Выдающиеся химики-органики России

  • Вид работы:
    Курсовая работа (т)
  • Предмет:
    Химия
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    738,42 Кб
  • Опубликовано:
    2013-09-06
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Выдающиеся химики-органики России

Министерство сельского хозяйства РФ

ФГБОУ ВПО МГАВМиБ

Ветеринарно-биологический факультет

Кафедра химии имени профессоров С.И. Афонского, А.Г. Малахова








КУРСОВАЯ РАБОТА

По дисциплине: «Органическая химия»

Тема: «Выдающиеся химики-органики России»

Выполнил: студент 2 курса 3 группы

Ветеринарно-биологического факультета

Косенков Артем Михайлович

Научный руководитель : Заместитель зав. Кафедрой химии - кандидат химических наук, доцент Фролова Л. А.





Москва 2013 г.

Началом зарождения российской науки можно считать открытие 12 ноября 1725 года Российской Академии Наук в Санкт- Петербурге Первые мысли о ее учреждении возникли у Петра 1, он видел, что России много не достает в развитии наук и промышленности. В 1718 г. Петр I на одном из докладов сделал такую резолюцию: «Сделать академию, а ныне приискать из русских, кто учен и к тому склонность имеет, также начать переводить книги юриспруденции». Намерение Петра I учредить Академию особенно окрепло после избрания его членом Парижской Академии наук. В ответ на избрание Петр I писал: «Мы ничего больше не желаем, как чтоб через прилежность, которую мы будем прилагать, науки в лучший цвет привесть, себя, яко достойного вашей компании члена, показать».

Открытие Академии состоялось после смерти Петра I, при Екатерине 1.

Если принять во внимание, что ко времени открытия С.-Петербургской Академии Наук в России не было достаточно подготовленных ученых, могущих занять место академика, становится понятным, что штат адъюнктов и первых академиков формировался, главным образом, из иностранцев. Выбор и назначение первых академиков производились при ближайшем содействии и рекомендации одного из образованнейших людей того времени - знаменитого философа, математика и физика Христиана Вольфа. В числе первых академиков мы видим таких выдающихся ученых, как знаменитый математик Даниил Бернулли и один из величайших математиков XVIII в. Леонард Эйлер. Однако большинство академической коллегии далеко не было на высоте тех задач, которые предстояло разрешить Академии Наук. Что касается химии, то в этом отношении дело в Академии обстояло особенно плохо. Достаточно сказать, что первым ученым, занявшим, по приглашению президента Академии Блюментроста, кафедру химии, был некто Бюргер - доктор медицины. Как смотрел президент Академии на химию, видно из письма его к Бюргеру: «Если вас несколько затруднит химия, то можно ее откинуть, так как вы... будете в особенности прилежать к практической медицине». Впрочем, Бюргеру не пришлось воспользоваться необычайным советом президента. Бюргер прибыл в Петербург в марте 1726 г., а в июле того же года умер. Неудачны были также и преемники Бюргера. Кафедра химии по существу оставалась незамещенной до занятия ее первым русским ученым химиком и академиком Михаилом Васильевичем Ломоносовым. Вместе с тем следует сказать, что история развития химической науки в России начинается с Ломоносова.

Первый русский химик Михаил Васильевич Ломоносов родился в деревне Мишанинская, против уездного города Холмогоры, в 70 километрах от Архангельска, в семье крестьянина-помора Василия Дорофеевича Ломоносова. Мать Ломоносова-дочь дьякона соседнего села Матигор, Елена Ивановна, урожденная Сивкова. Василий Дорофеевич был зажиточным и предприимчивым помором. В книге «Путешествие академика Лепихина» (1804) имеется выписка из записи, сделанной неким Васили-ем Варфоломеевичем от 4 июля 1788 г.: «Василий Ломоносов промысел имел на море по Мурманскому берегу и в других приморских местах для ловли рыбы трески. Он всегда имел в том рыбном промысле счастье, а собою был простосоеестен и к сиротам податлив, а с соседями обходителен, только гра-моте не учен».

Достоверных сведений о детских и юношеских годах Ломоносова не сохранилось. Из той же выписки Василия Варфоломеевича видно, что уже с 10-летнего возраста Ломоносов вместе с отцом каждое лето и осень ездил на рыбную ловлю в Белое море; иногда на своем рыболовном суденышке они доходили до 70° с. ш.

Суровая природа Севера с величественным явлением северного сияния производила сильное впечатление на юношу, а постоянная борьба с грозной морской стихией выработала в нем черты, столь характерные для поморов: выносливость, наблюдательность, настойчивость и смелость. Грамоте Ломоносов, вероятно, научился у своего односельчанина Ивана Шубного.

Михаил Васильевич рано лишился матери. Отец его женился вторично. В 1724 г., когда Ломоносову было 13 лет, умерла и вторая жена Василия Дорофеевича; отец женился в третий раз. Вторая мачеха не взлюбила мальчика и делала все возможное для отвлечения его от книг и учения. Несомненно, этот семейный гнет и сильное влечение к знанию и наукам привели к тому, что Ломоносов в 19 лет покинул семью и отправился пешком в Москву, имея в кармане несколько рублей денег и паспорт. В Москве Ломоносову вскоре удалось поступить в Славяно-греко-латинскую академию при Заиконоспасском монастыре. Здесь Ломоносов основательно изучил латинский язык. Это обстоятельство было очень важно, так как в те времена латинский язык был международным научным языком. В 1735 г., когда Ломоносов был уже в последнем классе школы, его жизненный путь неожиданно круто изменился. В числе других лучших и способнейших учеников Заиконоспасской школы он был отправлен в Петербург и зачислен в университет при Академии Наук. Мечты Ломоносова осуществились. В университете он быстро обратил на себя внимание своими успехами в науках и вскоре был избран в число молодых людей, предназначенных к посылке за границу со специальной целью изучения горного дела. Так феерично изменялась судьба крестьянина-помора.

В конце сентября 1736 г. Ломоносов и два других студента - Райзер и Виноградов - были отправлены в Германию, сначала в Марбург, куда прибыли 3 ноября 1736 г., а позднее во Фрейбург (июль 1739 г.). Руководить занятиями студентов должен был знаменитый ученый-философ Христиан Вольф, почетный член Санкт-Петербургской Академии Наук.

В результате трехлетнего пребывания за границей, в, Марбурге и Фрей-бурге, Ломоносов, под общим руководством такого выдающегося и широко образованного ученого, каким был Христиан Вольф, прошел едва ли не все важнейшие отделы точных естественных наук того времени и сделался европейски образованным молодым ученым.

Летом 1741 г. Ломоносов возвратился в Петербург. В течение долгого времени он никакой определенной должности в Академии не занимал. Из числа трех работ, представленных им в Академию в виде отчета о заграничной командировке, особого внимания заслуживает работа «Элементы математической химии». Уже самое заглавие труда, совершенно необычное для того времени, поражает даже современного читателя глубиной содержания.

Ознакомление Академической коллегии с отчетными трудами Ломоносова не оказало никакого влияния на его продвижение по службе. Он продолжал бедствовать. Дело дошло до того, что, будучи с января 1742 г. в звании адъюнкта физического класса, он вынужден был подать жалобу такого содержания: «Почти за целый год я, нижайший, жалования от Академии не получал, оттого пришел в крайнюю скудость. А ныне я нахожусь болен и не только лекарств, но и дневной пищи себе купить на что не имею и денег достать взаймы не могу». На это последовал такой ответ: «За неимением в казне денег выдать Ломоносову пять рублей». При таких условиях, казалось бы, не было никакой возможности заниматься науками. К тому же в Академии не было химической лаборатории, и это обстоятельство еще более затрудняло положение Ломоносова как специалиста по химии. И вот он с жаром принимается за хлопоты об устройстве в Академии первой русской химической лаборатории. Однако в его первом представлении об устройстве лаборатории было отказано. Напрасно он доказывал, что без лаборатории никаких экспериментов производить нельзя, а потому деньги, затраченные государством на его обучение, пропадут даром. Оскорбленный и раздраженный таким безразличным и бездушным отношением к организации химической лаборатории,- а это он считал делом государственной важности,- Ломоносов проникся ненавистью к канцелярии Академии и ее властителю Шумахеру.

