Тяговый расчёт автомобиля ВАЗ–2121

  • Вид работы:
    Курсовая работа (т)
  • Предмет:
    Транспорт, грузоперевозки
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    160,81 Кб
  • Опубликовано:
    2015-02-23
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Тяговый расчёт автомобиля ВАЗ–2121

Введение

Тяговый расчёт автомобиля производится с целью определения его тяговых и динамических качеств. Для решения этих задач необходимо построить тяговую характеристику. Тяговой характеристикой автомобиля называется графическая зависимость удельной силы тяги от скорости движения автомобиля на каждой передаче.

1.  Исходные данные для расчета

Марка автомобиля

ВАЗ - 2121

Тип привода

Полноприв.

Полная масса, m, кг

1550

Мощность двигателя , кВт

75

Номинальные обороты n, об/мин

5400

Передаточные числа:


коробки передач

3,667

1,95

1,36

1,0

0,82

главной передачи

4,1

Габаритные размеры:


ширина B, м

1,680

высота H, м

1,640

Тип и размер шин

175/80R16

Коэф. перераспределения веса на ведущие колеса λ

1

Коэф. деформации шин ∆

0,14-0,2

Коэф. сопротивления воздуха К,

0,2-0,35

Условия эксплуатации:


Горизонтальный участок дороги  с асфальтобетонным покрытием:  коэф. сопротивления качению, f  коэф. сцепления, φ

0,014-0,018  0,7-0,8



2. Расчет внешней скоростной характеристики двигателя

Внешняя скоростная характеристика двигателя - это зависимость крутящего момента, мощности двигателя, расхода топлива от частоты вращения коленчатого вала при полной подаче топлива.

.1 Определение минимальной частоты вращения коленчатого вала

,

где - номинальная частота вращения коленчатого вала, рад/с.

,

где n - номинальная частота вращения коленчатого вала, об /мин.

 (рад/с)

0,19×565 = 107 (рад/с)

Для построения внешней скоростной характеристики, зная значения максимальной и минимальной частот вращения коленчатого вала, разделим всю область значений ω на 9 примерно равных промежутков.

.2 С помощью формулы Лейдермана определяем значения мощности двигателя  соответственно для каждого значения частоты вращения ω коленчатого вала


где  - текущее значение мощности, кВт

 - номинальная мощность двигателя, кВт

 - текущее значение частоты вращения коленчатого вала, (рад/с)

- номинальная частота вращения коленчатого вала, (рад/с) , B, C - коэффициенты зависящие от типа двигателя (A, B, C=1)

Определим значение соответствующее значению ωдв=100 (рад/с)

= =16,38(кВт)

Аналогично определяем остальные значения мощности  для каждого значения частоты вращения коленчатого вала .

2.3 Определение крутящего момента двигателя

0,153(кН/м)

Аналогичным образом определяем остальные значения .

Рассчитанные значения , ,  сводим в таблицу 2.1

По полученным данным (таблицу 2.1) строим внешнюю скоростную характеристику двигателя. (Рисунок 1).

 

Рисунок 1 - Внешняя скоростная характеристика двигателя.

Таблица 2.1 - характеристика двигателя.

, рад/с

107

150

200

250

300

350

400

450

 500

565

Ne, кВт

16,38

23,79

32,61

41,37

49,74

57,41

64,07

69,41

73,12

75

Me, кН*м

0,153

0,159

0,163

0,165

0,166

0,164

0,16

0,154

0,146

0,134


3. Тяговый расчет автомобиля

.1 Определение скорости движения автомобиля

,


где r - радиус колеса, м. - посадочный диаметр колес, дюйм; - условная ширина профиля шины, мм;

λ - коэффициент высоты профиля шины;

∆ - коэффициент деформации шины.

В соответствии с параметрами шины ( раздел 1 ) d = 16 (дюймов) и B = 175 (мм), λ = 0,80 см, параметры шины в разделе 1.

Для радиальных шин ∆ = 0,14 - 0,2. Принимаем ∆ = 0,14.

Рассчитаем значения r:

= 0,32 (м).

 

где: Un - передаточное число k-той передачи, - передаточное число главной передачи.

Значения передаточных чисел всех передач приведены в разделе 1.

