Механические свойства древесины

  • Вид работы:
    Курсовая работа (т)
  • Предмет:
    Другое
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    1,78 Мб
  • Опубликовано:
    2014-09-22
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Механические свойства древесины

МИНИСТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ УНИВЕРСИТЕТ

Факультет технологии и предпринимательства

Заочное отделение






Курсовая работа

по дисциплине "Технологии современного производства"

на тему

Механические свойства древесины.



Выполнил: студент 32 гр. ФТП, з/о

Волков Д.В.

Научный руководитель:

Доцент Шпаков Н.П.




Москва 2014

Содержание

Введение

1. Общая характеристика древесины

1.1 Строение дерева

2. Основные свойства древесины

2.1 Химические свойства древесины

2.1 Физические свойства древесины

2.3 Механические свойства древесины

3. Материалы, получаемые из древесины

3.1 Круглые лесоматериалы

3.2 Пиленые лесоматериалы (пилопродукция)

3.3 Строганные, лущеные, колотые лесоматериалы, измельченная древесина

Вывод

Введение

Огромные пространства нашей планеты покрывают леса, они занимают около одной трети суши. Основным продуктом леса является древесина. По типу лесной растительности различают хвойные леса теплого умеренного климата, экваториальные дождевые леса, тропические влажные лиственные леса, леса сухих областей. Древесина очень давно используется для строительства жилищ, изготовления предметов домашнего обихода, для средств транспорта и разных изделий. Со временем наряду с древесиной в строительстве стали применяться металл, цемент, черепица, стекло, пластические массы. Несмотря на это, объем переработки древесины, постоянно растет, увеличивается выработка и переработка пиломатериалов. Потребление пилопродукции будет увеличиваться в домостроении, для производственных и бытовых нужд, в строительстве конструкций разной сложности и размеров, на ремонтных и эксплуатационных работах, в производстве мебели, тары и упаковки.

Многообразное использование древесины объясняется редкостным сочетанием в ней многих ценных свойств. Древесина представляет собой прочный и одновременно легкий материал, обладающий хорошими теплоизоляционными свойствами, способностью без разрушения поглощать работу при ударных нагрузках, гасить вибрации. Она легко обрабатывается режущими инструментами, склеивается, удерживает металлические и другие крепления. Древесина используется после переработки в виде пиломатериалов, целлюлозы, фанеры, бумаги, картона, древесноволокнистых и древесностружечных плит. Древесина - прекрасный конструкционный материал, и она находит применение в машиностроении. Из древесины изготовляют шпалы, мебель и спички, музыкальные инструменты, тару и спортивный инвентарь. Она является исходным сырьем для получения путем химической переработки кордных волокон для шинной промышленности, вискозного волокна, кормовых дрожжей, лекарственных препаратов и пр.

Однако древесина имеет и ряд недостатков: изменчивость свойств в направлении вдоль оси ствола и поперек; обладает гигроскопичностью, что приводит к увеличению ее массы и уменьшению прочности, а при высыхании древесина уменьшается в размерах (происходит усушка); она растрескивается и коробится; поражается грибами, что приводит к гниению; древесина способна гореть. Перечисленные недостатки в значительной мере устраняются путем химической и химико-механической переработки древесины в листовые и плитные материалы - бумагу, картон, древесностружечные и древесноволокнистые плиты, фанеру и др.

Чтобы улучшить внешний вид и защитить изделия от воздействия окружающей среды используются все виды обработки ее поверхности. К таким видам обработки относятся резьба и выжигание, инкрустация, золочение, оклеивание отделочными пленками, покрытие лакокрасочными материалами и др. Развитие техники отделки древесины имеет многовековую историю. Древесина была одним из первых материалов, которым человек стал пользоваться для изготовления орудий охоты и труда. Стремление украсить и защитить от разрушения эти орудия должно было зародиться у человечества на самых ранних стадиях развития культуры. Все же техника отделки древесины вплоть до XX века развивалась очень медленно, а отделочные материалы (пленкообразователи, пигменты, красители) были почти исключительно естественного происхождения.

Техника нанесения и обработка лакокрасочных покрытий оставалась ручной значительно дольше, чем, например, обработка древесины резанием. Лишь с начала XX века наблюдаются попытки использования механизмов для шлифования лакокрасочных покрытий и нанесения политуры. Более значительные изменения произошли после первой мировой войны, когда во все возрастающих количествах для отделки древесины стали применять нитроцеллюлозные лаки и эмали и первые лаки на синтетических фенолформальдегидных и затем глифталевых смолах. Одновременно с нитроцеллюлозными лаками и красками широкое распространение получило пневматическое распыление вместо господствовавшего до этого ручного нанесения покрытий тампоном и кистью.

В мебельной промышленности впервые нитроцеллюлозные лаки и нанесение их распылением были внедрены в 1929 году на мебельной фабрике им. Халтурина в Ленинграде. В этот же период стали появляться станки и механизированные аппараты для шлифования и полирования покрытий пастами, станки для нанесения политуры, вальцовые и щеточные станки. Еще более значительные изменения в технике отделки древесины произошли после Великой Отечественной войны. Успехи химии полимеров привели к появлению в этот период целой серии новых лакокрасочных материалов на основе синтетических смол: алкидно-мочевино-формальдегидных; полиэфирных, эпоксидных, полиуретановых и др.

Характерная особенность большинства новых лаков - образование ими покрытий не в результате процессов простого испарения растворителей, как например у шеллачных и нитроцеллюлозных лаков, а в результате химических превращений, происходящих после нанесения лака на поверхность древесины. Получающиеся покрытия по своей стойкости к действию многих реагентов значительно превзошли покрытия из известных ранее пленкообразователей. Поэтому уже в пятидесятые и шестидесятые годы в производстве мебели широкое применение получили полиэфирные лаки и эмали, а в производстве спортивного инвентаря и строительных деталей алкидно-мочевино-формальдегидные лаки и эмали.

В это время наряду с жидкими лакокрасочными материалами для отделки древесины стали применять пленочные материалы в виде пропитанной термоактивными смолами бумаги с напечатанной на ней текстурой древесины. Развитие производства древесных (стружечных и волокнистых) плит и их использование в корпусной мебели и других изделиях из древесины способствуют упрощению конструкции последних и механизации процессов отделки простых плоских поверхностей. Поэтому уже с середины 50-х годов начинается переход от отделки собранных изделий к отделке их узлов и деталей до сборки. Конструктивная простота таких узлов и деталей создает предпосылки для широкого применения новых механизированных способов нанесения лакокрасочных и пленочных материалов и обработки нанесенных покрытий.

В середине 50-х годов появились так называемые лакообливочные машины, сделавшие буквально революцию в технике нанесения лакокрасочных материалов на плоские поверхности изделий. По сравнению с широко распространенным пневматическим распылением эти машины позволили не только в несколько раз повысить производительность, но и значительно снизить потери лакокрасочных материалов. В 60-х годах лакообливочные машины становятся основным оборудованием для нанесения лакокрасочных материалов в производстве корпусной мебели. Широкое распространение в это время нашли также вальцовые станки, распыление и осаждение лакокрасочных материалов на изделия в электрическом поле высокого напряжения, ленточные шлифовальные и барабанные полировочные станки для облагораживания покрытий. Для отделки мебели и строительных деталей используются автоматические и полуавтоматические линии, ведется разработка способов быстрого отверждения покрытий с помощью различного вида излучений (инфракрасного, ультрафиолетового, ускоренных электронов). В целом техника отделки древесины лакокрасочными и пленочными материалами в настоящее время достигла довольно высокого уровня и находится в стадии дальнейшего развития и совершенствования.

Введение в древесину антисептиков, антипиренов, смол, а также пластификация и прессование позволяют улучшить свойства натуральной древесины и получить био- и огнестойкие материалы, обладающие повышенной прочностью, износостойкостью и формоустойчивостью, антифрикционными и другими необходимыми технологическими и эксплуатационными свойствами.

древесина лесоматериал свойство дерево

Немалую роль при оценке древесины как материала будущего играют ее неповторимые эстетические свойства. Даже отработанная древесина имеет преимущество перед другими материалами, легко поддаваясь биологическому разложению и не загрязняя окружающую среду.

1. Общая характеристика древесины

1.1 Строение дерева


Древесина состоит из элементарных клеток, разнообразных по размерам и форме. Они прочно связаны между собой. Полости клеток могут быть заполнены смолами, камедями, тиллами, водой. Из клеток образуются сосуды, сердцевинные лучи, создается древесная масса. Взрослое дерево имеет ствол, крону и корни.