С осени 1742 г. началась его борьба с Шумахером и немецким консервативным большинством Академической коллегии, борьба, на которую им было потрачено много сил и здоровья. «В Академии больше мне надобно авторитету,- говорил Ломоносов,- чтоб иностранные перевесу не имели». Обладая прямым и не знающим никаких компромиссов вспыльчивым характером, Ломоносов нередко позволял себе резкие выступления против своих врагов. По нравам того времени в этом не было собственно ничего особенно-го, но враги Ломоносова воспользовались слабостью Ломоносова и начали против него генеральную атаку. В начале февраля 1743 г., когда Ломоносов явился на заседание Академии, академики объявили ему, что они не желают его видеть в своей среде. 25 февраля Ломоносов вновь явился на заседание Академии и учинил большой скандал, ругал Шумахера и называл его вором, прочих господ академиков также бранил, не стесняясь в выражениях.

Борьба Ломоносова против академиков была в сущности протестом против рутины и косности, царивших в Академии. Результаты борьбы были для Ломоносова, однако, печальны. Специальная комиссия, разбиравшая дело Ломоносова, постановила арестовать Ломоносова и держать его под караулом. Домашний арест Ломоносова продолжался более семи месяцев (с 28 мая 1743 г. по 8 января 1744 г.).

В начале 1744 г. Сенат восстановил Ломоносова в его должности, а в июле 1745 г., по указу молодой царицы Елизаветы Петровны, Ломоносов, минуя Академию, был назначен профессором химии. 12 августа того же года Ломоносов первый раз присутствовал на заседании конференции как полноправный член Академии. Он вновь начинает свои хлопоты о постройке химической лаборатории, и на этот раз, поддержанный многими академиками, направляет свою просьбу в Сенат. 1 июля 1746 г. последовало, наконец, разрешение на постройку лаборатории. Однако прошло еще два года, прежде чем заветная мечта Ломоносова претворилась в действительность. В период с 1746 по 1748 г. Ломоносов написал важную работу - «Теория упругой силы воздуха». В это же время он закончил перевод с латинского языка на русский труда своего бывшего руководителя Хр. Вольфа под названием «Вольфианская Експериментальная Физика». Издание труда Хр. Вольфа на русском языке имело огромное значение для распространения точных знаний в России. В знаменитом предисловии к этому переводу Ломоносов разъясняет, почему надо отдать решительное предпочтение картезианской философии (т. е. философии Декарта) перед философией Аристотеля:

«Мы кроме других его (т. е. Декарта) заслуг особливо за то благодарны, что он ученых людей ободрил против Аристотеля». «В новейшее время,- говорит дальше Ломоносов,- науки столько возросли, что не только за тысячу, но и за сто лет жившие едва могли того надеяться. Сие больше оттого происходит, что ныне ученые люди, а особливо испытатели натуральных вещей мало взирают на родившиеся в одной голове вымыслы и пустые речи, но больше утверждаются на достоверном искусстве... Мысленные рассуждения произведены бывают из надежных и много раз повторенных о п ы т о в».

Особо важная заслуга Ломоносова заключается также во введении новой научной терминологии. Такие общеизвестные термины и названия, как термометр, барометр, градус, атмосфера и т. п., впервые на русском языке начал употреблять Ломоносов. В том же предисловии к труду Вольфа Ломоносов по этому поводу пишет: «Сверх того, принужден я был искать слов для на-именования некоторых физических инструментов, действий и натуральных вещей, которые хотя сперва покажутся несколько странными, однако надеюсь, что они со временем через употребление знакомее будут»

В 1748 г., наконец, осуществилось заветное желание Ломоносова: началась постройка первой в России химической лаборатории. Хлопоты по ее устройству потребовали от Ломоносова большого напряжения всех его организаторских сил. Как только лаборатория была построена и частично оборудована, Ломоносов немедленно приступил к экспериментальным работам.

Его опыты и исследования, однако, не были оценены современниками и лишь более чем сто лет спустя вызвали величайшее восхищение и удивление всего ученого мира. Особого внимания заслуживают его замечательные опыты над окислением металлов при нагревании в запаянных сосудах. Взвешивая прибор до и после опыта на точных химических весах, Ломоносов приходит к выводу, что вес прибора после происшедшей химической реакции окисления металла не изменяется. Этими опытами Ломоносов опроверг объяснение аналогичных опытов знаменитого английского ученого Роберта Бойля. Роковая ошибка Р. Бойля заключалась в том, что он по окончании опыта вскрывал запаянный сосуд, в результате чего в реторту врывался воздух, вес прибора увеличивался, что и привело Р. Бойля к неправильному выводу о существовании особой весомой «материи огня». По этому поводу Ломоносов делает следующий важный вывод: «Оными опытами нашлось, что славного Роберта Бойла мнение ложно».

Здесь уместно вспомнить, что совершенно такое же повторение опытов Р. Бойля через 17 лет после опытов Ломоносова было сделано гениальным французским химиком Лавуазье, причем, как известно, Лавуазье пришел в объяснении результатов опытов к тем же выводам, что и Ломоносов. Таким образом, приоритет в открытии закона сохранения вещества при химических превращениях принадлежит нашему гениальному соотечественнику М. В. Ломоносову.

Открытие Ломоносова осталось непризнанным его современниками - как заграничными учеными, так и соотечественниками, Лавуазье же еще при жизни был признан как гениальный основатель нового направления в химии. Мысли о сохранении вещества при самых разнообразных процессах, происходивших в природе, Ломоносов впервые сформулировал еще в 1748г. в письме к Л. Эйлеру от 5 июля: «Все изменения, случающиеся в природе, происходят так, что если что-либо прибавится к чему-либо, то столько же отнимется от чего-то другого. Так, сколько к какому-нибудь телу присоединяется материи, столько же отнимается от другого. Столь глубокие истины, которые с такою ясностью сформулировал Ломоносов, не только не были поняты его современниками и коллегами по Академии, но вызвали известную оппозицию и злобу против ученого, который нашел в себе силы восстать против взглядов признанного во всем мире авторитета - Р. Бойля. Лишь гениальный математик Л. Эйлер, кажется единственный из академиков, находившийся в то время в дружественных отношениях с Ломоносовым, правильно оценил значение великих трудов Ломоносова.

М. В. Ломоносов был ученым-энциклопедистом; читателя, подробно знакомящегося с трудами Ломоносова, поражает не только широта и глубина его мыслей и идей, но и, можно сказать, необъятный круг вопросов, который он вовлекал в орбиту своих научных исследований. Особенного внимания заслуживают мысли и рассуждения Ломоносова о взаимной связи таких отделов точного знания, как математика, механика, физика, химия.