Определим значение Va для первой передачи при ω = 107 рад/с:

 = 2,30 (м/с).

Аналогичным образом определяем значения скорости движения автомобиля на других передачах и значениях ω.

Рассчитанные значения скорости сводим в таблицы 3.1 - 3.5.

Таблица 3.1 - Результаты тягово-динамического расчета ( I передача).

, рад/с

107

150

200

250

300

350

400

450

500

565

2,303

3,2285

4,3047

5,3809

6,4571

7,5332

8,6094

9,6856

10,7618

11,9

6,4027

6,633

6,8199

6,9199

6,933

6,8591

6,6982

6,4504

6,1157

5,63

 

0,0031

0,006

0,0108

0,0168

0,0242

0,0329

0,043

0,0544

0,0672

0,08

D

0,4208

0,4358

0,447

0,4539

0,4543

0,448

0,4376

0,4206

0,3977

0,36

 

1,8865

1,9558

2,0114

2,04

2,0418

2,0166

1,9644

1,8854

1,7794

1,62

0,53

0,5112

0,4971

0,4901

0,4897

0,4958

0,509

0,5303

0,5619

0,61


Таблица 3.2 - Результаты тягово-динамического расчета ( II передача).

, рад/с

107

150

200

250

300

350

400

450

500

565

 

4,330

6,071

8,095

10,118

12,142

14,166

16,190

18,213

20,237

22,50

 

3,4048

3,5272

3,6266

3,6798

3,6867

3,6474

3,5619

3,4301

3,2522

2,997

 

0,0109

0,0214

0,038

0,0594

0,0856

0,1164

0,1521

0,1925

0,2376

0,293

D

0,2232

0,2305

0,236

0,238

0,2368

0,2322

0,2242

0,2129

0,1982

0,177

 

1,5267

1,5804

1,6202

1,6354

1,6262

1,5925

1,5343

1,4517

1,3447

1,195

0,6549

0,6327

0,617

0,6114

0,6149

0,6279

0,6517

0,6888

0,7436

0,836


Таблица 3.3 - Результаты тягово-динамического расчета ( III передача).

, рад/с 107150200250300350400450500565











 6,2098,70511,6014,50817,41020,31223,21326,11529,01732,26











 2,37462,462,52932,56642,57132,54392,48422,39232,26822,090











 0,02240,0440,07820,12210,17590,23940,31270,39570,48860,604











D

0,1546

0,1588

0,1611

0,1607

0,1575

0,1515

0,1428

0,1313

0,117

0,097

  1,16181,19641,21551,21181,18521,13591,06360,96870,85080,691











 0,86070,83570,82260,82510,84360,88030,94011,03231,17521,445












Таблица 3.4 - Результаты тягово-динамического расчета (IV передача).

, рад/с 107150200250300350400450500565











 8,44511,8315,78519,73123,6727,62431,57035,51739,46343,883











 1,7461,80881,85981,88711,89061,87051,82661,75911,66781,5374











 0,04140,08130,14460,22590,32530,44280,57830,7320,90371,1174











D

0,1121

0,1136

0,1128

0,1092

0,1029

0,0938

0,0820

0,0675

0,0502

0,0276

  0,85920,87240,86530,83420,7790,69970,59640,4690,31750,1193











 1,16371,14611,15551,19861,28361,4291,67662,1323,14938,3814












Таблица 3.5 - Результаты тягово-динамического расчета (V передача).

, рад/с 100150200250300350400450500523











 10,2914,4319,2524,0628,87533,688338,500943,313548,12653,5162











 1,43181,48321,5251,54741,55031,53381,49781,44241,36761,2607











 0,06150,1210,2150,3360,48380,65850,86011,08861,34391,6618











D

0,0901

0,0895

0,0861

0,0796

0,0701

0,0575

0,0419

0,0232

0,0015

0,0263

  0,68260,67790,64710,58890,50350,39070,25050,0831-0,111-0,36











 1,46471,47511,54521,69781,9862,55933,990712,0305-8,961-2,76












.2 Расчет сил, действующих на автомобиль

Тяговая сила на ведущих колесах определяется по формуле:

,

где  - коэффициент полезного действия трансмиссии, которая зависит от типа и конструкции автомобиля, усредненные значения  для механических трансмиссии легкового автомобиля равны 0,9.

