Аварии строительных конструкций зданий и сооружений

  • Вид работы:
    Реферат
  • Предмет:
    Безопасность жизнедеятельности
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    11,15 Кб
  • Опубликовано:
    2015-07-08
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Аварии строительных конструкций зданий и сооружений














РЕФЕРАТ

Аварии строительных конструкций зданий и сооружений

1. Обрушение перекрытия бассейна «Дельфин» в Чусовом

авария строительство бассейн здание

4 декабря 2005 г. обрушились металлические конструкции и крыша бассейна «Дельфин». Сигнал об обрушении кровли бассейна поступил на пульт «01» около 15:00 мск. В бассейн упали перекрытия, общая площадь обрушения составила около 100 кв. м. Разбор завалов на месте обрушения продолжался около суток.

В результате трагедии погибли 14 человек, в том числе 10 детей. Все погибшие опознаны, тела переданы родственникам и захоронены. Потерпевшими по делу признаны 56 человек.

Бассейн «Дельфин» был построен 11 лет назад. В сентябре 2004 г. после трагедии в аквапарке «Трансвааль» собственник бассейна Чусовской металлургический завод обратился в «УралПромЭксперт» (г. Пермь) для исследования технического состояния бассейна. По заключению экспертов, техническое состояние перекрытий было признано «работоспособным»

Главной причиной обрушения крыши бассейна «Дельфин» в городе Чусовой Пермского края могла стать сильная коррозия несущих конструкций, считает эксперт института «Проектстальконструкция» Анатолий Оленичев, который участвовал в технической экспертизе причин обрушения бассейна.

«Предварительный анализ конструкций бассейна показывает, что коррозия несущей фермы объекта составляла около 50%, что, соответственно, снижало ее несущие свойства на 50%», - сказал Оленичев в четверг на пресс-конференции в Москве. При этом даже при 35% коррозии объект признается «находящимся в предаварийном состоянии», отметил он. По его словам, эта причина, вероятно, стала главной, поскольку все другие выявленные дефекты не носили критического характера.

Причиной обрушения крыши бассейна в городе Чусовом стало низкое качество металла несущей конструкции кровли и ее слишком большой вес, заявил журналистам в понедельник заместитель губернатора Пермского края Николай Бухвалов. По словам замгубернатора, к таким выводами пришла возглавляемая им специальная техническая комиссия, созданная по инициативе губернатора Пермского края после трагедии в Чусовом.

2. Внезапное обрушение здания

Полное или частичное внезапное обрушение здания - это чрезвычайная ситуация, возникающая по причине ошибок, допущенных при проектировании здания, отступлении от проекта при ведении строительных работ, нарушении правил монтажа, при вводе в эксплуатацию здания или отдельных его частей с крупными недоделками, при нарушении правил эксплуатации здания, а также вследствие природной или техногенной чрезвычайной ситуации.

Обрушению часто может способствовать взрыв, являющийся следствием террористического акта, неправильной эксплуатации бытовых газопроводов, неосторожного обращения с огнем, хранения в зданиях легковоспламеняющихся и взрывоопасных веществ.

Внезапное обрушение приводит к длительному выходу здания из строя, возникновению пожаров, разрушению коммунально-энергетических сетей, образованию завалов, травмированию и гибели людей.

3. Основные причины аварий в строительстве

Анализ аварий конструкций, зданий и сооружений позволяет установить основные причины аварий: дефекты и низкое качество строительно-монтажных работ, отступление от проектов при возведении зданий и сооружений и их элементов, нарушение элементарных правил монтажа и условий обеспечения жесткости и устойчивости конструкций при проектировании и в процессе их возведения, применение материалов и конструкций недостаточной прочности, замена материалов конструкций или их частей без санкции проектных организаций, недостатки проектных решений в совокупности с дефектами производства работ, перегрузка несущих конструкций в процессе эксплуатации, отсутствие надежных средств и методов антикоррозионной защиты. Как отмечалось, также одной из причин обрушений является недостаточная изученность работы некоторых конструкций под нагрузкой, дефектность, неполноценность инженерно-геологических и гидрогеологических изысканий оснований.