М. В. Ломоносова по всей справедливости можно назвать не только первым русским физико-химиком, но и первым физико-химиком вообще. Уже вскоре по возвращении из-за границы Ломоносов представляет в Академию замечательный труд, носящий совершенно необычное название - «Элементы математической химии», и тем самым как бы одним взмахом поднимает химию на недосягаемую высоту. Не надо забывать, что до Ломоносова химия не считалась даже наукой, а относилась скорее к категории искусств. Ломоносов впервые определяет химию как науку изменений, происходящих в составном теле, «поскольку оно составное». «Все изменения тел,- пишет Ломоносов в «Элементах»,- происходят при помощи движения... движения могут быть объяснены законами механики... кто хочет глубже проникнуть в исследование химических истин, тот должен необходимо изучать механику. И так как знание механики предполагает знание математики, то стремящийся к ближайшему изучению химии должен хорошо знать математику».

В своем докладе об организации химической лаборатории Ломоносов между прочим указывает на необходимость употреблять при химических исследованиях только чистые, без «постороннего примесу» вещества. И далее: «самородных» и сделанных материй исследовать пропорциональную тягость (т. е. удельный вес).. Сверх того к химическим опытам присовокуплять оптические, магнитные и электрические опыты, ибо,- поясняет Ломоносов,- я не токмо в разных авторах усмотрел, но и собственным искусством удостоверился, что химические эксперименты, будучи соединены с физическими, особливые действия показывают».

В 1752 г. Ломоносов еще определеннее обосновывает положения новой науки, которую он называет «истинной физической химией». Он определяет объем и методы новой науки и впервые в истории химии читает студентам университета курс физической химии. «Физическая химия,-учит своих слушателей Ломоносов,-есть наука, объясняющая на основании положений и опытов физических причину того, что происходит через химические операции в сложных телах».

Размах научной, литературной и общественной деятельности Ломоносова был так велик, что трудно даже перечислить те области, в которых он принимал большое и активное участие. Кроме физики и химии, Ломоносов отдавал немало сил геологии, минералогии, металлургии, метеорологии, астрономии, истории, географии, картографии, мореплаванию, языковедению и многим другим наукам.

Более всего поражает в этой титанической деятельности Ломоносова то, что какого бы предмета, какого бы вопроса он ни касался, он всегда схватывал самую глубину его, делая выводы и заключения, которые не только опережали современные ему науку и понятия на столетие и больше, но и были истинно пророческими.

Если великие труды Ломоносова по химии, физике и другим естественным наукам не были оценены его современниками, то все же его широкая научная и просветительная деятельность оказала огромное влияние на подготовку почвы для распространения в России научных знаний. Особая заслуга Ломоносова в этом направлении выразилась в его непосредственном участии при составлении проекта устава Московского университета, учрежденного в 1755 г.

Ярким признанием заслуг Ломоносова перед нашей родиной служит Указ Президиума Верховного Совета СССР от 7 мая 1940 г., гласящий: «В ознаменование 185-летнего юбилея Московского государственного университета присвоить университету имя его основателя М. В. Ломоносова».

Родился в Гёттингене. В 1768 г. вместе с отцом, астрономом Г. М. Ловицем, приехал в Россию. После трагической гибели отца во время Пугачёвского бунта воспитывался у математика Леонарда Эйлера. Был учеником в Главной аптеке в Петербурге (до 1780). Учился в Гёттингенском университете (1780-1782). В 1784-1797 гг. вновь в Главной аптеке в Петербурге, где и выполнил значительную часть своих исследований. С 1797 г. работал в домашней лаборатории, находясь официально на службе в Петербургской АН в качестве профессора химии.

Академик Т. Е. Ловиц принадлежит к числу выдающихся ученых-химиков конца XVIII столетия. В Академии он последовательно занимал звания и должности члена-корреспондента, адъюнкта и ординарного академика по кафедре химии (1793-1804). Его многочисленные труды, посвященные физической, неорганической, аналитической, органической, фармацевтической химии и химической технологии, получили в свое время широкую известность и нашли практическое применение в производстве и лаборатории. Научная деятельность Т. Е. Ловица в целом и особенно результаты его классических экспериментальных исследований вызвали искреннее восхищение у его современников и нашли множество последователей и подражателей.

Из фундаментальных научных открытий Ловица прежде всего следует упомянуть об открытии им адсорбционной способности угля. К этому открытию он пришел работая с чистой виннокаменной кислотой, и его интересовал способ воспрепятствования побурению чистого раствора этой кислоты. В поисках нужного метода он пришел к углю, на эту мысль его натолкнуло то, что, как он сам пишет: «удерживая горючее столь сильно, уголь должен обладать способностью притягивать к себе горючее (из других тел) в большом количестве, если бы он пришел где-либо в соприкосновение с ним. Так как бурый цвет нашей жидкости вызывается горючим, образовавшимся вследствие частичного распада кислоты на составные части, причем освободившиеся маслянистые части оказываются теперь весьма слабо связанными с кислотой как посторонние по отношению к ней, я, далее, пришел к заключению, что это горючее должно весьма легко и полностью отделиться от чистой кислоты, как только оно войдет в соприкосновение с телом, обладающим большим сродством к нему и способным вступать с ним в соединение». Открытая способность угля так же пригодилась при изготовлении другого превосходного и полезного лечебного средства, а именно листовой виннокаменной соли. Любопытно, что это открытие, до сего дня находящее бесчисленное множество применений в лабораториях и в химической промышленности, было сделано им, исходя из теории флогистона.

Ловиц открыл также явление пересыщенных и переохлажденных растворов солей, впервые получил кристаллическую уксусную кислоту, абсолютный спирт, безводный эфир, кристаллический виноградный сахар и некоторые другие органические препараты.

Константин Сигизмундович Кирхгоф (1764-1833)

Русский химик. Родился в г. Тетерове (Мекленбург-Шверин, Германия). В 1792-1802 гг. помощник директора, затем директор Главной аптеки в Петербурге. Академик Петербургской АН (с 1812, член-корреспондент с 1807).

В области органической химии Кирхгоф сделал в 1811 г. Замечательное открытие: ему впервые удалось получить из крахмала сахар(глюкозу). В то время занимаясь опытами по производству фарфора он искал дешевый и доступный заменитель аравийской камеди. Перепробовав несколько различных веществ, Кирхгоф остановился на крахмале. Разбавив крахмал водой, добавив серной кислоты и нагрев эту смесь, он получил густую вязкую массу, похожую на камедь. На вкус это вещество обладало выраженным сладким вкусом. Из этого он сделал вывод, что часть крахмала перешла в сахар. Но как это произошло он не смог понять.


За свое открытие Кирхгоф был удостоен звания действительного члена Петербургской Академии наук, а само открытие очень скоро (буквально через год) получило повсеместное практическое признание. Сейчас известно, что в присутствии кислоты. как катализатора, происходит разрыв полимерных цепочек крахмала с присоединением молекулы воды к каждому звену, то есть гидролиз. Схематически этот процесс можно себе представить так. Сначала крахмал превращается в декстрины, затем из декстринов образуется сложный (двойной) сахар - мальтоза, а уже в результате расщепления мальтозы получается две молекулы глюкозы.

Если процесс гидролиза не идет до конца, получают смесь всех трех продуктов - декстринов, мальтозы, глюкозы. Эту смесь, растворенную в небольшом количестве воды, принято называть патокой, это и есть именно тот сахар из крахмала.

Несколько позднее, в 1814 г., Кирхгоф сделал другое, не менее важное открытие - получение сахара (мальтозы) из крахмала под действием солода (диастаза). Обе открытые Кирхгофом реакции являются классическими.

Герман Иванович Гесс. (26 июля (7 августа) 1802, Женева - 30 ноября (12 декабря) 1850, Санкт-Петербург)

Трехлетним ребенком был привезен отцом в Россию, где и проходили вся его научная деятельность.

По окончании Дерптского университета по медицинскому факультету Гесс всецело отдался химии и закончил свое химическое образование в Стокгольме, в лаборатории знаменитого химика Берцелиуса. В 1830 г. Гесс занял кафедру химии во вновь открывшемся Петербургском химикотехнологическом институте, а в 1834 г. был утвержден в звании ординарного академика.