Ствол. Ствол связывает корневую систему с кроной дерева. Он проводит воду с растворенными минеральными веществами вверх (восходящий ток), а с органическими веществами - вниз к корням (нисходящий ток); хранит запасные питательные вещества; служит для размещения и поддержания кроны. Ствол дает основную массу древесины (от 50 до 90% объема всего дерева) и имеет главное промышленное значение. Верхняя тонкая часть ствола называется вершиной, нижняя толстая часть - комлем. Камбий - это живая образовательная ткань, функционирующая у древесных растений в течение десятков, сотен и даже тысяч лет. В умеренном климатическом поясе наибольшая активность его наблюдается весной и летом. Зимой камбий бездействует. Этим обуславливается слоистое строение ствола дерева. Ствол также служит для размещения и поддержания кроны. Ствол дает большую массу древесины (от 50 до 90 % объема дерева) и имеет главное промышленное значение. Ствол изучают на трех главных разрезах: поперечном, и двух продольных - радиальном и тангенциальном. Плоскость поперечного, или торцевого, разреза перпендикулярна оси ствола. Плоскость одного из продольных разрезов проходит через сердцевину ствола по радиусу торца - радиальный разрез, плоскость другого разреза - тангенциального - направлена по касательной к окружностям, образованным слоями годичного прироста. На поперечном разрезе можно указать радиальные и тангенциальные направления, а на продольных разрезах направления вдоль волокон и радиальное или тангенциальное.

Основные анатомические части ствола легко обнаружить на его поперечном разрезе. Наружная часть - кора резко отличается по внешнему виду от внутренней части - древесины, занимающей наибольший объем ствола. Древесина окружает небольшую центральную зону - сердцевину. Расположенный между древесиной и корой слой камбия для простого глаза незаметен. Сердцевина сравнительно редко находится в геометрическом центре сечения ствола, обычно она более или менее смещена в сторону. Сердцевина на поперечном разрезе имеет вид темного пятнышка диаметром 2-5 мм (у бузины достигает 1 см). У одних пород она имеет овальную или округлую форму, у других - треугольную (ольха), четырех - и пятиугольную (ясень и тополь) и звездчатую (дуб). Сердцевина сравнительно редко находится в геометрическом центре сечения ствола, обычно она более или менее смещена в сторону. На продольном радиальном разрезе сердцевина имеет вид узкой коричневой прямой у хвойных пород или извилистой полоски у лиственных пород.

Древесина занимает наибольшую часть объема ствола. Диаметр ствола изменяется в широких пределах, примерно от 6-8 до 100 см. Форма поперечного сечения ствола и, следовательно, древесины чаще всего близка к окружности, но иногда сечение приобретает форму эллипса. Диаметр уменьшается по высоте ствола. В верхней части ствола древесину пронизывают сучки, представляющие собой остатки ветвей. Кора покрывает снаружи камбий и древесину. На поперечном разрезе ствола она имеет форму кольца, окрашенного обычно значительно темнее древесины. В толстой коре взрослых деревьев различают два слоя с постепенным или резким переходом от одного к другому: наружный - корку (его назначение предохранять живые ткани ствола от резких колебаний температуры, испарения влаги, проникновения грибов, бактерий и механических повреждений) и внутренний слой - луб, непосредственно прилегающий к камбию. Назначение луба - проводить вниз по стволу образующиеся в листьях органические питательные вещества. У молодых деревьев кора гладкая, иногда покрытая тонкими опадающими чешуями; при утолщении ствола в коре появляются трещины, которые с возрастом дерева углубляются. По характеру поверхности кора может быть гладкой (пихта), бороздчатой (дуб), чешуйчатой (сосна), волокнистой (можжевельник) и бородавчатой (бересклет). Цвет коры снаружи изменяется в широких пределах: от белого (береза), светло-серого (пихта), зеленовато-серого (осина) до серого (ясень), темно-серого (дуб), или темно-бурого (ель). С каждым годом толщина коры увеличивается. Однако вследствие малой величины годичного прироста и постепенного отпада наружных слоев в виде чешуй кора никогда не достигает такой толщины, как древесина.

Крона и корни. Значительная доля биомассы дерева приходится на крону и корни растущего дерева. Корни представлены целой системой, которая включает мелкие корешки, всасывающие воду с растворенными в ней минеральными веществами, и толстые корни, которые удерживают дерево в вертикальном положении, проводят воду к стволу и хранят запасы питательных веществ. В промышленности корни используются в качестве второсортного топлива и для получения технологической щепы. Крупные корни (пни) хвойных деревьев, оставленные на лесосеке на 10-15 лет, обогащаются смолой и служат сырьем для получения скипидара и канифоли. Крона - совокупность ветвей, одетых листьями. В зеленых листьях из углерода, поглощаемого из воздуха в виде углекислоты, и воды, поступающей из почвы, образуются сложные органические вещества, необходимые для жизни дерева. Промышленное использование кроны невелико. Из листьев (хвои) получают витаминную муку, лекарственные препараты, пихтовое масло; из ветвей - технологическую щепу для производства тарного картона, древесностружечных и древесноволокнистых плит.

2. Основные свойства древесины

2.1 Химические свойства древесины


Химический состав древесины и коры. Древесина в основном состоит из органических веществ. Элементарный химический состав древесины всех пород практически одинаков. Органическая часть абсолютно сухой древесины (высушенной при 103оС) содержит в среднем 49-50 % углерода, 43-44 % кислорода, около 6 % водорода и 0,1-0,3 % азота. Неорганическая часть может быть выделена в виде золы путем сжигания древесины. Количество золы в древесине около 0,2-1 %. В состав золы входят кальций, калий, натрий, магний, в меньших количествах фосфор, сера и другие элементы. Они образуют минеральные вещества, большая часть которых нерастворима в воде. Среди растворимых первое место занимают щелочные - поташ и сода, а из нерастворимых - соли кальция. Химические элементы образуют сложные органические соединения. Главные из них - целлюлоза, лигнин, гемицеллюлоза, входящие в состав клеточных стенок древесины. Остальные вещества называются экстрактивными. Это смолы, дубильные и красящие вещества. Кора по элементарному составу мало отличается от древесины, но в ней больше минеральных веществ. Целлюлоза очень стойкое вещество, не растворяется в воде, спирте, эфире, ацетоне. На этом свойстве основаны промышленные способы получения целлюлозы из древесины.

Получение и использование целлюлозных материалов. В основе ряда широко применяемых материалов лежит целлюлоза. Ее можно получить, удалив из клеточных стенок древесины все остальные вещества. В процессах варки, воздействуя на древесину различными агентами, растворяют сопровождающие вещества, отличающиеся меньшей химической стойкостью. В промышленности используют кислотные, щелочные и нейтральные способы получения целлюлозы.

Кислотные способы. К этой группе относят сульфитный и бисульфитный способы. При сульфитном способе в качестве сырья используется древесина малосмолистых хвойных пород (ели, пихты) и ряда лиственных пород.

