j растет (от линии 1 к линии 4).

Рис. 5. Зависимость катодной плотности тока от напряжения при V=36 В/час; h, равных, см: (а) – 3; (б) – 7; и углах, равных: 1 – 0; 2 –/2; 3 –.

На рис. 5 представлены зависимости плотности тока от напряжения в трех точках катодной границы при различных h. Из рисунка видно, что при увеличении h: 1) максимальная плотность тока в точке, наиболее близкой к аноду, падает (линия 1); 2) максимальная плотность тока в наиболее удаленной от анода точке (линия 3) практически не меняется; 3) напряжение U1 (переход анода в активное состояние при обратной развертке) от h практически не зависит; 4) напряжение U2 (переход анода в пассивное состояние при прямой развертке) - значительно увеличивается.

Общие коррозионные потери характеризуются суммарным анодным зарядом. В табл. 2 приведены значения заряда Q, стекающего с анодной поверхности цилиндра единичной длины при V=36 В/час за время пуска анодной защиты.

Таблица 2. Общий пусковой заряд Q, прошедший через анод при различных h.

h, см.

0

1

2

3

4

5

6

7

Q, Кл

4730

3860

3020

2810

2800

2860

2950

3100

Из таблицы видно, что значение заряда существенно зависит от расположения катода. Так, например, минимальный заряд (Qmin 2800 Кл) соответствует h4. Для сравнения отметим, что при скорости V=36 В/час заряд Qmin 9450 Кл при h2.7. Следовательно, оптимальное расположение катода при заданной скорости пуска V не является оптимальным при других значениях V.

Список литературы

Улиг Г.Г., Реви Р.У. Коррозия и борьба с ней. Л.: Химия, 1989. 455 с.

Атанасянц А.Г. Анодное поведение металлов. М.: Металлургия, 1989. 150 с.

Иванов В.Т., Глазов Н.П., Макаров В.А. // Итоги науки и техники. Коррозия и защита от коррозии. М.: ВИНИТИ, 1987. Т. 13. С. 117.

Агафонова Н.Н., Макаров В.А. // Защита металлов. 1989. Т. 25. С. 531.

Болотнов А.М., Иванов В.Т. // Электрохимия. 1996. Т. 32. С. 694.

Томашов Н.Д., Чернова Г.П. Пассивность и защита металлов от коррозии. М.: Наука, 1965. 207 с.

Дамаскин Б.Б., Петрий О.А. Электрохимия. М.: ВШ, 1987. 295 с.

Багоцкий В.С. Основы электрохимии. М.: Химия, 1988. 400 с.

Ильин В.П. Численные методы решения задач электрофизики. М.: Наука, 1985. 334 с.

Для подготовки данной работы были использованы материалы с сайта http://www.bashedu.ru

Похожие работы на - Математическое моделирование нестационарного электрического поля анодной защиты

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!