Мировую известность Гесс получил за свои работы в области термохимии, и он по праву считается ее основателем.

Первая работа Гесса по термохимии «О выделении тепла в кратных от-ношениях» вышла в 1839 г. и была напечатана в «Анналах Либиха».

Знаменитая работа Гесса, где было сформулировано основное положение термохимии, была напечатана в «Анналах Поггендорфа» в 1840 г., т. е. за два года до опубликования; работ Р. Майера и Джоуля о механической теории теплоты.


«Количество тепла,- писал в этой работе Гесс,- развивающегося при каком-либо химическом процессе, всегда одно и то же, протекает ли данное химическое превращение сразу, или постепенно, через несколько стадий», т. е., другими словами, тепловой эффект реакции зависит только от начального и конечного состояния системы реагирующих веществ. Установленный Гессом «закон постоянства сумм тепла» дает возможность вычислить тепловые эффекты химических процессов, недоступных непосредственному измерению.

На рисунке приведено схематическое изображение некоторого обобщенного химического процесса превращения исходных веществ А1, А2… в продукты реакции В1, В2…, который может быть осуществлен различными путями в одну, две или три стадии, каждая из которых сопровождается тепловым эффектом ΔHi. Согласно закону Гесса, тепловые эффекты всех этих реакций связаны следующим соотношением:


Второй, не менее важный закон термохимии был открыт и опубликован Гессом в 1842 г. Это - закон термонейтральности, т. е. отсутствия теплового эффекта при реакциях обменного разложения солей. Явление это, как известно, нашло полное объяснение только после установления Аррениусом в 1887 г. теории электролитической диссоциации.

Из работ Гесса, относящихся к области органической химии, следует упомянуть об открытии им в продуктах окисления тростникового сахара кислоты, названной им сахарной. Результаты этой работы первоначально оспаривались Тауловым, учеником Ю. Либиха, но затем блестяще подтвердились исследованиями Гейнце.


Гесс занимался также вопросами методики преподавания химии. Его учебник «Основания чистой химии» (1831) выдержал семь изданий (последнее - в 1849 г.) Именно он служил основным учебником химии для всех высших учебных заведений России в течение нескольких десятилетий, вплоть до 60-х годов. По учебнику Гесса училось целое поколение отечественных химиков, в том числе Д. И. Менделеев и А. М. Бутлеров, им пользовались также Н. Н. Зинин и А. А. Воскресенский.

Свой учебник он постарался сделать максимально понятным и доступным для понимания студентами. Одной из целей которые он преследовал при написании, это не только издать наиболее современный учебник , но и заинтересовать учащихся. Об этом свидетельствует замечание напечатанное в начале учебника: «Я старался описывать избранные предметы так, чтобы учащиеся могли понимать их без помощи преподавателя. Неорганическую Химию я старался сделать сколько возможно полною не относительно отдельных фактов, но относительно основных понятий в науке. Что же касается до Органической Химии, то теперь все в том согласны, что она в настоящем состоянии науки, несмотря на быстрые ее успехи, не может быть изложена удовлетворительным образом. Поэтому я извлек из этой части науки только то, что с некоторою достоверностью известно. Если кому из читателей изложение это покажется слишком коротким, но предмет любопытным, то я достиг своей цели».

Александр Абрамович Воскресенский. (25 ноября 1809, Торжок - 21 января 1880 года, Петербург)

В Петербурге в конце 30-х годов успехи органической химии связаны с именем А. А. Воскресенского (1809-1880), «дедушки русской химии», как называл его Д. И. Менделеев.

Александр Абрамович Воскресенский родился в 1809 г. в г. Торжке, Тверской губернии, в семье дьякона. Он блестяще окончил семинарию и в числе немногих семинаристов поступил в Петербурге в Главный педагогический институт - оригинальное высшее учебное заведение, давшее России немало выдающихся ученых. (Д. И. Менделеева, Н. И. Пирогова). По окончании института с золотой медалью Воскресенский вместе с другими талантливыми русскими молодыми людьми, в том числе с будущей знаменитостью - Н. И. Пироговым, был отправлен для завершения образования за границу.

Здесь он изучал химию в лабораториях выдающихся химиков того времени - Митчерлиха, Розе и Магнуса в Берлине и Ю. Либиха в Гиссене. Д. И. Менделеев свидетельствует, как он лично слышал от Ю. Либиха, что «среди всей массы его учеников он считал А. А. Воскресенского наиболее талантливым».



Еще во время пребывания в лаборатории Ю. Либиха Воскресенский начинает ряд работ по органической химии, доставивших ему широкую известность. К ним прежде всего можно отнести установление элементарного состава нафталина и определение состава хинной кислоты.

Воскресенский точно установил формулу хинона, в то время как знаменитый Ф. Велер на основании своих анализов сделал неверные выводы, что и было впоследствии показано французским химиком Лораном.

Воскресенский открыл и установил состав нового, сходного с теином или кофеином алкалоида, содержащегося в какао. Он назвал его теобромином. Им были подробно исследованы состав и свойства донецких каменных углей и впервые показано, что в России имеются свои каменные угли, нисколько не уступающие, а в некоторых отношениях и превосходящие лучшие зарубежные угли.

Чрезмерно загруженный огромной педагогической работой чуть ли не в десятке учебных заведений Петербурга, Воскресенский вскоре сокращает объем своей научной деятельности, к великому огорчению и удивлению Ю. Либиха.

Значение А.А. Воскресенского для развития русской химической науки определяется прежде всего его преподаванием химии и привлечением русской молодежи в ряды адептов химической науки. По этому поводу Д. И. Менделеев с обычной для него яркостью и образностью пишет: «Воскресенскому и Зинину, его сверстнику, принадлежит честь быть зачинателями самостоятельного русского направления в химии... Принадлежа к числу учеников В., я живо помню ту обаятельность безыскусственной простоты изложения и то постоянное наталкивание на пользу самостоятельной разработки научных данных, какими А. А. Воскресенский вербовал много свежих сил в область химии. Другие говорили часто о великих трудностях научного дела, а у Воскресенского мы в лаборатории чаще всего слышали его любимую поговорку: «Не боги горшки обжигают и кирпичи делают», а потому в лабораториях, которыми заведовал Воскресенский, не боялись приложить руки к делу науки, а старались лепить и обжигать кирпичи, из которых слагается здание химических знаний».

Умер А. А. Воскресенский в 1880 г. в Петербурге.

Фрицше Юлий Федорович (1808 - 1871)

В одно время с А. А. Воскресенским протекала в Петербурге научная деятельность другого выдающегося органика, академика Ю.Ф. Фрицше - одного из последних представителей русских академиков-иностранцев. Юлий Федорович Фрицше не занимался педагогической работой и, состоя в Академии Наук последовательно в звании адъюнкта, экстраординарного и ординарного академика (1852), посвятил себя исключительно науке. Им было сделано много важных открытий в области органической химии, не объединенных, впрочем, какой-либо общей идеей.


К наиболее известным можно причислить работы, связанные с выяснением строения мурексида как аммонийного производного пурпуровой кислоты, получение из природной краски индиго антраниловой кислоты, а из последней - анилина (название это, введенное в науку Фрицше, сохранилось до сих пор) , Мурексид


Получение антраниловой кислоты из фталивого ангидрида


открытие фотохимического превращения антрацена в параантрацен.


Особенно обширное применение в лабораториях получила найденная им реакция пикриновой кислоты со многими ароматическими углеводородами (а позднее и с гетероциклическими соединениями) с образованием хорошо кристаллизующихся молекулярных соединений.