Короткие окоренные бревна (балансы) на рубильных машинах перерабатываются в щепу. Щепа загружается в вертикальные варочные котлы вместимостью до 400 м3. В котел подается сульфитная варочная кислота, представляющая собой раствор сернистой кислоты, содержащий некоторое количество бисульфита кальция Ca (HSO3) 2. Кальциевое основание (CaO) может быть заменено магниевым, натриевым или аммонийным. Варка ведется при 130-150оC и давлении 0,5-1 МПа в течение 5-12 часов. В результате варки получают целлюлозу и перешедшие в раствор органические вещества - сульфитный щелок. Целлюлозу промывают, очищают от сучьев, щепы, песка; отбеливают хлорсодержащими веществами. На специальных машинах целлюлозу обезвоживают и превращают в плотную ленту, которую затем разрезают на листы и упаковывают в пачки. В таком виде техническая целлюлоза поступает на бумажные фабрики и другие предприятия. Сульфитный щелок используется для получения путем биохимической переработки белковых кормовых дрожжей, этилового спирта и других продуктов. Химической переработкой из щелока можно получить ванилин, фенолы, ароматические кислоты. Бисульфитный способ позволяет использовать для получения целлюлозы древесину практически любых пород. Варка щепы проводится в водном растворе бисульфата натрия, магния или аммония. Оборудование и технология во многом похожи с применяемыми при сульфитном способе. Однако температура процесса варки выше (155-165оС). Щелочные способы. К этой группе относятся сульфатный и натронный способы. Для получения целлюлозы сульфатным способом может быть использована древесина любых пород, в том числе и высокосмолистых (сосна и др.) измельченная в щепу древесина варится в растворе, содержащем едкий натрий NaOH и в 3 раза меньше сернистого натрия Na2S. Варка ведется в котлах вместимостью 75-160 м3 при 170-180оС и давлении 0,8-1 МПа в течение 3-5 часов. По окончании процесса варочный раствор приобретает черный цвет и называется черным щелоком. Черный щелок уваривают для компенсации потерь Na2S, смешивают с сульфатом натрия Na2SO4 и прокаливают. При этом органическая часть щелока сгорает (используется как топливо), а минеральная употребляется для приготовления варочного раствора (белого щелока). Остальные операции такие же, как и при получении сульфитной целлюлозы. Варка может осуществляться не только в котлах, но и в высокопроизводительных аппаратах непрерывного действия. Для получения высококачественной целлюлозы, идущей на химическую переработку, древесину подвергают предгидролизу (пропаркой, водной варкой при 170оС или другим способом) с целью удаления большей части гемицеллюлоз. Выход целлюлозы сульфатным способом составляет 40-50 %. Сульфатный способ позволяет получать более прочные волокна, необходимые для производства корда и других целей. К достоинствам этого способа относится также предусмотренная технология регенерации щелока. Это дает возможность проводить процесс по замкнутой схеме, сводя к минимуму загрязнение водоемов. В качестве побочных продуктов при сульфатном производстве целлюлозы улавливают скипидар и снимают с поверхности охлажденного щелока сульфатное мыло, разложение которого минеральной кислотой дает таловое масло. Этот продукт применяют при выработке хозяйственного мыла, приготовления олифы, смазочных масел. Из талового масла получают канифоль, фитостерин, используемый для лечения атеросклероза, кожных и других заболеваний, а также ряд продуктов, применяемых в производстве ядохимикатов, моющих средств, эмульгаторов и т.д. Часть щелочного лигнина без ущерба для основного производства может быть использована в качестве наполнителя для синтетического каучука, для замены фенола при получении пластмасс, в шинной, керамической и других отраслях промышленности. Из предгидролизата можно получать кормовые дрожжи. Второй щелочной способ получения целлюлозы - натронный. Основан на применении в качестве реагента едкого натра; потери щелочи возмещаются добавкой соды. Нейтральный способ. Этот способ используется для получения из древесины лиственных пород целлюлозы с весьма большим содержанием сопутствующих веществ. Варочный раствор, содержащий сульфит натрия Na2SO3 или сульфат аммония (NH4) 2SO3, имеет близкую к нейтральной реакцию, поэтому способ называют моносульфитным или нейтрально-сульфитным. Варка проводится в котлах периодического или непрерывного действия при конечной температуре 160-180оС, давлении 0,65-1,25 МПа и длится 0,2-6 часов. Основной недостаток - невозможность использования древесины хвойных пород. Для всех применяемых в промышленности способов получения целлюлозы характерно образование отходов, в той или иной мере загрязняющих окружающую среду соединениями серы. Поэтому особенно важны разработки бессернистой технологии целлюлозы. Гидролиз древесины. При взаимодействии водных растворов кислот с древесиной происходит гидролиз ее полисахаридной части. Целлюлозы и гемицеллюлозы при гидролизе превращаются в простые сахара. Полученные сахара идут на биохимическую переработку. Эти сахара (например, глюкоза, ксилоза и др.) можно подвергать химической переработке, получая такие продукты, ксилит, сорбит и др. Сырьем для гидролизной промышленности служат главным образом отходы лесопиления и деревообработки, низкокачественная древесина. Гидролиз древесины можно осуществлять разбавленными минеральными кислотами (серной, соляной) при высокой температуре или теми же, но концентрированными кислотами при нормальной температуре. В промышленности применяется способ гидролиза разбавленной до 0,5-0,6 % серной кислоты. Сырье в виде смеси опилок и щепы поступает в гидролизаппарат вместимостью 18-160 м3. Сюда же подается горячий раствор серной кислоты. При 140-160оС происходит осахаривание (гидролиз) гемицеллюлоз. Затем при 180-190оС начинается гидролиз целлюлозы. Одновременно с подачей серной кислоты отбирают гидролизат - кислый водный раствор простых сахаров. В конце процесса в гидролизаппарат подается горячая вода для удаления сахаров и серной кислоты, пропитывающих нерастворимый осадок - лигнин. Этот побочный продукт может быть использован для получения смол, пластмасс, антисептиков, стимуляторов роста растений, удобрений, активированного угля, топлива и др. При охлаждении гидролизата образуются пары, из конденсата которых получают фурфурол, представляющий собой бесцветную маслянистую жидкость с запахом печеного хлеба. Он применяется в производстве пластмасс, синтетических волокон (нейлона), смол, для очистки смазочных масел, изготовления медицинских препаратов (фурацилина и др.), красителей, средств для борьбы с сорняками, грибами и насекомыми, а также и для других целей. Фурфурол можно получать в качестве основного продукта при гидролизе богатых пентозанами древесины лиственных пород (березы, осины) и сельскохозяйственных растительных отходов. Нейтрализованный известковым молоком гидролизат (сусло) поступает в бродильное отделение. Там под действием ферментов винокуренных дрожжей содержащиеся в сусле гексозы (глюкоза и сахара из гексозана) сбраживаются и образуют этиловый спирт, а также углекислый газ, который улавливается и используется для получения жидкой углекислоты и сухого льда. Термическое разложение древесины. Разложение древесины происходит при нагреве ее без доступа воздуха. Этот процесс называется сухой перегонкой. При температуре 120-250оС происходит удаление воды и частичное разложение гемицеллюлоз (при температуре 150-270оС). Затем при 275-450оС происходит распад веществ, слагающих древесину. При этом происходит бурное выделение тепла. Последняя стадия протекает при температуре 450-550оС с дополнительным подводом тепла извне. В результате сухой перегонки образуются твердые (уголь), жидкие (жижка) и газообразные продукты. Древесный уголь содержит 80-97 % углерода. Он не содержит вредных примесей (серы и фосфора). Древесный уголь обладает высокой сорбционной способностью. Его применяют в металлургии при выплавке цветных металлов и ферросплавов; в виде, обработанных паром, порошкообразных углей для очистки промышленных растворов и сточных вод, обесцвечивания соков и рафинируемых масс в сахарной промышленности и т.п. он идет для производства сероуглерода, необходимого для получения вискозного волокна, и целлофана. Промышленность полупроводников использует особо чистый кремний, для получения которого необходим древесный уголь. Он также применяется для производства электродов, цементации (придания твердости стальным деталям), в медицине, в качестве топлива, кормовой прикормки для скота, для производства пластмасс и для других целей. Жижка представляет собой жидкий дистиллят - раствор продуктов разложения древесины. При отстаивании жижки образуются два слоя: верхний - водный и нижний - смоляной. Из отстойной и растворенной в сырой жижке смолы получают антиокислитель бензина, антисептики (креозот), фенолы для производства пластмасс, крепители литейных земель, понизители вязкости бурильных растворов, и другие продукты. Из водного слоя выделяют уксусную кислоту, метиловый спирт, растворители (ацетон, метилацетат и др.). Газы, получаемые при сухой перегонке древесины, используют в качестве топлива для обогрева реторт (аппаратов для сухой перегонки). Сжигание древесины. Окисление древесины в процессе горения происходит при ее энергохимической переработке и при использовании в качестве топлива. Качество топлива оценивается теплотой сгорания (теплотворной способностью). Массовая теплота сгорания древесины представляет собой количество тепла, выделяемое при полном сгорании единицы массы - 1 кг древесины. Теоретически массовую теплоту сгорания можно определить по химическому составу. Точно определить теплоту сгорания можно в лабораторных условиях в калориферах.

Элементарный химический состав древесины практически одинаков. Поэтому теплота сгорания единицы массы древесины почти не зависит от природы и в абсолютно сухом состоянии колеблется в пределах 19,6 - 21,4 МДж/кг. Обычно дрова оценивают не по массе, а по объему, и необходимо знать теплоту сгорания единицы объема (1 м3) древесины. Умножив теплоту сгорания единицы массы на плотность древесины, получают теплоту сгорания единицы объема. Объемная теплота сгорания зависит от породы, т.е. чем выше плотность древесины, те6м выше ее теплота сгорания. Например, для древесины дуба объемная теплота сгорания равна 13*103 Мдж/м3, для осины - 7,4*10 м 3 МДж/м3. теплота сгорания также зависит от влажности древесины, с увеличением которой она уменьшается.

2.1 Физические свойства древесины


Физическими свойствами древесины называются такие, которые определяют без нарушения целостности испытываемого образца и изменения ее химического состава, т.е. выявляют путем осмотра, взвешивания, измерения, высушивания. К физическим свойствам древесины относятся: внешний вид и запах, плотность, влажность и связанные с ней изменения - усушка, разбухание, растрескивание и коробление. К физическим свойствам древесины относится также ее электро-, звуко- и теплопроводность, показатели макроструктуры.

