Об одном обобщении логистической модели динамики популяций с ограниченным временем жизни особей

  • Вид работы:
    Статья
  • Предмет:
    Математика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    65,24 kb
  • Опубликовано:
    2009-01-12
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Об одном обобщении логистической модели динамики популяций с ограниченным временем жизни особей

Об одном обобщении логистической модели динамики популяций с ограниченным временем жизни особей

Н.В. Перцев, Омский государственный педагогический университет, кафедра математического анализа

1. Введение

Одной из классических моделей динамики популяций является логистическая модель или модель Ферхюльста-Пирла, которая описывается дифференциальным уравнением

с начальным условием , где параметры характеризуют интенсивности рождения и гибели особей популяции. Решение уравнения (1), как известно, имеет вид

а график x(t) представляет собой так называемую логистическую кривую. Модель (1) и ее различные модификации подробно изучены в ряде работ, см.,например, [1, с. 14], [2, с. 11].

В настоящей работе рассматривается один из вариантов модели (1), в котором учитывается ограниченность времени жизни особей популяции. Будем предполагать, что особи популяции, родившиеся в момент времени t, в течение некоторого периода могут производить новых особей популяции (с интенсивностью ), либо могут погибать (с интенсивностью ). Особи, дожившие до момента времени , погибают, не оставляя потомства. Параметр означает предельное время жизни особей популяции. Начальное распределение особей по возрасту будем задавать неотрицательной, непрерывной функцией . При сделанных предположениях численность x(t) популяции описывается интегро-дифференциальным уравнением [3]


с начальным условием

Ниже исследуются свойства решений уравнения (2) с начальным условием (3).

2. Основные результаты

В уравнении (2) при под понимается правосторонняя производная. Сделаем замену . Тогда x(t) удовлетворяет соотношению

в котором y(t) является решением следующего линейного дифференциального уравнения с запаздыванием:


При под понимается правосторонняя производная. Уравнение (5) может быть проинтегрировано по отрезкам вида ,n = 0,1,2,...,. Отсюда следует, что уравнение (5) имеет единственное решение y(t), определенное на . Нетрудно заметить, что y(t) является неотрицательной функцией, причем, если x(0)>0, то y(t)>0, если же x(0)=0, то y(t)=0 при всех . Применяя к уравнению (4) принцип сжимающих отображений [4, с. 11], получаем, что уравнение (2) с начальным условием (3) имеет единственное неотрицательное решение x(t), определенное на . Из (4) следует, что x(t)>0, если x(0)>0 и x(t)=0, если x(0)=0, . Исследуем далее зависимость свойств решений x(t) от параметров модели (ниже везде принято, что x(0)>0).

Примем, что параметры таковы: , , где - единственный положительный корень уравнения . Тогда функция является решением уравнения (5). Из неравенства следует, что при . Пусть теперь и , где - единственный положительный корень уравнения . Функция является решением уравнения (5). Подставляя y2(t) в (4) и дифференцируя обе части, получаем, что x(t) удовлетворяет уравнению

которое с точностью до обозначений совпадает с уравнением (1). Имеем, что x(t) - монотонная функция и при , где , причем x* - единственный положительный корень уравнения . Если и , то уравнение (5) имеет решение . Тогда x(t) удовлетворяет уравнению , откуда следует, что при . Заметим, что во всех этих случаях решение x(t) модели (2) может быть записано в явном виде.

Для дальнейшего исследования используем результаты работы [5], в которой изучены асимптотические свойства решений дифференциального уравнения . Применяя эти результаты к уравнению (5), будем иметь: 1) если , то при , 2) если , то при функция y(t) эквивалентна экcпоненте , где - некоторые константы. Указанные свойства y(t) не зависят от вида функции . Отсюда непосредственно вытекает, что для и y*=0 существует . Для остальных случаев используем следующее соотношение.

Зафиксируем h>0. Из уравнения (4) имеем, что при всех верно

Примем, что и y*>0. Соотношение (7) может быть записано в виде , где . Учитывая положительность x(t), из последнего равенства получаем, что при достаточно больших t для любого h>0 верно неравенство x(t+h)/x(t) < 1 и, следовательно, существует .