Многочисленные, но не связанные, как сказано выше, какой-либо общей идеей научные открытия Ю. Ф. Фрицше не оказали большого влияния на развитие органической химии.

Бейльштейн, Фёдор Фёдорович. (17 февраля 1838, Санкт-Петербург - 18 октября 1906, там же)

Федор Федорович Бейльштейн родился в 1838 г. в Петербурге. По окончании средней школы он учился и работал за границей (1853-1855), в Гейдельберге у Бунзена и у Кекуле, в Мюнхене у Либиха, в Геттингене у Велера.

В 1858/59 г. Бейльштейн работал в Париже в лаборатории Вюрца. В 1865 г. он получил приглашение занять кафедру в Петербургском технологическом институте и с 1867 по 1896 г. он - профессор в этом институте. В 1886 г. Бейльштейн был избран в Академию Наук, вместо умершего Н. Н. Зинина.


Бейльштейн успешно и плодотворно работал в области химии ароматических соединений, в особенности в области замещенных бензола. Почва для обоснования данной Кекуле теории бензольного ядра в (значительной степени была подготовлена экспериментальными работами Бейльштейна. Значительную роль в деле всеобщего признания химиками теории бензольного ядра Кекуле имели экспериментальные работы Бейльштейна в области существования изомера бензойной кислоты, так называемой салиловой кислоты Кольбе, существование которой не укладывалось в рамки теории Кекуле. Бейльштейн блестяще доказал, что «салиловая» кислота Бензойная кислота

Кольбе не что иное, как загрязненная бензойная кислота.

Очень важны и интересны и в теоретическом и в практическом отношении работы Бейльштейна о действии хлора на толуол. Им было показано, что в зависимости от условий хлор может замещать водород ядра или боковой метальной группы.


Бейльштейн является также одним из пионеров в изучении кавказской нефти. При активном содействии своего сотрудника А. А. Курбатова, он впервые показал, что наша кавказская нефть существеннно отличается от американской: она содержит преимущественно гидрогенизированные ароматические углеводороды, в то время как американская в основной массе состоит из парафинов.

Тетралин Декалин

Гидрогенизированные ароматические углеводороды

Наконец Бейльштейн известен химикам всего мира как автор знаменитого руководства по органической химии, изданного на немецком языке. Первое издание этого беспримерного в истории химии труда вышло в 1881-1883 гг.

Николай Александрович Меншуткин. (12 октября 1842, Санкт-Петербург - 23 января 1907, там же)

Большое значение в развитии органической химии в России имеет обширная и плодотворная деятельность Н. А. Меншуткина.

Николай Александрович Меншуткин родился в Петербурге в 1842 г.

Среднее образование он получил в Петербурге, в Училище св. Петра. В 1858г. он поступил на естественное отделение физико-математического факультета Петербургского университета, который окончил в 1862 г. со степенью кандидата. Особое влияние на направление его будущей научной деятельности оказал его учитель - Н. Н. Соколов. В 1863 г. Н. А. Меншуткин отправилсяза границу, где работал в лабораториях А. Штреккера в Тюбингене, А. Вюрца в Париже и Г. Кольбе в Лейпциге.

В 1866 г. он защитил при Петербургском университете магистерскую диссертацию «О водороде фосфористой кислоты, не способном к металлическому замещению при обыкновенных условиях для кислот». Эта работа имеет важное значение в том отношении, что в ней впервые были применены органические производные фосфористой кислоты для решения вопроса об ее строении. Хотя автор диссертации сделал не оправдавшиеся в дальнейшем выводы о трехгидроксильной природе фосфористой кислоты, но его метод применения органических соединений для решения вопросов о строении неорганических соединений был едва ли не первым в истории химии. Фосфористая кислота

С того же, 1866, года Н. А. Меншуткин начинает преподавание в Петербургском университете. В 1869 г. он защитил докторскую диссертацию «Синтез и свойства уреидов», в которой определенно сказывается влияние А. Штреккера. С 1869 г. Н. А. Меншуткин состоял профессором Петербургского университета; с 1885 г. он - заведующий кафедрой органической химии.

Нельзя не отметить его выдающейся деятельности в роли преподавателя и профессора. Им впервые введены в университете систематические практические занятия по качественному и количественному анализу. Его учебник аналитической химии выдержал более семи изданий и переведен на немецкий и английский языки.

Чрезвычайно важные работы были произведены им по вопросу о влиянии строения спиртов и органических кислот на образование сложных эфиров. Фундаментальным выводом из этих исследований, продолжавшихся в течение почти 30 лет, надо считать установление влияния строения спиртов и кислот на скорость и предел эфирообразования, а также влияния растворителей на скорость образования эфиров.

Реакция этерификации

В дальнейшем Н. А. Меншуткин расширил круг своих исследований этого рода, введя изучение реакции образования и обратной реакции разложения амидов кислот и т. п. О значении этих работ известный физико-химик В. Оствальд отозвался так: «Ему мы обязаны основанием стехиометрии химической динамики».

Получение амида изомасляной кислоты

Нельзя не отметить, что Н. А. Меншуткин, кажется первый из русских химиков, заинтересовался историей развития химической науки. Ему принадлежит известный в свое время труд в этой области - «Очерк развития химических воззрений». Тем непонятнее увлечение Н. А. Меншуткина идеями Лорана и Жерара, а также Кольбе, в ту пору развития органической химии, когда на смену им пришла теория химического строения. А. М. Бутлеров должен был вести, необходимую для расширения круга последователей теории химического строения и для окончательного укрепления позиций этой теории, полемику и борьбу со взглядами Н. А. Меншуткина, что особенно ярко выражено в брошюре А. М. Бутлерова «Химическое строение и теория замещения».

Наряду с Менделеевым, Меншуткин был одним из наиболее активных участников в деле основания «Русского химического общества». В течение 39 лет, с самого основания «Журнала Русского физико-химического общества», он состоял его бессменным редактором.

Александр Парфирьевич Бородин. ( 31 октября 1834 - 27 февраля 1887)

А. П. Бородин родился 31 октября 1834 г. в Петербурге. Он получил прекрасное домашнее образование. Уже в раннем возрасте он хорошо владел французским, немецким и английским языками, увлекался естественными науками, ботаникой и зоологией, но особенно его привлекала химия.


В 1850 г. А. П. Бородин блестяще выдержал приемные испытания при Медико-хирургической академии и, несмотря на свои молодые годы (ему едва минуло 16 лет), был принят в число вольнослушателей Академии. Его больше всего привлекали занятия по химии под руководством Н. Н. Зинина. В 1856 г. Бородин окончил Академию с отличием и вскоре был назначен ординатором в военно-сухопутный госпиталь. Однако он вскоре бросил профессию врача и начал серьезно заниматься химией в лаборатории Н. Н. Зинина. В 1859 г. Бородин был командирован за границу, где работал по химии в Гейдельберге у Эрленмейера и в Пизе (Италия), в лаборатории Лукка и Тассинари.

По возвращении из-за границы Бородин был избран (8 декабря 1862 г.) адъюнкт-профессором, а через два года (в апреле 1864 г.) - ординарным профессором Медико-хирургической академии, где он занял кафедру своего учителя Н. Н. Зинина. Первые три научные работы его были выполнены на темы Н. Н. Зинина. Большое значение имела его первая самостоятельная работа, касающаяся оригинального метода получения бромзамещенных жирных кислот действием брома на серебряные соли кислот (1861). Еще больше значение имел открытый им метод получения фторангидридов органических кислот. Первый представитель фторангидридов - фтористыйбензоил был получен при действии бифторида калия на хлористый Фтористый бензол бензоил (1862).