Внешний вид древесины определяется ее цветом, блеском, текстурой и макроструктурой. Цвет. Цвет древесине придают находящейся в ней дубильные, смолистые и красящие вещества, которые находятся в полостях клеток. Древесина пород, произрастающих в различных климатических условиях, имеет различный цвет: от белого (осина, ель, липа) до черного (черное дерево). Древесина пород, произрастающих в жарких и южных районах, имеет более яркую окраску по сравнению с древесиной пород умеренного пояса. В пределах климатического пояса каждой древесной породе присущ свой особый цвет, который может служить дополнительным признаком для ее распознавания. Так, древесина граба имеет светло-серый цвет, дуба и ясеня - бурый, грецкого ореха - коричневый. Под влиянием света и воздуха древесина многих пород теряет свою яркость, приобретая на открытом воздухе сероватую окраску. Древесина ольхи, имеющая в свежесрубленном состоянии светло-розовый цвет, вскоре после рубки темнеет и приобретает желтовато-красную окраску. Древесина дуба, полежавшая долгое время в воде, приобретает темно-коричневый и даже черный цвет (мореный дуб). Меняется окраска древесины и в результате поражения ее различными видами грибов. На окраску древесины оказывает влияние также возраст дерева. У молодых деревьев древесина обычно светлее, чем у более старых. Устойчивым цветом обладает древесина дуба, груши и белой акации, самшита, каштана. Цвет древесины имеет важное значение в производстве мебели, музыкальных инструментов, столярных и художественных изделий. Насыщенный богатством оттенков цвет придает изделиям из древесины красивый внешний вид. Цвет древесины некоторых пород улучшают, подвергая различной обработке, - пропариванию (бук), протравливанию (дуб, каштан) или окрашиванию различными химическими веществами. Цвет древесины и его оттенки характеризуют обычно определениями - красный, белый, розовый, светло-розовый и лишь при особой необходимости по атласу или шкале цветов. Блеск древесины зависит от ее плотности, количества, размеров и расположения сердцевинных лучей. Сердцевинные лучи обладают способностью направленно отражать световые лучи и создают блеск на радиальном разрезе. Блеск - способность направленно отражать световой поток. Наибольшим блеском обладают зеркально гладкие поверхности, отражающие световой поток строго направленно. Блеск древесины зависит от ее плотности, количества, размеров и расположения сердцевинных лучей. Сердцевинные лучи обладают способностью направленно отражать световые лучи и создают блеск на радиальном разрезе. Особым блеском отличается древесина бука, клена, ильма, платана. Радиальные поверхности, где площадь, занятая сердцевинными лучами, наибольшая, также создают блеск (особенно у клена, ильма, бука, дуба, белой акации, платана, красного дерева, атласного дерева, айланта). Древесина бархатного дерева (осина, липа, тополь) имеет шелковистый блеск. Блеск придает древесине красивый вид и может быть усилен полированием, лакированием, вощением или оклеиванием прозрачными пленками из искусственных смол. Текстура - рисунок, который получается на разрезах древесины при перерезании ее волокон, годичных слоев и серцевинных лучей. Она зависит от ее породы и строения. Чем сложнее строение древесины и разнообразнее сочетание отдельных элементов, тем богаче ее текстура. Хвойные породы имеют сравнительно простое строение, и текстура у них довольно однообразная; у лиственных пород текстура значительно богаче. Текстура определяется шириной годичных слоев, разницей в окраске ранней и поздней древесины, наличием сердцевинных лучей, крупных сосудов, неправильным расположением волокон (волнистое или путанное). Красивую текстуру хвойные породы дают на тангенциальном разрезе из-за резкого различия в цвете ранней и поздней древесины. У лиственных пород красивый рисунок на радиальном разрезе создают сердцевинные лучи (бук, ильм, клен, платан, карагач, дуб); на тангенциальном разрезе - грецкий орех, ясень, бархатное дерево, дуб, ильм, каштан. Исключительно красивый рисунок наблюдается в древесине наростов (капов) со свилеватым расположением волокон. Текстура определяет декоративную ценность древесины и имеет значение при изготовлении мебели, различных поделок, при украшении музыкальных инструментов. При использовании прозрачных лаков можно усилить и ярче выявить текстуру древесины.

Для получения красивой текстуры применяют и различные способы обработки древесины; лущение кряжей ножом с волнистым лезвием или под углом к направлению волокон, неравномерное прессование и др. Запах древесины зависит от находящихся в ней смол, эфирных масел, дубильных и других веществ. Характерный запах скипидара имеют хвойные породы - сосна, ель. Дуб имеет запах дубильных веществ, бакаут и палисандр - ванили. Приятно пахнет можжевельник, поэтому его ветви применяют при запаривании бочек. Большое значение имеет запах древесины при изготовлении тары. В свежесрубленном состоянии древесина имеет более сильный запах, чем после высыхания. Ядро пахнет сильнее заболони. По запаху древесины можно определить отдельные породы. Макроструктура. Для характеристики качества древесины иногда достаточно определить следующие показатели макроструктуры: ширину годичных слоев и содержание поздней древесины в годичных слоях.

Ширина годичных слоев определяется числом слоев, приходящихся на 1 см отрезка, отмеренного в радиальном направлении на поперечном срезе. Образцы сечением 20Ч20 мм должны иметь гладко зачищенные торцы. На торце проводят линию перпендикулярно к годичным слоям и подсчитывают число целых слоев N. Длину l участка измеряют в сантиметрах. Число годичных слоев в 1 см вычисляют с точностью до 0,5 слоя по формуле:

= N/l.

Ширина годичных слоев оказывает влияние на свойства древесины. Для древесины хвойных пород отмечается улучшение свойств, если в 1 см насчитывается не менее 3 и не более 25 слоев. У лиственных кольцесосудистых пород (дуб, ясень) увеличение ширины годичных слоев происходит за счет поздней зоны и поэтому увеличиваются прочность, плотность и твердость. Для древесины лиственных рассеяно-сосудистых пород (березы, бука) нет такой четкой зависимости свойств от ширины годичных слоев. На образцах из древесины хвойных и кольцесосудистых лиственных пород определяют содержание поздней древесины m (в процентах). На тех же образцах измерительной лупой с погрешностью 0,1 мм измеряют ширину поздней зоны δ в каждом годичном слое; полученные значения суммируют и подсчитывают процент поздней древесины с погрешностью 1 % по формуле:

= ∑δ/l*100,

где ∑δ - общая ширина поздних зон, см;- общее протяжение тех годичных слоев, в которых измерялась ширина поздней зоны, см. Процент поздней древесины является достаточно надежным показателем качества древесины. Чем выше содержание поздней древесины, тем больше ее плотность, а, следовательно, и выше ее механические свойства. При обработке древесины режущими инструментами происходит перерезание полых анатомических элементов (сосудов) и на поверхности древесины образуются неровности. У таких пород, как дуб, ясень, грецкий орех, величина структурных неровностей значительная. Так как древесина указанных пород используется для отделки изделий, то перед полированием необходимо уменьшить величину этих неровностей. Для этого производится специальная операция, которая называется порозаполнением. Влажность древесины. В растущем дереве вода необходима для его жизни и роста, в срубленной древесине наличие воды нежелательно, так как приводит к ряду отрицательных явлений. Влажностью (абсолютной) древесины называется отношение массы воды к массе абсолютно сухой древесины, выраженное в процентах

В древесине различают воду связанную (гигроскопическую) и свободную (капиллярную). Свободная вода заполняет полости клеток и пространства между клетками, а связанная находится в толще клеточных стенок. Свободная вода удерживается механическими связями и удаляется легко; связанная вода удерживается физико-механическими связями, и удаление этой воды требует дополнительных затрат энергии. Связанная вода оказывает значительное влияние на свойства древесины. Общее количество воды в древесине складывается из свободной и связанной. Максимальное количество связанной воды составляет примерно 30 % при температуре 15-20оС. Предельное количество свободной воды зависит от плотности, т.е. от того, как велик объем пустот в древесине, который может быть заполнен водой.