Изучение причин аварий позволяет лучше понять закономерности в работе конструкций, зданий и сооружений, привлечь внимание ученых, проектировщиков и строителей к недостаткам проектных решений, устранение которых должно предупредить аварии и тем самым обеспечить надежность сооружений. За последние годы на основе анализа и изучения причин аварий, описанных в настоящей книге, научно-исследовательскими и проектными организациями в целях повышения надежности и долговечности зданий и сооружений вносились предложения по изменению и дополнению соответствующих нормативных документов по проектированию и строительству.

Так, в результате обрушения стальных подкрановых балок на металлургическом заводе дополнительно изучались явления усталости металла от воздействия динамических нагрузок, совершенствовались расчеты тонкостенных металлических конструкций. В связи с обрушением стальных ферм конвейерных галерей от хрупкого разрушения металла дополнительно изучались проблемы ломкости стали в различных условлях эксплуатации металлических конструкций.

Случаи обрушения каркасных зданий из сборных железобетонных конструкций вызвали необходимость совершенствования требований к монтажу таких зданий и обеспечению их пространственной жесткости и устойчивости. В настоящее время в связи с широким внедрением в практику строительства новых объемно-планировочных и конструктивных решений зданий и сооружений, новых конструкций (в том числе легких) научно-исследовательские, проектные и эксплуатирующие организации должны установить натурные наблюдения за работой конструкций в процессе их возведения и в различных условиях эксплуатации. Это позволит оценить надежность и долговечность конструкций, выявить их дефекты, а также подготовить предложения по их дальнейшему совершенствованию.

Натурные наблюдения необходимы для оценки надежности и степени долговечности конструкций и установления срока их службы с учетом отказов, факторов физического, морального и социального старения, огнестойкости, применения средств антикоррозионной защиты и биостоикости и др.


В апреле 1961 г. произошло обрушение каркаса, смонтированного из сборных железобетонных элементов. Здание имело десять этажей, из них девять над землей и один этаж подвальный. Конструкции здания состояли из сборного каркаса и наружных кирпичных самонесущих стен. Длина здания 56,6 м, ширина 21 м с сеткой колонн в поперечном направлении 6,55 + 6,4 + 6,55 м, шаг колонн в продольном направлении 6,1 м (рис. 1). Полная высота здания 41 м.

Каркас представляет собой 10 железобетонных рам, расположенных поперек здания и состоящих из сборных элементов: колонн и ригелей (рис. 2). Междуэтажные перекрытия выполнены из сборных железобетонных плит размером 5,66X1,48 м.

По данным инженерно-геологических изысканий, основанием для фундаментов здания являлись моренные суглинки с гравием и щебнем мощностью 2…5 м. Фундаменты здания железобетонные монолитные из бетона марки М 300 в виде перекрестных лент.

Наружные стены кирпичные толщиной 51 см, запроектированы из семищелевых камней марок 100 и 75. Соединение сборных железобетонных элементов между собой предусмотрено на сварке с заделкой зазоров раствором и бетоном марок М 200…400.

В поперечном направлении расчетная схема была принята в виде 10-этажной рамы с жесткими узлами (рис. 3) и с колоннами, защемленными в фундаменте. В продольном направлении расчетная схема быала принята в виде рам, ригелями в которых должны были являться плиты перекрытий.

По проектному заданию здание было 4-этажным (с подвалом) Г-образной формы в плане. При разработке рабочих чертежей форма в плане была принята прямоугольной и число этажей увеличено до 10.

Общего проекта организации производства работ, а также совмещенного рабочего графика строительно-монтажных работ на строительстве не было. Был разработан только проект монтажа железобетонных конструкций, в котором были приведены перечень оборудования, схема монтажа, стройгенплан и график производства работ. В этом проекте было указано, что к сборке конструкций каждого последующего этажа можно приступать только после окончательного закрепления всех конструкций предыдущего этажа. Вместе с тем методы закрепления монтажных стыков и узлов, включая технологию сварки, в этом проекте не были отражены.