Интересны исследования А. П. Бородина в области реакций уплотнения альдегидов (1863-1873): он получил уплотнением уксусного альдегида алдоль (одновременно с А. Вюрцем и независимо от него). От дальнейших исследований в этом направлении он отказался, предоставив развитие этой интереснейшей области химии знаменитому А. Вюрцу.


Как общественный деятель А. П. Бородин принимал живейшее участие в развитии высшего женского образования в России. Он был одним из учредителей женских врачебных курсов, где преподавал химию и состоял бессменным казначеем общества вспомоществования слушательницам курсов. Говоря о выдающейся личности А. П. Бородина и его влиянии на развитие русской культуры, нельзя пройти мимо его музыкальной деятельности. А. П. Бородин - гениальный композитор, и его музыкальные произведения, опера «Князь Игорь», симфонии и струнные квартеты,- шедевры мировой музыкальной литературы.

А. П. Бородин скончался 27 февраля 1887 г., в самом расцвете своей научной и музыкальной деятельности

Лион Николаевич Шишков. (1830-1908)

Особое место в истории развития органической химии в России принадлежит Л. Н. Шишкову. Он первый из русских химиков занимался исследованием взрывчатых веществ, этого интереснейшего и в те времена совершенно не исследованного отдела органической химии.

Леон Николаевич Шишков родился в 1830 г. в Данковском уезде, Рязанской губернии. После блестящего окончания в 1848 г. Михайловского артиллерийского училища в Петербурге, Шишков поступил в Михайловскую артиллерийскую академию, где сильно увлекся химией и обратил на себя внимание своими первыми научными работами.

По окончании в 1851 г. Академии, Л. Н. Шишков, 21 года от роду, назначается штатным преподавателем химии в Артиллерийской академии и Артиллерийском училище. В 1856 г. он был командирован с научной целью в Германию, где работал у знаменитого Р. Бунзена. Вместе с Бунзеном он выполнил труднейшее для того времени исследование о горении черных порохов, причем им были произведены анализы всех продуктов горения и впервые вычислена температура горения черного пороха. Совместно с Р. Бунзеном он дал также теорию горения пороха. Классическая работа Р. Бунзена и Л. Н. Шишкова появилась в печати в 1857 г. Работа эта сразу обратила на себя внимание химиков и была переведена с немецкого на другие европейские языки. Так, в 1859 г. эта работа была напечатана на французском языке под названием: «Химическая теория горения порохов» Р. Бунзена и Л. Шишкова», Париж, 1859).

Еще до заграничной командировки Л. Н. Шишков, не имея ни руководства, ни даже консультации, приступил с 1855 г. к изучению труднейшего вопроса о строении гремучей и фульминовой кислот (гремучего серебра (AgCNO ) и ртути (Hg(CNO)2)).


Продолжая эти работы за границей, Шишков представил в 1857 г. Свое исследование о строении гремучей кислоты в Парижскую Академию наук, чем привлек и себе внимание ученого мира. Это - первая русская химическая работа, доложенная в Парижской Академии наук.

В дальнейшем Л. Н. Шишков при исследовании продуктов разложения гремучей и фульминовой кислот открывает новые простейшие нитропроизводные метана - тринитрометан, или, иначе, нитроформ, и тетранитрометан.

Но формула строения гремучей кислоты, данная Шишковым, оказалась неправильной. Он представлял строение гремучей кислоты как соединение динитроэтилена с синильной кислотой. Замечу, что формула Кекуле, который рассматривал ее как ацетонитрил, была, однако, еще дальше от истинной.

Выяснение строения гремучей кислоты потребовало огромного напряжения сил химиков; ее формула была установлена лишь спустя 50 лет после работ Шишкова.

Значение научной деятельности и самой личности Шишкова в деле развития органической химии в России определяется не только его замечательными Тетранитрометан для того времени работами, но и его обширными связями с русскими и со многими выдающимися западноевропейскими химиками - Р. Бунзеном, А. Байером, Ю. Либихом, Ж. Дюма, А. Вюрцем и многими другими. Из русских химиков Л. Н. Шишков был в научной переписке и в дружеских отношениях с Д. И. Менделеевым, А. Н. Энгельгардтом, Ф. Ф. Бейльштейном и другими. Своими обширными научными связями с иностранными химиками Шишков способствовал сближению выдающихся русских химиков с западноевропейскими. Так, по его предложению, А. М. Бутлеров во время своей первой поездки за границу был избран членом Парижского химического общества.

По возвращении из-за границы Шишков с 1860 по 1865 г. состоял профессором Михайловской артиллерийской академии. Деятельность его в Академии была чрезвычайно обширна и плодотворна. Ему Академия обязана устройством в 1860 г. новой химической лаборатории, которую А.М. Бутлеров считал лучшей в России. Вместе с Н. Н. Зининым, Д. И. Менделеевым, Н. Н. Соколовым, Н. А. Меншуткиным и А. Н. Энгельгардтом, Л. Н. Шишков принимал самое активное участие в деятельности молодого Русского химического общества. Подобно Зинину, он пользовался среди химиков, особенно среди молодежи, высоким авторитетом, что, несомненно, способствовало развитию химической науки в нашей стране.

В 1865 г. Л. Н. Шишков, в самом расцвете своих творческих сил, круто изменил характер своей деятельности. Он вышел в отставку и, подобно А. Н. Энгельгардту, увлекся рационализацией сельского хозяйства. Он устроил у себя в имении химическую лабораторию, где предполагал продолжать свои научные исследования, однако из этого ничего не вышло. Работы, выполненные им в собственной лаборатории, ни в какое сравнение не идут с его первыми блестящими исследованиями. Его последнее официальное выступление в Русском химическом обществе состоялось в день торжественного празднования 25-летнего1 юбилея Общества. Великий патриот, как и все наши большие ученые, Л. Н. Шишков в своей речи сказал между прочим: «Оглядываясь назад, на протекшее время, нельзя не порадоваться тем поистине громадным успехам, которые сделала химия в нашем отечестве. Мы с удовлетворенным патриотическим чувством можем теперь взирать на труды наших прочих европейских собратий, и этому мы обязаны нашим передовым ученым, умевшим собрать около себя и вдохновить к труду столько молодых сил».

Казанская школа химии


Николай Николаевич Зинин. (1812-1880)

Выдающаяся научная и научно-общественная деятельность Н. Н. Зинина заслуживает подробного рассмотрения.

Николай Николаевич Зинин родился 25 августа 1812 г. в Закавказье, в уездном городе Шуше, быв. Елизаветпольской губернии, близ персидской границы. Он в раннем возрасте лишился родителей и вскоре был перевезен в

Саратов к дяде, где и получил среднее образование в гимназии. После блестящего окончания гимназии дядя Зинина предполагал отдать племянника в Петербургский институт путей сообщения. Внезапная смерть дяди помешала осуществить это намерение. Стесненный в средствах, Н. Н. Зинин должен был переехать в Казань, где и поступил в 1830 г. в университет на математическое отделение физико-математического, или, как тогда называли, философского, факультета.

Зинин блестяще окончил университет в 1833 г. со степенью кандидата и золотой медалью за представленное им сочинение на тему «О пертурбацияхэллиптического движения планет». Выдающиеся способности Н. Н. Зинина обратили на себя внимание коллегии профессоров и ректора университета Н. Н. Лобачевского. Зинин был оставлен при университете (и уже в ноябре того же, 1833, года ему было поручено сначала репетиторство по физике, а с марта 1834 г.- преподавание аналитической механики, гидростатики и гидравлики. Преподавание перечисленных наук молодым ученым, едва достигшим 22 лет, было весьма успешно, о чем свидетельствует вынесенная Н. Н. Зинину Советом университета благодарность.