Состояние древесины, при котором свободная вода отсутствует, а клеточные стенки содержат максимальное количество связанной воды, называется гигроскопичностью или пределом насыщения клеточных стенок. Предел гигроскопичности соответствует максимальной влажности клеточных стенок при увлажнении древесины в насыщенном водой воздухе. Предел насыщения клеточных стенок - максимальная влажность клеточных стенок свежесрубленной древесины или при хранении ее длительное время в воде. При этом в полостях клеток содержится и некоторое количество свободной воды. Таким образом, влажность предела насыщения клеточных стенок составляет 30 % для пород умеренного климата. Влажность предела гигроскопичности при температуре 15-20оС составляет 30 % и мало зависит от породы древесины. Влажность предела гигроскопичности с повышением температуры снижается и при 100оС составляет 19-20 % Различают следующие ступени влажности древесины: мокрая - длительное время находившаяся в воде, ее влажность выше 100 %; свежесрубленная - влажность 50-100 %; воздушно-сухая - долгое время хранившаяся на воздухе, влажность 15-20 %; комнатносухая - влажность 8-12 %; абсолютно сухая - влажность древесины около 0 %. Высыхание древесины. При длительном хранении срубленной древесины на воздухе или в помещении происходит испарение воды. При этом вначале удаляется свободная вода, находящаяся в полостях клеток, а затем и связанная. При высыхании древесины испарение воды происходит с поверхности сортамента и вода из более влажных внутренних слоев передвигается к наружным. Таким образом, наблюдается неравномерное распределение воды по толщине материала. Чем больше толщина материала, тем больше неравномерность распределения воды. Скорость высыхания зависит от метеорологических условий, способов укладки и вида сортимента. Теплая, сухая погода ускоряет сушку. Короткие и тонкие пиломатериалы сохнут быстрее длинных и толстых. В промышленности наиболее распространено два способа сушки: атмосферная и камерная. Камерная сушка проводится в специальных помещениях, называемых лесосушильными камерами. В качестве агента сушки используется воздух, нагреваемый в калориферах. В сушильных камерах контролируется состояние воздуха и влажность древесины. Продолжительность камерной сушки значительно меньше, чем атмосферной. При атмосферной сушке в качестве агента используется атмосферный воздух без искусственного его подогрева. Состояние воздуха не регулируется. Перед атмосферной сушкой пиломатериалы должны подвергаться антисептированию во избежание поражения их деревоокрашивающими грибами. Для лучшей циркуляции воздуха применяется разреженная укладка пиломатериалов. Атмосферная сушка считается законченной при достижении 20-22 % влажности. Продолжительность сушки пиломатериалов разной толщины в различных климатических зонах колеблется от 2-3 месяцев до одного-двух сезонов. При атмосферной или камерной сушке древесина приобретает устойчивую влажность. Такое состояние устанавливается, если упругость водяных паров окружающего воздуха будет равна упругости паров воды у поверхности древесины. Состояние воздуха характеризуется определенной температурой и относительной упругостью пара. Каждому сочетанию температуры и относительной упругости пара соответствует определенная устойчивая влажность древесины. Эта влажность не зависит от породы, но зависит от направления процесса. При поглощении (сорбции) воды из воздуха устойчивая влажность древесины меньше, чем при высыхании (десорбции). Разницу между значениями устойчивой влажности при сорбции и десорбции называют гистерезисом сорбции. При этом следует иметь в виду, что при сорбции и десорбции изменяется содержание только связанной воды. Измельченная древесина (стружки, опилки) имеет большую удельную поверхность и ничтожно маленький гистерезис (0,2 %), и ее устойчивую влажность называют равновесной. Для пиломатериалов толщиной более 15 мм и шириной более 100 мм гистерезис составляет 2,5 %. Усушка. Усушкой называется уменьшение линейных размеров и объема древесины при высыхании. Она начинается после полного удаления из древесины свободной влаги и с начала удаления связанной влаги, т.е. когда ее влажность снизится за предел насыщения клеточных стенок. Связанная вода находится в клеточных стенках в промежутках между микрофибриллами. Микрофибриллы в стенках направлены преимущественно вдоль оси клетки и при удалении связанной воды из древесины больше изменяются поперечные размеры клеток и в целом древесины. Продольная усушка, обусловленная небольшим наклоном микрофибрилл, составляет незначительную величину. Усушка в тангенциальном направлении в 1,5-2 раза больше, чем в радиальном. Усушка, которая происходит при удалении всей связанной воды (от 30 до 50 %) называется полной. Полная линейная усушка в тангенциальном направлении в среднем составляет 6-10 %, в радиальном 3-5 %, вдоль волокон 0,1-0,3 %, объемная усушка 12-15 %.

При распиловке сырых бревен на доски предусматривают припуски на усушку с тем, чтобы после высыхания пиломатериалы и заготовки имели заданные размеры. Усушка зависит от плотности древесины: чем больше плотность, тем выше ее усушка. Поздняя древесина годичных слоев усыхает больше, чем ранняя. Внутреннее напряжение в древесине, растрескивание и коробление. Напряжения, возникающие без участия внешних сил, называются внутренними. Первая причина образования напряжений при сушке древесины - неравномерность распределения воды. Вначале испаряется вода с поверхностных слоев древесины. Если в поверхностных слоях влажность снизится за предел насыщения клеточных стенок, то должна произойти их усушка.

Однако из-за сопротивления более влажных внутренних слоев поверхностные слои усохнут не полностью. В результате появятся напряжения, растягивающие в поверхностных зонах и сжимающие во внутренней зоне. Если растягивающие напряжения достигнут предела прочности древесины на растяжение поперек волокон, то могут возникнуть трещины: в начале сушки на поверхности сортимента, а в конце - внутри (так называемые свищи).

Рисунок 1 - Растрескивание древесины и силовые секции: а - наружные трещины в бревне; б - наружные трещины в брусьях; в - внутренние трещины; г - силовые секции.

Внутренние напряжения сохраняются и в высушенном материале и служат причиной изменения размеров и формы деталей при механической обработке древесины. Сохранившиеся после окончания сушки остаточные напряжения можно снять путем дополнительной обработки пиломатериалов (увлажнением поверхности паром или водой). При высыхании или увлажнении древесины происходит изменение формы поперечного сечения доски. Такое изменение формы называется короблением. Коробление может быть поперечным и продольным.

Поперечное коробление выражается в изменении формы сечения брусков и досок. Причиной поперечного коробления является разница в величине усушки по радиальному и тангенциальному направлениям. Сердцевинная доска уменьшает свои размеры к кромкам; доска, у которой внешняя часть ближе к тангенциальному направлению, усыхает больше, чем внутренняя, имеющая радиальное направление. Чем ближе доска расположена к сердцевине, тем больше ее коробление. По длине доски могут изгибаться, приобретая дугообразную форму или принять форму винтовой поверхности - крыловатость. Первый вид продольного коробления встречается у досок, содержащих ядро и заболонь (усушка ядра и заболони по длине волокон несколько различается), а также у древесины с кренью, продольная усушка которой выше, чем у здоровой древесины. Крыловатость наблюдается у пиломатериалов с тангенциальным наклоном волокон. Правильная усадка, сушка и хранение пиломатериалов могут предупредить появление коробления. Влагопоглощение. Влагопоглощением древесины называется ее способность поглощать воду из окружающего воздуха, при этом увеличивается в древесине содержание связанной воды. Влагопоглощение зависит от температуры и относительной упругости пара воздуха.

Поглощение воды из воздуха происходит постепенно, замедляясь до предела гигроскопичности. Влагопоглощение не зависит от породы древесины. Влагопоглощение древесины относится к ее отрицательным свойствам. Для уменьшения влагопоглощения древесину покрывают лаками, красками, проводят термическую обработку, пропитку искусственными смолами и пр. Разбухание. Разбухание - это свойство древесины обратное усушке и подчиняется тем же закономерностям. Разбуханием называется увеличение линейных размеров и объема древесины при повышении содержания связанной воды. Разбухание наблюдается при увеличении влажности до предела гигроскопичности, увеличение свободной воды (заполняющей полости клеток) не вызывает разбухания. Наибольшее разбухание происходит в тангенциальном направлении и наименьшее - вдоль волокон. Так же как и усушка, разбухание является отрицательным свойством древесины. Однако в некоторых случаях оно играет положительную роль: обеспечивает плотность соединений в бочках, лодках, деревянных трубах и судах.

Плотность древесины. Плотность материала характеризуется отношением его массы к объему. Измеряется плотность в килограммах на метр кубический или в граммах на сантиметр кубический. Плотностью древесинного вещества называется отношение массы к объему клеточных стенок. Так как элементный химический состав древесины практически одинаков для разных пород, то и плотность древесинного вещества примерно одинакова для всех пород. Она в среднем равна 1,53 г/см3. Плотность древесины зависит от влажности и для сравнения значения плотности всегда приводят к единой влажности, которая составляет 12 %. Между плотностью и прочность древесины существует тесная связь. Чем больше толщина клеточных стенок, тем больше плотность и, следовательно, прочность древесины.

Пористость древесины определяется объемом внутренних пустот (полостей клеток, межклеточных пространств) и выражается в процентах от объема древесины в абсолютно сухом состоянии. Пористость зависит от плотности древесины: чем больше плотность, тем меньше пористость древесины. Значение пористости колеблется в пределах от 40 до 77 %. Плотность древесины имеет большое практическое значение. Древесину с высокой плотностью (самшит, граб, бук, клен, груша) особенно ценят на производстве за ее прочность и хорошую обрабатываемость. Древесина лиственных кольцесосудистых пород имеет неодинаковую плотность, ранняя часть годичного слоя у нее пористая, поздняя более плотная. Такая древесина труднее поддается лакированию и полированию, но обладает другими ценными свойствами, например, хорошо гнется. Древесина хвойных пород обладает малой плотностью, а рассеяннососудистых лиственных пород - высокой плотностью, поэтому она чисто обрабатывается, хорошо лакируется иполируется.