Обращает на себя внимание нечеткость распределения работ между подрядными организациями по замоноличиванию монтажных стыков каркаса. Так, замоноличивание стыков колонн входило в обязанности одной организации, а замоноличивание узлов сопряжений ригелей с колоннами, плит с ригелями и плит между собой - в обязанности другой организации.

К моменту обрушения каркаса здания были полностью закончены работы по устройству фундаментов, почти полностью были возведены стены подвала, частично не были заполнены пазухи котлована. Полы в подвале не были сделаны, хотя засыпка фундаментов в подвале частично осуществлена. Железобетонный каркас был смонтирован почти полностью на все 10 этажей здания. Стыки колонн выполнены только частично, сварено только 50% стальных накладок.

Осмотр разрушенных конструкций показал, что в целом ряде случаев сварка стыкав ригелей не была выполнена. Заполнение раствором стыков ригелей с колоннами произведено в основном только до 3-го этажа. По записи в журнале сварочных работ узлы сопряжения плит были сварены. Однако при осмотре было обнаружено много узлов с несваренными стыками. Замоноличивание стыков плит не производилось. К кладке стен здания выше перекрытия над подвалом не приступали.

Обрушение каркаса произошло в продольном направлении; каркас после обрушения представлял собой груду развалин. В результате обрушения каркаса стены подвала оказались частично разрушенными; колонны были сорваны с фундаментов; анкерные болты срезаны в основном в уровне верха подливки под опорные плиты колонн.

Фундаменты колонн не имели существенных повреждений, заметны лишь незначительные сколы бетона башмаков.

Проверка проекта показала, что в поперечном направлении жесткость и прочность здания должны обеспечиваться поперечными рамами. Поверочный расчет рам выявил достаточную их прочность как в узлах, так и в линейных элементах при полном замоноличивании узлов сопряжения колонн и ригелей до укладки плит междуэтажных перекрытий, что соответствует принятой статической расчетной схеме поперечной рамы.

В действительности плиты перекрытий укладывались до замоноличивания узлов рамы, и ригели работали на нагрузку от собственного веса плит как свободно лежащие балки. В этом случае расчетная схема поперечной рамы изменяется, в связи с чем возникают растягивающие усилия в нижней плоскости ригеля на опорах, что в расчете и в проекте конструкций не нашло отражения. В этих условиях у концов ригелей со стороны воздействия ветра (с наветренной стороны) образуются шарниры.

. Обрушение металлических конструкций

К наиболее повторяемым авариям следует отнести обрушения металлических конструкций покрытий промышленных зданий, а также конвейерных галерей.

Наибольшее число обрушений металлических конструкций покрытий произошло в процессе их монтажа в основном из-за грубых отступлений от проектов, а также вследствие низкого качества изготовления и монтажа конструкций. Следует также отметить, что наибольшее число аварий произошло со стальными конструкциями зданий, ограждающие конструкции (покрытия и стены) которых выполнялись из сборного железобетона.

6. Основные дефекты при монтаже ферм

Особенно много дефектов допускается при монтаже стропильных ферм. Заводы-изготовители иногда заменяют проектные сечения на меньшие, занижают размеры сварных швов, пропускают соединительные прокладки и даже целые элементы. Бывают случаи, когда элементы, запроектированные по одному стандарту, заменяются элементами по другим стандартам без учета разности геометрических и механических характеристик. Допускаются зазоры между элементами и фасовками, доходящими порой до 8…10 мм, а также большое число расцентровок узлов сопряжений ферм.

Основными дефектами при монтаже ферм являются смещения узлов верхнего и нижнего поясов из плоскостей, доходящих иногда до 100…300 мм.