В 1835 г. научный путь Н. Н. Зинина круто изменился: вместо математических наук Н. Н. Зинину было поручено преподавание химии. Причины такой перемены не совсем ясны. Возможно, что одной из главных причин было неудовлетворительное состояние преподавания химии. Еще до своего официального назначения на кафедру химии Зинин подал прошение о допущении его к экзаменам на степень магистра физико-математических наук. В апреле 1835 г. он приступил уже к магистерским испытаниям и блестяще сдал их.

Достойно удивления, как мог он, будучи так занят преподаванием многих, математических дисциплин, в такой короткий срок подготовиться к испытаниям, которые, как о том свидетельствуют официальные протоколы, производились с большой строгостью.


В течение года Зинин написал диссертацию на степень магистра естественных наук на заданную Советом факультета тему: «О явлениях химического сродства и о превосходстве теории Берцелиуса о постоянных химических пропорциях перед химическою статикой Бертолетта» и в октябре 1836 г. успешно защитил ее. В следующем, 1837, году Зинин был утвержден адъюнктом химии и вскоре командирован на два года с научной целью за границу.

Свои научные занятия за границей Зинин начал в Берлине, где изучал математику и слушал курсы по химии у известных химиков того времени - Митчерлиха и Розе. Из Берлина Зинин направился в Гиссен к знаменитому Ю. Либиху.

Н. Н. Зинин не думал долго задерживаться в Гиссене, но, познакомившись с Либихом и его лабораторией, изменил свои планы и в течение целого года с необычайным увлечением и успехом работал под руководством самого Либиха.

Здесь Зинин выполнил свои первые экспериментальные работы на классические Бензойный альдегид либиховские темы по изучению производных так называемого горькоминдального масла, или, иначе, бензойного альдегида. Он хорошо ознакомился также с системой преподавания химии Либихом и усвоил тот строгий и свободный дух научного исследования, который заслуженно доставил Ю. Либиху и руководимой им лаборатории всемирную славу.

В конце своей командировки Зинин недолго работал в Париже у Пелуза и посетил также виднейшие лаборатории и заводы Англии, Голландии и Бельгии.

В 1840 г. Н. Н. Зинин вернулся в Россию. Но он поехал не в Казань, а в Петербург для защиты докторской диссертации. 30 января 1841 г. он блестяще защитил при Петербургском университете докторскую диссертацию «О соединениях бензоила и об открытых новых телах, относящихся к бензоиловому роду».

В Казань Зинин вернулся весной 1841 г. и вскоре был утвержден экстраординарным профессором, но не по кафедре химии, которая к тому времени была замещена К. К. Клаусом, а по кафедре химической технологии. Фактически, однако, Зинин с самого начала своей профессорской деятельности делил с Клаусом труд преподавания чистой химии, в том числе аналитической и органической.

Что касается научных занятий, то условия для них ко времени возвращения Зинина из-за границы были весьма благоприятны: только что было окончено постройкой и оборудовано новое здание химической лаборатории. Одновременно с началом своей профессорской и преподавательской деятельности Зинин энергично принимается за экспериментальные исследования, результаты которых менее чем через год приносят ему мировую славу: он открывает свою знаменитую реакцию превращения ароматических нитросоединений в аминосоединения. Первое сообщение о вновь открытой реакции было напечатано в октябре 1842 г. в «Известиях Академии Наук». В сообщении описывалось превращение нитронафталина и нитробензола в соответствующие аминосоединения, которые Зинин назвал - первое «нафталидам», второе - «бензидам». Второе из полученных Зининым соединений - «бензидам» - академик Ю. Ф. Фрицше признал за анилин, незадолго до того полученный им из индиго.


Реакция Зинина

Н. Н. Зинин очень скоро понял все огромное значение открытой им реакции и распространил свои исследования на другие ароматические нитропроизводные.


Уже в 1844 г. он опубликовал вторую статью, в которой сообщал о получении им семинафталидама (т. е. нафтилендиамина) и семибензидама (т. е. метафенилендиамина). В следующем, 1845, году Зинин сообщил о получении им «бензаминовой» кислоты (т. е. метааминбензойной кислоты).

Синтез аминобензойной кислоты

Таким образом, этими тремя работами Зинин показал общность открытой им реакции восстановления ароматических нитросоединений в аминосоединения, и с тех пор она вошла в историю химии и в повседневный лабораторный обиход под названием «реакции Зинина». Позднее несколько видоизмененная французским химиком Бешаном «реакция Зинина» была перенесена в промышленность и тем самым положила начало развитию анилино-красочной промышленности.

Несколько позднее Зинин осуществил ряд других замечательных, превращений нитробензола. Так, при действии спиртовой щелочи на нитробензол им впервые был получен азоксибензол; восстановлением азоксибензола - гидраэобензол, который под действием кислот, как показал Зинин, испытывал замечательную перегруппировку в бензидин.


Научные открытия Зинина представляют классический пример влияния науки на развитие промышленности. Напомню, что бензидин является одним из важнейших промежуточных продуктов анилинокрасочной промышленности.

До работ Зинина, его «бензидам» под различными названиями получался из природных продуктов. Это - «кристаллин» Унфердобена, полученный им в 1826 г. при перегонке индиго; это - «цианол» Рунге, выделенный им в1834г. в Бензидин ничтожных, количествах из каменноугольной смолы; это - «анилин» Фрицше, также полученный путем сложных операций из природной краски индиго. Все эти открытия, сделанные до работ Зинина, не оказали и не могли оказать влияния на зарождение и развитие анилинокрасочной промышленности. Только получение Митчерлихом из. бензола нитробензола и получение Зининым из нитробензола синтетического анилина создали базу для развития анилинокрасочной промышленности, повлекшей за собою развитие фармацевтической промышленности, промышленности взрывчатых веществ, душистых веществ и многих других областей синтетической органической химии.

В 1847 г. Н. Н. Зинин получил предложение занять кафедру в Медико-хирургической академии в Петербурге. После некоторого размышления и колебаний он принял решение о переходе в Петербург. В Петербурге он потратил около трех лет на организацию химической лаборатории и только после этого мог снова приняться за прерванные научные занятия.

Совместно со своим учеником, впоследствии известным термохимиком Н. Н. Бекетовым, Зининым были синтезированы «бензуреид» и «ацетуреид» - первые представители неизвестного и, как оказалось впоследствии, весьма важного класса моноуреидов. В 1854 г. им был осуществлен синтез летучего горчичного масла.

мая 1858 г. Зинин был избран экстраординарным, а 5 ноября 1865 г. ординарным академиком Петербургской Академии Наук. В Академии он был деятельным членом самых разнообразных комиссий, оказывая большую помощь особенно в разрешении вопросов, касающихся познания России. К концу своей научной деятельности он снова возвратился к изучению различных превращений горькоминдального масла и получил между прочим гидробензоин, который в свою очередь легко может быть переведен в бензоин.

Все работы Н. Н. Зинина были напечатаны на немецком и французском языках, за исключением докторской диссертации и работы о некоторых производных лепидина. Это явление объясняется тем, что труды Академии Наук обычно печатались не на русском, а на немецком или французском языке. Три первые и важнейшие работы Зинина о восстановлении нитросоединений в аминосоединения, напечатанные в «Известиях Академии Наук», впервые были переведены на русский язык лишь в 1942 г. по случаю 100-летия открытия анилина и напечатаны в журнале «Успехи химии» за 1943 г. (т. XII, вып. 2).