Тепловые свойства древесины. Теплоемкостью называется способность древесины поглощать тепло при нагреве. Удельная теплоемкость представляет собой количество тепла, необходимое для нагрева 1 кг древесины на 1оС. Теплоемкость измеряется в джоулях на килограмм ∙ градус Цельсия. Удельная теплоемкость абсолютно сухой древесины при температуре 0о равна 1,55 кДж/кг ∙ оС, с увеличением температуры и влажности теплоемкость возрастает. При влажности 60 % и температуре воздуха 20оС удельная теплоемкость древесины составит 1,78 кДж/кг ∙ оС. Величина теплоемкости имеет значение при сушке, пропаривании, пропаривании древесины. Теплопроводностью называется способность древесины проводить тепло. Для характеристики теплопроводности используют коэффициент теплопроводности. Теплопроводность зависит от влажности, плотности, температуры и направления теплового потока. При увеличении всех этих показателей теплопроводность увеличивается. У древесины теплопроводность невысокая по сравнения с другими материалами, что определило ее широкое применение в жилищном строительстве.

Так, толщина деревянных стен меньше толщины кирпичных. Температуропроводностью называется способность древесины выравнивать температуру при нагреве ил охлаждении. Она характеризуется коэффициентом температуропроводности. Он в большей степени зависит от влажности древесины: чем суше древесина, тем выше ее температуропроводность. Это объясняется тем, что полости клеток заполнены воздухом, температуропроводность которого больше, чем воды. Температуропроводность выше в направлении вдоль волокон, чем поперек волокон. Она имеет значение при сушке, пропитке, пропаривании, так как позволяет определить время, необходимое для прогрева древесины. Расширение древесины.

Электрические свойства древесины. Электропроводность - это способность древесины проводить электрический ток. Характеристикой электропроводности является электрическое сопротивление. Электропроводность древесины зависит от породы, направления волокон и ее влажности. Электропроводность древесины имеет значение в случае ее применения для столбов линий электропередач, линий связи, рукояток электроинструментов. Электрическая прочность - способность древесины противостоять пробою, т.е. способность древесины снижать сопротивление при подведении к древесине тока высокого напряжения.

Электрическая прочность древесины невысока и зависит от породы, влажности, температуры и направления волокон. С увеличением температуры и влажности электрическая прочность уменьшается. Для повышения электрической прочности древесины и снижения электропроводности при использовании ее в качестве изолятора древесину пропитывают трансформаторным маслом, парафином, искусственными смолами. Древесина в сухом состоянии не проводит электрический ток, т.е. она является диэлектриком.

Звуковые свойства древесины. Звукопроводность древесины характеризуется скоростью распространения звука. Скорость звука увеличивается с уменьшением плотности древесины и увеличением ее жесткости. К звукоизоляционным свойствам древесины относятся звукопроницаемость и звукопоглощение. При прохождении звука в воздухе возникает звуковое давление. Звукопроницаемость оценивается по разности звуковых давлений перед и за перегородкой из древесины.

Относительное уменьшение силы звука называется коэффициентом звукопроницаемости. При прохождении звука через древесину часть звуковой энергии поглощается ею вследствие внутреннего трения. Характеризуется это явление коэффициентом звукопоглощения, который зависит от свойств материала. Коэффициент звукопоглощения представляет собой отношение звуковой энергии, теряемой в материале, к падающей на материал звуковой энергии. Чем меньше звукопроводность, тем больше звукопоглощение. При использовании древесины в жилищном строительстве в качестве звукоизоляционного материала учитывают показатели ее звуковых свойств. Резонансные свойства древесины. Древесина широко используется для изготовления дек музыкальных инструментов. Такая древесина называется резонансной. Резонансные свойства древесины характеризуются ее способностью усиливать звук без искажения тона. К резонансной древесине предъявляются следующие требования: она должна быть разнослойной, ширина годичных слоев должна составлять 1-4 мм, процент поздней древесины в пределах 20-30 %; не допускаются сучки, крень и наклон волокон.

2.3 Механические свойства древесины


Применение древесины в качестве конструкционного материала обусловлено способностью сопротивляться действию усилий, т.е. механическими свойствами. Различают следующие свойства древесины, проявляющиеся под воздействием механических нагрузок: прочность - способность сопротивляться разрушению, деформативность - способность сопротивляться изменению размеров и формы, технологические и эксплуатационные свойства. Показатели механических свойств древесины определяют обычно при следующих видах испытаний: растяжении, сжатии, изгибе и сдвиге. Поскольку древесина - анизотропный материал, т.е. материал с различными свойствами в разных направлениях, указывают направление действия нагрузок: вдоль или поперек волокон (в радиальном или тангенциальном направлении).

Из-за сопротивления древесины внешним нагрузкам в ней возникают внутренние силы. Эти силы, отнесённые к единице площади сечения (1 см2) называются напряжениями. Максимальное напряжение, предшествующее разрушению тела, называют пределом прочности. Предел прочности определяют на малых, чистых и не имеющих пороках образцах в лабораториях на испытательных машинах. Эти образцы имеют базисное сечение с размерами 20*20 мм и должны включать не менее 4-5 годичных слоёв. Некоторые виды испытаний производят на образцах, сечение которых отличается от указанного. Прочность при сжатии определяется на образцах призматической формы.

Схема испытания на прочность при сжатии вдоль волокон и размер образца показаны на рисунке:


Образец постепенно нагружают до разрушения. Затем по силоизмерителю испытательной машины отсчитывают максимальную нагрузку Рмах, Н. Предел прочности б, МПа, вычисляют по формуле: бw = Pmax / (a * b), где (a * b) - площадь сечения образца, мм2. В среднем для всех отечественных пород при влажности древесины 12% предел прочности на сжатие вдоль волокон составляет около 50 МПа.

Прочность при сжатии поперёк волокон определяется по схеме на рисунке. Здесь указана равнодействующая сил, которые либо равномерно распределены по всей поверхности образца, либо по всей ширине, но на части длины его (местное сжатие). И в том, и в другом случаях определяют условный предел прочности. В качестве этого показателя используют предел пропорциональности, т.е. величину напряжений, до которых наблюдают линейную зависимость между напряжениями и деформациями. В среднем для всех пород он составляет 1/10 предела прочности при сжатии вдоль волокон. Испытания на прочность при растяжении проводятся на образцах другого вида:


Такая форма образцов обусловлена стремлением обеспечить разрушение в тонкой рабочей части, а не в месте закрепления, под воздействием именно растягивающих напряжений.

В среднем для всех пород предел прочности при растяжении вдоль волокон равен 130 МПа, а предел прочности при растяжении поперёк волокон в 20 раз ниже. Поэтому при конструировании изделий из древесины избегают растягивающих нагрузок, направленных поперёк волокон. Для испытания древесины на статический изгиб применяют образцы в форме бруска размерами 20 * 20 * 300 мм:


Предел прочности при статическом изгибе, МПа, вычисляют по формуле:

бw = (3/2) * ( (Pmax*l) / (b * h2)),

где Pmax - максимальная нагрузка, Н; l - пролет, т.е. расстояние между центрами опор, равный 240 мм; b и h - ширина (в радиальном) и высота (в тангенциальном) направлениях, мм.

В среднем предел прочности при статическом изгибе составляет 100 МПа. При испытаниях к образцу прикладывают две равные и противоположно направленные силы, вызывающие разрушение в параллельной им плоскости, происходит сдвиг. Различают три вида испытаний на сдвиг: скалывание вдоль волокон, скалывание поперёк волокон и перерезание древесины поперёк волокон. Схемы действия сил при этих испытаниях показаны на рисунке:


Для испытания на скалывание вдоль волокон применяют образец, форма и размеры которого показаны на рисунке:


Предел прочности при скалывании вдоль волокон определяют по формуле:

= Pmax / (b * l),

где (b * l) - площадка скалывания, мм2.

Величина предела прочности - касательных максимальных напряжений при скалывании вдоль волокон в среднем для всех пород составляет примерно 1/5 от предела прочности при сжатии вдоль волокон. Предел прочности при скалывании поперёк волокон в 2 раза меньше, а предел прочности при перерезании поперёк волокон в 4 раза больше, чем предел прочности при скалывании вдоль волокон.

Деформативность. При кратковременных нагрузках в древесине возникают преимущественно упругие деформации, которые после нагрузки исчезают. До определённого предела зависимость между напряжениями и деформациями близка к линейной (закон Гука). Основным показателем деформативности служит коэффициент пропорциональности - модуль упругости. Модуль упругости вдоль волокон Е = 12-16 ГПа, что в 20 раз больше, чем поперёк волокон.

Чем больше модуль упругости, тем более жесткая древесина. С увеличением содержания связанной воды и температуры древесины, жесткость её снижается. В нагруженной древесине при высыхании или охлаждении часть упругих деформаций преобразуется в "замороженные" остаточные деформации. Они исчезают при нагревании или увлажнении. Поскольку древесина состоит в основном из полимеров с длинными гибкими цепными молекулами, её деформативность зависит от продолжительности воздействия нагрузок.