Определим первое значение тяговой силы на I-ой передаче:

=6.40(кН)

Аналогичным образом определяем значения  автомобиля на других передачах и значениях ω и заносим их в таблицы 3.1 - 3.5.

Максимальное значение тяговой силы по сцеплению колес с дорогой Pсц определяем выражением:

 

где:  - сцепной вес автомобиля(вес приходящийся на ведущие колеса), Н.

 - коэффициент сцепления с дорогой.

,

где  - полная масса автомобиля, кг. - ускорение свободного падения, м/с .

 = 0,7 - 0,8. Принимаем  = 0,8.

=6,57(кН).

Сила сопротивления качению Pk определяется выражением:


где: Ga - вес автомобиля, Н;- коэффициент сопротивления качению.= 0,014-0,018.

Принимаем f = 0,014.

Сила сопротивления воздуха рассчитывается по формуле:

,

где k - коэффициент обтекаемости;- площадь лобовой поверхности, ;

 - скорость движения автомобиля, м/с.

k = 0.35

F = 0.78×B×H,

где B и H ширина и высота автомобиля соответственно, м.

F = 0.78×1,68×1,64= 2,15 ( ).

Рассчитаем значения  на первой передаче:

 =0,0030(кН).

Остальные значения  на других передачах рассчитываем аналогично

приведенному примеру и заносим полученные данные в таблицы 3.1 - 3.5.

Строим тяговую характеристику автомобиля (Рисунок 2).

 

Рисунок 2 - Тяговая характеристика автомобиля.

.3 Расчет динамического фактора автомобиля

Динамически фактор - это удельная избыточная тяговая сила, которая затрачивается на преодоление дорожных сопротивлений и разгон автомобиля.

 -

формула для определения динамического фактора.

Пример расчета:

 =0,54

Таким же образом рассчитываем остальные значения динамического фактора и заносим их в таблицу 3.1 - 3.5.

Динамически фактор по сцеплению с дорогой рассчитывается по формуле:

тяговый автомобиль сцепление двигатель

,

где  - коэффициент сцепления с дорогой.  = 0,8.

 =0,553

Строим динамическую характеристику автомобиля (Рисунок 3).

 

Рисунок 3 - Динамическая характеристика автомобиля.

.4 Определение ускорения автомобиля

Выражение для определения ускорения автомобиля имеет вид:

,

где  - суммарный коэффициент дорожных сопротивлений; - ускорение свободного падения, м/с .

- коэффициент учета вращающихся масс.

 ,

 - уклон дороги, .

Так как расчет ведется для сухой горизонтальной асфальтобетонной дороги, то =0.

Поэтому справедливо равенство:

 ,

где Uk - передаточное число k-той передачи;

- 0,04-0,08. Принимаем  = 0,08.

Рассчитаем значение  на I -ой передаче:

=2,12

Остальные значения на других передачах рассчитываем аналогично приведенному выше примеру.

Значение  на всех передачах:

=2,12; = 1,34;  1,18;  1,12;  1,09.

Для примера определим одно из значений ускорения автомобиля на I-ой передаче:

 =1.88(м/с ).

Аналогично приведенному примеру рассчитываем остальные значения ускорения на других передачах и заносим их в таблицы 3.1-3.6.

Строим график ускорения автомобиля на всех передачах в  и  - координатах(Рисунок 4).

 

Рисунок 4 - График ускорения автомобиля.

Для каждого из рассчитанных значении  определяем обратную величину  и заносим полученные значения в таблицы 3.1-3.5. Строим графическую зависимость в , Va - координатах (Рис. 5)

 

Рисунок 5 - График обратной ускорению величины .

.5 Определение времени разгона автомобиля

Для определения времени разгона автомобиля до какой-либо скорости необходимо разбить всю область под кривыми графика в ,  - координатах на вертикальные участки, нижние основания которых - отрезки оси абсцисс, а верхние представляют собой части кривых графика. Рассчитав значения площадей , всех участков, можем определить время разгона автомобиля до скорости соответственно  по формуле:

(3.15)

где: = - площадь k-го участка, мм (l- длинна основания, h- средняя высота);

- масштаб скорости автомобиля Va на графике обратной ускорению величины  ;

- масштаб величины  .