Иногда заводы-изготовители допускают при выполнении вертикальных и горизонтальных связей: замену профилей связей на меньшие, отступление от проектов в части размеров швов (иногда они отсутствуют совсем). Как правило, конструкции собирают с большими эксцентриситетами в узлах с отклонениями до 500 мм. Связевые элементы порой монтируют без правки и ставят изогнутыми. Иногда связи, предусмотренные проектом, вообще отсутствуют.

В отдельных случаях отступления допускаются в узлах сопряжений конструкций ферм с колоннами, ригелей с колоннами, в местах опирания подкрановых балок на колонны. Были случаи, когда узлы сопряжений, запроектированные жесткими, исполнялись при монтаже шарнирно, и наоборот. Иногда для выравнивания подкрановых балок по высоте под опорные части укладывают прокладки без сварки между собой. Опирание подкрановых балок осуществляется не через опорное ребро, а через прокладки или соседнюю балку - через болты.

В результате неправильного монтажа колонн и стропильных ферм сборные железобетонные плиты покрытий имеют недостаточное опирание на фермы. Плиты покрытий заходят на полку верхнего пояса фермы всего на 10…20 мм, а иногда и менее. На одном из заводов фермы покрытий имели такие грубые отклонения, что в результате некоторые плиты не доходили до оси ферм на 180…200 мм. Для поддержания плит во время монтажа были установлены кронштейны из уголков. Опира-ние плит на кронштейны и консоли дополнительно нагружает верхний пояс фермы, вызывая крутящий момент, и не обеспечивает безопасной эксплуатации зданий.

7. Обрушение металлических конструкций покрытий при их монтаже на строительстве сборочно-сварного цеха

В 1962 г. произошло обрушение металлических конструкций покрытий при их монтаже на строительстве сборочно-сварного цеха машиностроительного предприятия. В результате изучения проектно-технической документации и состояния работ по монтажу конструкций, осмотра обрушившихся конструкций, проведения расчетов и испытаний материалов, а также опроса очевидцев аварии и непосредственных руководителей монтажных работ было установлено следующее.

Двухпролетный корпус с пролетами по 36 м имеет длину 198 м (33 оси по 6 м), высоту до конька фермы 26,95 м (рис. 39). Общий объем работ по монтажу конструкций сборочно-сварочного цеха составляет 2540 т металлоконструкций и 1382 м3 сборного железобетона. Проект цеха в стадии КМ составлен специализированным институтом. Деталировочные чертежи КМД по заказу завода металлоконструкций разработаны отделением специализированного института. Металлоконструкции изготовлены заводом металлоконструкций.

Согласно проекту производства работ монтаж конструкций стропильных ферм, фонарей и покрытия надлежало производить, начиная с оси 8 по ось 41. Ввиду отсутствия на площадке к моменту начала монтажа второго гусеничного крана монтаж конструкций перекрытия был начат в пролете Е-И от оси 41 к оси 8.

Прибывшие с завода-изготовителя на площадку металлические конструкции сборочно-сварочного цеха имели дефекты в сварных соединениях узлов стропильных и подстропильных ферм, фонарей и др. Для исправления дефектов сварки на месте заводом были направлены на монтажную площадку электросварщики, причем в сварных швах исправлялись только дефекты, которые обнаруживали внешним осмотром.

Примерно за 1,5 мес до обрушения в пролетах Г - Е к Е - И были смонтированы все колонны, портальные связи, подкрановые балки и подстропильные фермы и был начат в пролете Е - И монтаж стропильных ферм, фонарей и сборных железобетонных плит покрытия.

Ввиду того что проектом связи по фонарям предусмотрены в осях 30-31, а монтаж конструкций был начат с оси 41, для обеспечения устойчивости конструкций фонаря в процессе монтажа по осям 40 и 39 были применены расчалки. Причем было установлено, что конструкции фонарей были закреплены четырьмя расчалками из каната диаметром 15,5 мм и тремя из стальной катанки диаметром 8 мм. В соответствии с проектом производства работ установка металлоконструкций и сборных железобетонных плит покрытия в проектное положение производилась гусеничным краном.