Механические свойства древесины, как и других полимеров, изучаются на базе общей науки реологии. Эта наука рассматривает общие законы деформирования материалов под воздействием нагрузки с учётом фактора времени. Эксплуатационные и технологические свойства. Прочность древесины при длительных постоянных нагрузках важно знать в связи с применением её в строительных конструкциях. Показателем этого свойства является предел длительного сопротивления бд. с., который в среднем для всех видов нагрузки составляет примерно 0,5 - 0,6 величины предела прочности при кратковременных статических испытаниях. Показателем прочности при переменных нагрузках является предел выносливости, средняя величина которого составляет примерно 0,2 от статического предела прочности.

При проектировании деревянных конструкций в расчётах используют не пределы прочности малых образцов древесины, а в несколько раз меньшие показатели - расчётные сопротивления. Они учитывают большие размеры элементов конструкций, наличие пороков древесины, длительность действия нагрузки, влажность, температуру и другие факторы. Удельная вязкость характеризует способность древесины поглощать работу при ударе без разрушения и определяется при испытаниях на изгиб. Ударная вязкость у древесины лиственных пород в среднем в 2 раза больше, чем у древесины хвойных пород. Твёрдость характеризует способность древесины сопротивляться вдавливанию более твёрдого тела. Испытания на статическую твёрдость проводят по схеме, показанной на рисунке:


Для испытания на твёрдость используют приспособление, которое имеет пуансон с полусферическим наконечником. Его вдавливают на глубину радиуса. После испытания в древесине остаётся отпечаток, площадь проекции которого при указанном радиусе полусферы составляет 100 мм2. Показателем статической твёрдости образца, Н/мм2, является усилие, отнесенное к этой площади.

Статическая твёрдость торцевой поверхности выше, чем боковых поверхностей. Все отечественные породы по твёрдости торцевой поверхности при влажности 12% делят на 3 группы: мягкие (твёрдость 40 Н/мм2 и менее), твёрдые (41-80) и очень твёрдые (более 80 Н/мм2). Ударную твёрдость определяют, сбрасывая стальной шарик диаметром 25 мм с высоты 0,5 м на поверхность образца, величина которого тем больше, чем меньше твёрдость древесины.

Износостойкость - способность древесины сопротивляться износу, т.е. постепенному разрушению её поверхностных зон при трении. Испытания на износостойкость древесины показали, что износ с боковых поверхностей значительно больше, чем с поверхности торцевого разреза. С повышением плотности и твёрдости древесины износ уменьшился. У влажной древесины износ больше, чем у сухой.

Уникальным свойством древесины является способность удерживать крепления: гвозди, шурупы, скобы, костыли и др. При забивании гвоздя в древесину возникают упругие деформации, которые обеспечивают достаточную силу трения, препятствующую выдёргиванию гвоздя. Усилие, необходимое для выдёргивания гвоздя, забитого в торец образца, меньше усилия, прилагаемого к гвоздю, забитому поперёк волокон. С повышением плотности сопротивление древесины выдергиванию гвоздя или шурупа увеличивается. Усилия, необходимые для выдёргивания шурупов (при прочих равных условиях), больше, чем для выдёргивания гвоздей, так как в этом случае к трению присоединяется сопротивление волокон перерезанию и разрыву.

Технологическая операция гнутья древесины основана на её способности сравнительно легко деформироваться при действии избегающих усилий. Способность гнуться выше у кольцесосудистых пород - дуба, ясеня и др., а из рассеянно-сосудистых - бука; хвойные породы обладают меньшей способностью к загибу. Гнутью подвергают древесину, находящуюся в нагретом и влажном состоянии. Это увеличивает податливость древесины и позволяет вследствие образования замороженных деформаций при последующем охлаждении и сушке под нагрузкой зафиксировать новую форму детали.

Для сравнительной оценки качества древесины используют так называемые удельные характеристики механических свойств, т.е. показатели ее механических свойств, отнесенные к единице плотности. Удельная прочность при сжатии и статическом изгибе у хвойных пород выше, чем у лиственных. Значительно выше у хвойных пород и удельная жесткость. По остальным свойствам удельные характеристики у древесины лиственных пород выше, чем у хвойных. Удельные характеристики древесины имеют особое значение, когда от изделия или конструкции требуется высокая прочность при малом весе. Это важно для транспортного машиностроения, авиастроения, судостроения и в других случаях.

3. Материалы, получаемые из древесины

3.1 Круглые лесоматериалы


Ствол поваленного (срубленного) дерева, у которого отделены корни, вершина и сучья, называется хлыстом. Хлысты подразделяются на три группы в зависимости от выхода деловой древесины. Хлысты поставляют в неокоренном виде. В них допускается кривизна более 5 % длины хлыста, ядровая гниль, занимающая более 65 % площади нижнего торца, и наружная трухлявая гниль. Хлысты учитывают в кубических метрах; объем определяют по длине и толщине хлыста на расстоянии 1,3 м от нижнего торца с помощью соответствующих таблиц поштучно, а также групповыми методами. При разделке хлыстов получают круглые сортименты в виде бревен, кряжей и балансов. Бревнами называют сортименты, предназначенные для использования в круглом виде или в качестве сырья для выработки пиломатериалов общего назначения. Кряжами называют сортименты, которые используются для выработки специальных видов лесной продукции (авиационных пиломатериалов, шпал, лущеного или строганого шпона, спичек и др.). Сортименты, соответствующие по длине рабочим размерам деревообрабатывающего оборудования, называют чураками. Балансы - это круглые (или колотые) сортименты, предназначенные для переработки на целлюлозу и древесную массу. Долготье представляет собой отрезок хлыста, длина которого кратна длине получаемого сортимента и включает припуск на разделку. В строительстве и сельском хозяйстве используют тонкомерные сортименты (диаметром 6-13 см) - жерди. Круглые лесоматериалы по толщине (диаметру, измеренному на верхнем торце) делятся на мелкие - толщиной от 6 до 13 см; средние - от 14 до 24 см; крупные - от 26 см и более. Длина лесоматериалов зависит от их назначения и колеблется от 0,5 (для изготовления лож) до 17 м (мачты судов). К круглым лесоматериалам относится также технологическое сырье для различных производств, заготовляемое из низкокачественной древесины. Оно предназначено для производства древесных плит, тарных лесоматериалов и продуктов гидролиза.

3.2 Пиленые лесоматериалы (пилопродукция)


Различают три вида пиленой продукции, которые по возрастающей степени готовности к дальнейшему использованию в изделиях и сооружениях располагаются в следующем порядке: пиленые материалы (пиломатериалы), пиленые заготовки и пиленые детали. Пиломатериалы получают путем раскроя бревен; заготовки вырабатывают из пиломатериалов; детали - из заготовок или непосредственно из круглых лесоматериалов. Пиленые заготовки отличаются от пиломатериалов тем, что по размерам и качеству соответствуют будущим конкретным деталям с припусками на усушку и механическую обработку. Пиленые детали в отличие от заготовок не требуют дальнейшей механической обработки. Пиленые материалы. Пиломатериалы делятся на пиломатериалы общего назначения и специальные (авиационные, резонансные) Пиломатериалы общего назначения по форме и размерам поперечного сечения делят на доски - если ширина вдвое больше толщины, бруски - если ширина меньше двойной толщины и брусья (у хвойных пиломатериалов) - если ширина и толщина более 100 мм. По числу пропиленных сторон брусья могут быть двухкантнами, трехкантными и четырехкантными.

Обапол - это крайняя часть бревна, остающаяся при распиловке досок, прирезанная по длине и предназначенная для крепления горных выработок. Обапол может быть двух видов: горбыльный с непропиленой наружной поверхностью и дощатый с пропиленной более чем на половину длины наружной поверхностью. Обапол изготовляется из древесины хвойных пород; он должен быть окорен, опилен с торцов и очищен от сучьев вровень с наружной поверхностью.

Пиленые заготовки. В виде товарной продукции выпускаются заготовки общего и специального назначения. Заготовки общего назначения изготавливаются из хвойных и лиственных пиломатериалов. Они предназначены для изготовления деталей, применяемых в строительстве, вагоно-, авто-, судо-, обозо - и сельхозмашиностроении, производстве мебели, паркета. По виду обработки заготовки различаются на пиленые, полученные путем пиления, и калиброванные, простроганные (профрезерованные) после пиления для придания точных размеров по толщине и ширине. Кроме того, выпускаются клееные заготовки, изготовленные из нескольких более мелких заготовок склеиванием их по длине, ширине или толщине. Такие заготовки по существу представляют композиционные материалы.