Полученные результаты заносим в таблицу 3.6.

Таблица 3.6 Определение времени разгона автомобиля.

Интервал

2 - 6

6 - 10

10 - 14

14 - 18

18 - 22

22 - 26

26 - 30

30 - 34

34 - 38

Площадь интервала, ∆,кл.

5

5,2

6

7,1

9,2

11,1

15,6

21

35

Суммарная площадь, ∆, кл.

5

10,2

16,2

23,3

32,5

43,6

59,2

80,2

115,2

Время разгона, t, с

2

4,08

6,48

9,32

13

17,44

23,68

32,08

46,08

До скорости, Va, м/с

4

8

12

16

20

24

28

32

36

 

Строим график времени разгона автомобиля (Рисунок 6).

 

Рисунок 6 - График времени разгона автомобиля.

3.6 Определение пути разгона автомобиля

Для определения пути разгона разбиваем все пространство по левую сторону от кривой времени разгона автомобиля на 9 горизонтальных областей, левые основания которых - отрезки на оси координат  , а правые представляют собой участки кривой времени разгона.

Рассчитав значения площадей  всех областей, можем рассчитать путь разгона , который необходимо проехать автомобилю для разгона до скорости  по формуле:

,

где: - масштаб времени разгона автомобиля , .

Рассчитаем значения пути разгона  до скорости соответственно .

Полученные значения запишем в таблицу 3.7.

Таблица 3.7 Определение пути разгона автомобиля.

Интервал

1,9 - 2,5

2,5 - 4

4 - 6

6 - 8,3

8,3-11,7

11,7 - 15

15 - 20,6

20,6 - 28,5

28,5 - 33

Площадь,  ∆, кл.

7,6

18,6

29

52

80

120

193,3

360

251

Суммарная площадь,  ∆, кл.

7,6

26,2

55,2

107,2

187,2

307,2

500,5

860,5

1111,5

Пройденный путь, S, м

7,6

26,2

55,2

107,2

187,2

307,2

500,5

860,5

1111,5

До скорости, Va, м/с

4

8

12

16

20

24

28

32

36


Строим график пути разгона автомобиля (Рисунок 7).

 

Рисунок 7 - График пути разгона автомобиля.

.7 Расчет и построение графика пути торможения автомобиля

Тормозные свойства автомобиля можно оценить величиной минимального тормозного пути за время торможения с максимальной эффективностью. Для этого используем зависимость :

 ,

где:  - скорость автомобиля;

 - время запаздывания тормозов (принимаем = 0,05с);

- время нарастания ( принимаем  = 0,4с).

Считаем два варианта торможения: на сухой и мокрой дороге с асфальтобетонным покрытием с коэффициентами

 = 0,8 - сухая дорога;

 = 0,3 - мокрая дорога.

Полученные значения занесем в таблицу 3.8.

Таблица 3.8 - Расчет пути торможения автомобиля.

Скорость, Va, м/с

5

10

15

20

25

30

35

40

44

Путь торможения ( S, м) при:

=0,3 5,4919,4841,9772,95112,43160,40216,87281,83339,91










=0,8 2,848,8718,0830,4846,0664,8386,79111,93134,34










 

Строим график пути торможения автомобиля (Рисунок 8).

 

Рисунок 8 - 5.8 График пути торможения автомобиля.

4. Выводы по работе, сравнение исследуемого автомобиля с аналоговыми моделями

На основе результатов проведенных расчетов и построенных графических зависимостей можем сделать следующие выводы об исследуемом автомобиле ВАЗ - 2121.

Максимальные скорости, которые автомобиль может развивать в заданных дорожных условиях на всех передачах:

= 10 (м/с);

= 17,2 (м/с);

= 26,7 (м/с);

= 36,2 (м/с);

= 43 (м/с).

Тяговая характеристика автомобиля (5.2) показывает, что максимальная скорость автомобиля = 43 (м/с), ограничена следующими показателями:

сила сопротивления воздуха ,

сила сопротивления качению Pk.