В день обрушения бригада монтажников выполняла работу по укладке сборных железобетонных плит в осях 36-55. При укладке предпоследней плиты по фонарю произошло обрушение смонтированных конструкций покрытия.

При аварии обрушились: две подстропильные фермы ряда Е в осях 36-41 и две подстропильные фермы ряда И в осях 36-41; семь стропильных ферм по осям 35 - 41; фонарных рам по осям 35-40; металлические связи по нижним и верхним поясам стропильных ферм в осях 35-41; связи и импостные уголки по фанарям в осях 35-40; железобетонные плиты покрытия по фермам и фонарям между осями 35-41 и рядами Е - И; подкрановая балка 38-41 ряда И; две фахверковые стойки по оси 41 и часть горизонтальных элементов фахверка. Объем разрушенных металлических конструкций составляет 107 т и 81 м3 сборных железобетонных плит.

При осмотре обрушившихся конструкций было обнаружено: фермы осей 37 и 38 находятся внизу под другими упавшими конструкциями, а фермы осей 35 и 36 упали в сторону фермы оси 37 и находятся сверху фермы 37. Фермы на осях 39, 40 и 41 упали в сторону фермы 38 и находятся сверху фермы 55. Подстропильная ферма 36 - 38 оси Е лежит по оси колонн, подстропильная ферма 36-38 оси И (упала внутрь пролета. Аналогичное положение заняли подстропильные фермы 55-41. Ригели фонарных рам упали в сторону оси 41. Упавшие конструкции расположились двумя группами с промежутком между ними более 6 м;

При обрушении все конструкции сильно деформировались; железобетонные плиты покрытий оказались разбитыми; по стропильным и подстропильным фермам были обнаружены разрывы: фасонного листа крепления опорного раскоса к верхнему поясу в подстропильной ферме И, 39-41 в результате падения фермы, горизонтальной.

Полки в одном из уголков верхнего пояса фермы 37 около среднего. узла в результате падения фермы; по сварным швам среднего растянутого раскоса подстропильной фермы Е, 36-38 в месте его крепления к фасонке нижнего пояса среднего узла.

Кроме этого, имеются разрывы металлических конструкций фонарных рам в среднем узле ригелей в осях 37 и 38. Двутавровые балки ригеля оторвались по сварке от вертикального листа фланцевого соединения этого узла.

Результаты проверки крепления (приварки)' железобетонных плит к верхним поясам стропильных ферм и ригелям фонарных рам показали, что большинство железобетонных плит было приварено к фермам по проекту.

Для проверки качества примененного для конструкции металла были вырезаны 8 образцов, результаты лабораторных испытаний которых показали, что металлоконструкции изготовлены из стали марки СтЗ (спокойная) по действовавшему в то время ГОСТ 380-60.


Вывод

Аварии, строительных конструкций редко происходят внезапно. Обычно можно наблюдать ряд предвестников аварии. Если своевременно заметить признаки приближающейся аварии, то можно вовремя принять профилактические меры: вывести людей из опасной зоны, произвести разгрузку аварийной конструкции, установить временные крепления и т.п. Поэтому так важно инженерно-техническому персоналу строительных и эксплуатационных организаций знать признаки аварийного состояния конструкций.


1. Калинин А.А. Обследование, расчет и усилие зданий и сооружений. Учебное пособие. - М.: АСВ, 2002. - 160 с.

. Казачек В.Г., Нечаев Н.В., Нотенко С.Н. и др. Обследование и испытание зданий и сооружений. Учебное пособие для вузов. - М.: Высшая школа, 2004. - 447 с.

. Федеральный закон Российской Федерации от 30 декабря 2009 г. №384-ФЗ «Технический регламент о безопасности зданий и сооружений».

Похожие работы на - Аварии строительных конструкций зданий и сооружений

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!