По размерам поперечного сечения различают заготовки тонкие (толщина до 32 мм включительно) и толстые. Кроме того, выделяют досковые - шириной более двойной толщины и брусковые - шириной менее двойной толщины. Длина заготовки установлена от 0,3 м (у хвойных - от 0,5 м) до 1 м с градацией 50 мм, а свыше 1 м с градацией 100 мм. Заготовки специального назначения разделяются на: заготовки авиационные хвойных и лиственных пород; заготовки для лыж; лыжные заготовки; заготовки деревянные резонансные для музыкальных инструментов; заготовки для весел, деревянных деталей колес конных повозок; бруски для ткацких челноков; шпуль и катушек; каблуков; секторы для обувных колодок. Заготовки резонансные предназначаются для изготовления дек клавишных, щипковых и смычковых инструментов. Вырабатывают заготовки из древесины ели и пихты кавказкой, кедра сибирского.

Пиленые детали. К пиленым деталям относят шпалы и переводные брусья железных дорог, планки для снегозадерживающих щитов и др. Шпалы для железных дорог широкой колеи могут быть трех типов: 1 - для главных путей, 2 - для станционных и подъездных путей, 3 - для малодеятельных подъездных путей промышленных предприятий. Шпалы также подразделяются на необрезные, пропиленные только с двух противоположных сторон, и обрезные, пропиленные со всех четырех сторон. Шпалы для железных дорог узкой колеи меньших размеров, чем широкой колеи. Выпускаются трех типов: 1, 2, 3 и могут быть обрезными или необрезными. Брусья для стрелочных переводов железных дорог узкой и широкой колеи по форме и поперечным размерам близки к шпалам. Изготавливают из древесины тех же пород, что и шпалы. Шпалы для метрополитена изготавливают из древесины сосны или березы. Их пропитывают масляными антисептиками.

3.3 Строганные, лущеные, колотые лесоматериалы, измельченная древесина

Строганием вырабатывают шпон, штукатурную дрань, стружку упаковочную и другого назначения. Строганый шпон представляет собой тонкие листы древесины, отличающиеся красивой текстурой и цветом. Этот облицовочный материал изготавливают из древесины лиственных пород: дуба, ясеня, бука и ряда других, а также из экзотических пород: красного дерева, лимонного дерева и др. Строганый шпон получают из древесины и некоторых хвойных пород - лиственницы, тиса.

В зависимости от плоскости строгания различают шпон четырех видов: радиальный, полурадиальный, тангенциальный и тангенциально-торцовый. Полурадиальным называют шпон, у которого прямые параллельные линии годичных слоев видны не менее чем на 3/4 площади листа. У тангенциально-торцового строганого шпона, получаемого из наростов, годичные слои имеют вид замкнутых кривых линий, а сердцевинные лучи - вид кривых линий или штрихов. Штукатурную дрань получают из отходов древесины хвойных и мягких лиственных пород не только строганием, но и раскалыванием или пилением. Штукатурная дрань используется в строительстве жилых зданий. Стружку упаковочную также получают строганием, но из-за малости размеров ее относят к измельченной древесине.

Лущением получают шпон в виде непрерывной ленты древесины. Полученную ленту шпона до и после сушки разрезают на форматные листы. Лущеный шпон предназначен для изготовления слоистой клееной древесины и облицовки поверхности изделий из древесины. Шпон, применяемый для облицовки, отличается от строганого шпона меньшей декоративностью, но имеет большие размеры листов. Раскалыванием получают колотые балансы. Удаление ядровой гнили из низкокачественной древесины при расколке поленьев позволяет получить полноценное сырье для выработки целлюлозы и древесной массы. Среди колотых сортиментов можно отметить клепку бочарную, колесный обод, санный полоз и др. К измельченной древесине относят: щепу, дробленку, стружку, опилки, древесную муку и пыль. Некоторые из них, например дробленку и древесную пыль, используют только как полуфабрикаты в производстве композиционных материалов. Щепа. Этот вид продукции получают путем измельчения древесного сырья рубильными машинами или соответствующими рабочими узлами в составе технологических линий. Различают щепу технологическую, зеленую (с примесью коры, хвои, листьев) и топливную.


Древесина всех хвойных и лиственных пород используется при производстве щепы для получения сульфатной целлюлозы и полуцеллюлозы, дрожжей, спирта, ДВП и ДСтП. Породный состав щепы остальных назначений дифференцирован с учетом химических свойств и строения древесины. Например, для производства глюкозы применяют щепу из древесины хвойных пород, для ксилита - из березы, для фурфурола - из лиственных пород. Технологические древесные опилки. Опилки получают при распиловке лесоматериалов. Этот вид измельченной древесины используют для получения целлюлозы, продукции лесохимических и гидролизных производств, изготовления древесных плит. Для гидролизных заводов спиртового и дрожжевого профиля могут использоваться опилки из древесины одних хвойных или лиственных пород; допускается использование смеси хвойных и лиственных опилок (но для выработки спирта должно быть не менее 80 % хвойных). Для заводов фурфурольного профиля допускают опилки из древесины только лиственных пород. Опилки не должны содержать более 8 % коры, 5 % гнили и минеральных примесей 0,5 %. Стружка древесная.

Ее изготавливают из круглых лесоматериалов, кусковых отходов лесопиления, деревообработки, фанерного и спичечного производства. Она предназначается для упаковки продовольственных и промышленных товаров, для изготовления фибриловых плит и др. В большинстве случаев используется древесина хвойных и мягких лиственных пород. Например, для упаковки фруктов применяется тонкая и узкая стружка только из древесины ели, липы и осины, а для упаковки яиц - более крупная стружка из ели и пихты.

Мука древесная. Представляет собой продукт сухого механического измельчения отходов лесопиления и деревообработки. Ее используют в качестве наполнителя, фильтрующего материала, поглотителя и применяют в производстве пластмасс, линолеума, промышленных взрывчатых веществ и для других целей. В зависимости от назначения древесную муку вырабатывают из древесины хвойных или лиственных пород.

Вывод


Древесина - продукт живой природы, что определяет ее достоинства и недостатки как материала. Она обладает высокой прочностью при малой массе; хорошо обрабатывается режущими инструментами, удерживает металлические крепления, хорошо склеивается и отделывается. Древесина обладает красивыми декоративными свойствами. Она имеет малую теплопроводность и прекрасные резонансные свойства; хорошо поглощает ударные и вибрационные нагрузки.

Однако древесина имеет и ряд недостатков: изменчивость свойств в направлении вдоль оси ствола и поперек; обладает гигроскопичностью, что приводит к увеличению ее массы и уменьшению прочности, а при высыхании древесина уменьшается в размерах (происходит усушка); она растрескивается и коробится; поражается грибами, что приводит к гниению; древесина способна гореть. Перечисленные недостатки в значительной мере устраняются путем химической и химико-механической переработки древесины в листовые и плитные материалы - бумагу, картон, древесностружечные и древесноволокнистые плиты, фанеру и др. Эти материалы наряду с натуральной древесиной применяются в индустриальном производстве стандартных домов, в судо- и вагоностроении, машиностроении, мебельной, авиационной, электротехнической, пищевой промышленности и многих других отраслях народного хозяйства.

Древесина - материал живой природы и поэтому ее свойства меняются от различных факторов. Эти свойства неодинаковы для различных древесных пород, но и в пределах одной породы они различны. Свойства древесины изменяются от возраста, условий произрастания, времени, рубки и т.д. Условия произрастания включают качество и состояние почвы, климатические особенности, тип леса, высоту над уровнем моря.

Древесина в основном состоит из органических веществ. Элементарный химический состав древесины всех пород практически одинаков. Органическая часть абсолютно сухой древесины (высушенной при 103оС) содержит в среднем 49-50 % углерода, 43-44 % кислорода, около 6 % водорода и 0,1-0,3 % азота.

Неорганическая часть может быть выделена в виде золы путем сжигания древесины. Количество золы в древесине около 0,2-1 %. В состав золы входят кальций, калий, натрий, магний, в меньших количествах фосфор, сера и другие элементы. Они образуют минеральные вещества, большая часть которых нерастворима в воде. К растворимым относятся щелочные - поташ и сода, а к нерастворимы - соли кальция.

Химические элементы образуют сложные органические соединения. Главные из них - целлюлоза, лигнин, гемицеллюлоза, входящие в состав клеточных стенок древесины. Остальные вещества называются экстрактивными. Это смолы, дубильные и красящие вещества.

Древесина используется для получения различных древесных материалов. К этим материалам относятся: круглые материалы, пиленые, строганные, лущеные, колотые лесоматериалы, измельченная древесина, композиционные древесные материалы. Все эти материалы широко используются в мебельной промышленности, судостроении, вагоностроении, машиностроении, электротехнике, строительстве, при изготовлении стандартных деревянных домов, в производстве автомобилей, пластмасс, линолеума, промышленных взрывчатых веществ, для упаковки продовольственных и промышленных товаров, для изготовления фибриловых плит и др., а также в других отраслях промышленности в качестве конструкционного, изоляционного и отделочного материала.



     






Похожие работы на - Механические свойства древесины

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!