Пусть теперь . Тогда из (7) получим, что , где . Последнее равенство можем переписать в виде

Из (8) видно, что поведение x(t) на некотором конечном полуинтервале [0,T), T>0 может носить как монотонный, так и колебательный характер. Действительно, пусть достаточно мало, . Если при всех , то имеем, что и x(t) - возрастающая ( убывающая ) функция, . Если учитывать влияние слагаемого , то, очевидно, возможны случаи, когда x(t) пересекает уровень x = x* при некоторых . Покажем далее, что существует . Пусть t достаточно велико и x(t) < x*. Может оказаться, что при всех h>0 верно . Тогда x(t+h)/x(t) > 1 и, следовательно, указанный предел существует. Предположим теперь противное. Обозначим через t+h1 момент первого пересечения функцией x(t) уровня x = x*, иначе, , где h2 - некоторое число. Из (8) получаем, что x(t+h2)/x(t+h1) =

откуда приходим к противоречию: x(t+h2) < x(t+h1)=x*. Аналогично рассматривается случай x(t) > x*. Следовательно, если при достаточно больших t верно , то при всех . Отсюда вытекает существование , который, очевидно, равен x*. Если же при некотором достаточно большом t окажется, что x(t) = x*, то либо при всех и , либо найдется такой t1 > t, что x(t1) < x* или x(t1) > x*, что сводится к ранее рассмотренным случаям.

3. Заключение

Установленные выше результаты показывают, что модель (2) является естественным обобщением модели (1) в предположении, что особи популяции имеют ограниченное время жизни . Для детального сравнения этих моделей выделим в модели (1) слагаемое, отвечающее за гибель особей вследствие процессов старения. Параметр заменим на , где под понимается среднее время жизни особей, а по-прежнему означает интенсивность рождения особей популяции. Тогда вместо (1) будем рассматривать уравнение

с начальным условием x(0) = x0. Обозначим через x2(t) и x9(t) решения моделей (2) и (9) соответственно.

При решения обеих моделей стремятся к нулю при , иначе говоря, рассматриваемая популяция вырождается. Если и начальное распределение особей по возрасту в модели (2) имеет вид , то эта модель переходит в модель (6), которая отличается от модели (9) только коэффициентом при x(t). Решения x6(t) модели (6) и x9(t) носят монотонный характер и образуют логистическую кривую. Можно показать, что . Отсюда следует, что в рассматриваемом случае . Кроме того, при , , причем x* > x*. Если по-прежнему , но начальное распределение особей по возрасту в модели (2) произвольно, то с ростом t решение x2(t) приближается к x* либо монотонно, либо с затухающими колебаниями. Решение x9(t) таких колебаний не имеет. Заметим, что при достаточно больших t численность популяции будет поддерживаться на уровне x* в модели (2) и на уровне x* в модели (9). Следовательно, в модели (2) обеспечивается более высокий предельный уровень численности популяции, чем в модели (9).

Таким образом, при определенных соотношениях на параметры модели (2) ее решения качественно совпадают с решениями классической модели (9). Вместе с тем имеются и существенные различия в решениях этих моделей, обусловленные учетом ограниченности времени жизни особей популяции.

Список литературы

Свирежев Ю.М. Нелинейные волны, диссипативные структуры и катастрофы в экологии. М.: Наука, 1987.

Динамическая теория биологических популяций / Под ред. Р. А. Полуэктова. М.: Наука, 1974.

Перцев Н.В. Применение одного дифференциального уравнения с последействием в моделях динамики популяций // Фундаментальная и прикладная математика / Под ред. А.К. Гуца: Сб. науч. тр. Омск, 1994. С. 119 - 129.

Красносельский М.А. и др. Приближенное решение операторных уравнений. М.: Наука, 1969.

Cooke K., Yorke A. Some equations Modelling Growth Processes and Gonorhea Epidemics // Math. Biosci., 1973. V.16. P.75 - 101.

Для подготовки данной работы были использованы материалы с сайта http://www.omsu.omskreg.ru/

Похожие работы на - Об одном обобщении логистической модели динамики популяций с ограниченным временем жизни особей

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!