На низших передачах суммарное действие этих сил ничтожно мало, и поэтому не оказывает практически никакого влияния на движение автомобиля, однако имеет существенное значение на высшей передачи, когда сила сопротивления воздуха достигает максимальных значений, а тяговая сила уменьшается.

Таким образом, минимальное критическое значение +Pk , которое превышает тяговую силу и ограничивает скорость движения автомобиля, составляет 1,14 (кН).

Максимальное ускорение, развиваемое автомобилем на I передаче:

= 1,96 ( )

Максимальное ускорение, развиваемое автомобилем на V передаче:

= 0,67 ( )

Рассчитанное время разгона автомобиля до скорости 100 (км/ч) составляет 23 (с), что на 5 секунд больше времени разгона, заявленном производителем.

Путь разгона до 100 (км/ч) = 440 (м).

Путь торможения со 100 км/ч на мокрой дороге составляет приблизительно 139 метров, а на хорошем сухом покрытии путь торможения более чем в два раза меньше и равен 56 метров.

Таблица 1.6 - Сравнение автомобиля ВАЗ - 21074 с другими моделями.


Снаряженная масса, кг

Мощность, л.с.

Крутящий момент, Н×м

Максимальная скорость, км/ч

Время разгона до 100 км/ч, сек.

W Passat 1,6

1305

100

150 при 4000 об/мин

192

12,6

ВАЗ - 2121

1060

74

130 при 2100 об/мин

155

17

Skoda Fabia 1.4

1060

86

132 при 380 об/мин

174

12.3

Сhery A1

1040

83

114 при 3800 об/мин

156

14

Заключение

Автомобиль ВАЗ - 2121 начал выпускаться на Волжском автомобильном заводе в 1982 году. На тот период времени автомобиль имел неплохие технические характеристики и мог конкурировать с другими автомобилями в своем классе. Но как видно из приведенной выше таблицы, он не в состоянии конкурировать с современными моделями, т.к. проигрывает им по всем техническим параметрам.

Использованная литература

1. Гришкевич А.И. Автомобиль: Теория. - Мн.: Выш. шк., 1986. - 208 с.

. Токарев А.А. Топливная экономичность и тягово-скоростные качества автомобиля. - М.: Машиностроение, 1982. - 224 с.

. Конструирование и расчет колесных машин высокой проходимости: Расчет агрегатов и систем / Под ред. Н.Ф. Бочарова, Л.Ф.Жеглова. - М.: Машиностроение, 1994. - 404 с.

. ГОСТ 4754 - 97. Межгосударственный стандарт. Шины пневматические для легковых автомобилей, прицепов к ним, легких грузовых автомобилей и автобусов особо малой вместимости. Технические условия. - Минск: Межгосударственный совет по стандартизации, метрологии и сертификации, 1999.

. ГОСТ 5513 - 97. Межгосударственный стандарт. Шины пневматические для грузовых автомобилей, прицепов к ним, автобусов и троллейбусов. Технические условия. - Минск: Межгосударственный совет по стандартизации, метрологии и сертификации, 1999.

. Литвинов А.С., Фаробин Я.Е. Автомобиль: Теория эксплуатационных свойств. - М.: Машиностроение, 1989. - 240 с.

. Мощностной баланс автомобиля / В.А. Петрушов, В.В. Московкин, А.Н. Евграфов. - М.: Машиностроение, 1984. - 160 с.

. Евграфов А.Н., Высоцкий М.С., Титович А.И. Аэродинамика магистральных автопоездов. - Мн.: Наука и техника, 1988. - 232 с.

. Евграфов А.Н., Есеновский-Лашков Ю.К. Аэродинамические свойства автомобилей и автопоездов. Методы исследований. - М.: МГАУ, 1998. - 79 с.

. Европейский Союз. Технические стандарты на автотранспортные средства. Директива Совета 93/53/EC от 25 июля 1996 года. Максимальные разрешенные габаритные размеры и нагрузки (веса) автотранспортных средств.

. Грузовые автомобили: Проектирование и основы конструирования / М.С. Высоцкий, Л.Х. Гилелес, С.Г. Херсонский. - М.: Машиностроение, 1995. - 256 с.

Похожие работы на - Тяговый расчёт автомобиля ВАЗ–2121

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!