В обширной и плодотворной научной деятельности Зинина особого внимания заслуживает то, что все сложнейшие превращения веществ, группирующиеся вокруг бензойного альдегида, превращения, которые во всех деталях не распутаны и в настоящее время, открывались и изучались им в те далекие времена, когда не существовало теории химического строения. Приходилось проникать в область неизвестного главным образом с помощью «химического чутья», того качества ученого-химика, которое и до сих пор еще в значительной мере сохраняет свою силу для органика-синтетика.

Большое значение в развитии химической науки в нашей стране имела научно-общественная деятельность Зинина, развернувшаяся в начале 60-х годов в Петербурге. Это было время великих сдвигов и пробуждения самосознания в жизни русского общества. Зинин не оставался в стороне от общего движения. Это мощное движение коснулось самых различных сторон науки и искусства, в том числе и развития химического образования в нашей стране.

По инициативе нескольких выдающихся химиков-общественников, к которым, прежде всего надо отнести П.А. Ильенкова, Н. Н. Соколова и А. Н. Энгельгардта, в Петербурге в течение 1854/55 г. образовался первый химический кружок. Первые собрания этого кружка происходили на частной квартире Ильенкова. Кроме упомянутых лиц, деятельное участие в кружке принимали Ю. Ф. Фрицше, Л. Н. Шишков, Н. Н. Бекетов и Н. Н. Зинин. Кружок просуществовал около двух лет, но затем, отчасти под давлением извне, должен был прекратить свое существование.

Второй химический кружок был организован в 1857 г. по инициативе Н. Н. Соколова и А. Н. Энгельгардта. Кружок имел целью придти на помощь все возрастающему стремлению широких кругов общества поближе ознакомиться с успехами химической науки. Полагая, что для разрешения столь; трудной задачи наиболее действительным средством могло бы быть лишь непосредственное ознакомление, путем опытов, Соколов и Энгельгардт устроили у себя на квартире по Галерной улице, частную химическую лабораторию («публичную»), подобную той, какую основали в Париже в 1851 г. знаменитые реформаторы органической химии, французские ученые Лоран и Жерар. Цель этих замечательных в истории химии начинаний была одна и та же: предоставить возможность всем желающим ознакомиться с успехами химии производить опыты, при единственном условии, чтобы «это делалось без стеснения других». Успех лаборатории Н. Н. Соколова и А. Н. Энгельгардта превзошел все ожидания. Совершенно понятно, что такое частное учреждение, как химическая лаборатория, хотя бы по причинам материального характера, долго просуществовать не могло. И действительно, уже в 1860 г., т.е. через три года после основания, деятельность лаборатории была прекращена, а все оборудование было пожертвовано Петербургскому университету, чем и было положено начало прилично обставленной лаборатории университета. Н. Н. Зинин и в этом втором кружке принимал самое деятельное участие. Почти одновременно с организацией второго химического кружка и химической лаборатории неутомимые пионеры развития в русском обществе химического образования решили издавать первое в России периодическое химическое издание под названием: «Химический журнал Н. Н. Соколова и А. Н. Энгельгардта». Основной целью журнала было: «доставить занимающимся химией в России удобство следить за современным развитием науки и совершенно ясно его понимать». Первый выпуск журнала вышел в 1859 г. Вся эта замечательная страница из истории развития химической науки в России знаменовала начало ее расцвета. Жизнь химического кружка била ключом, число его участников настолько разрослось, что появилась настоятельная потребность в организации настоящего химического общества. В конце декабря 1867 г. и в начале января 1868 г. в Петербурге состоялся Первый Всероссийский съезд естествоиспытателей и врачей. В вечернем заседании съезда 3 января 1868 г. члены химического отделения, по предложению Н. А. Меншуткина, решили ходатайствовать перед правительством об учреждении Русского химического общества. Ходатайство было удовлетворено, Русское химическое общество было утверждено министром народного просвещения 26 октября 1868 г.

К первому заседанию вновь утвержденного общества, состоявшемуся 6 ноября, записалось; 47 членов, в числе которых был и Н. Н. Зинин. На этом заседании были заслушаны первые научные сообщения; в конце заседания от имени молодого Общества была выражена благодарность Н. А. Меншуткину и Д. И. Менделееву, как особо потрудившимся в деле его организации.

На следующем заседании, состоявшемся 5 декабря 1868 г.. Н. Н. Зинин был единогласно избран первым президентом Общества; делопроизводителем и редактором журнала Общества был избран Н. А. Меншуткин, казначеем Г. А. Шмидт. В качестве президента молодого Общества Н, Н. Зинин нес огромную и важную работу, председательствуя в очередных заседаниях, постоянно участвуя в многочисленных комиссиях, особенно по вопросам технико-химических изобретений и приложения химии к промышленности.

В звании президента Русского химического общества Зинин пробыл бессменно в течение 10 лет. В 1878 г. оканчивался второй пятилетний срок пребывания Н. Н. Зинина на посту президента. Несмотря на просьбы, он на этот раз отказался от дальнейшего несения высокого, но трудного президентского поста. Это было за два года до его смерти.

Н. Н. Зинин скончался 6 февраля 1880 г., на 68-м году жизни.

Подводя итог научной деятельности Н. Н. Зинина и его влияния на развитие русской органической химии, следует сказать, что благодаря его замечательным научным открытиям русская химическая наука встала на один уровень с западноевропейской.

Президент немецкого Химического общества, знаменитый химик и основатель немецкой анилинокрасочной промышленности А. В. Гофман в заседании Химического общества 8 марта 1880 г. произнес речь, в которой ярко охарактеризовал значение работ Н. Н. Зинина. «Сегодня я должен сообщить собранию,- сказал Гофман,- о кончине одного из славных старейших химиков,- личности, которая имела значительное и продолжительное влияние на развитие органической химии. Я позволю себе напомнить только об одном открытии Зинина, составившем эпоху,- о превращении нитротел в анилины... Щелочи, описанные Зининым под названием бензидама и нафталидама,- те вещества, которые играют ныне столь важную роль, как анилин и нафтиламин. Тогда, конечно, нельзя было предвидеть, какая огромная будущность предстояла изящному способу превращения, описанному в упомянутой статье. Никто не мог предугадать, как часто и с каким успехом этот важный процесс будет прилагаться к изучению бесконечных превращений органических веществ, никому и в ум не приходило, что новый способ получения анилинов сделается со временем основанием могущественной отрасли промышленности». «Если бы Зинин,- сказал в заключение Гофман,- не сделал ничего более, кроме превращения нитробензола в анилин, то и тогда его имя осталось бы записанным золотыми буквами в истории химии».

Великое значение Н. Н. Зинина в развитии органической химии заключается также в том, что он не только организовал в Казанском университете правильные практические занятия по органической химии, но и впервые в истории русской химии сумел своим примером и энтузиазмом привлечь выдающихся молодых людей к научным исследованиям в области органической химии, тем самым подготовив почву для создания впоследствии знаменитой казанской школы химиков. Достаточно сказать, что одним из первых учеников Зинина в Казани был А. М. Бутлеров, который, наряду с Д. И. Менделеевым, составляет славу и гордость русской науки.

Александр Михайлович Бутлеров (1828-1886)

Совершенно исключительна по своему значению для развития мировой химической науки научная деятельность А. М. Бутлерова. Поэтому и самая личность А. М. Бутлерова заслуживает особого внимания и рассмотрения.

А. М. Бутлеров родился 25 августа 1828 г. в г. Чистополе, Казанской губернии. На одиннадцатый день после рождения Бутлеров лишился матери, и ребенка взяли на воспитание его дедушка и бабушка - Стрелковы. Детство Бутлерова протекало в деревне Подлееная-Шантала, Чистопольского уезда, в имении Стрелковых, среди девственной лесной природы, что, несомненно, было главной причиной его страстного стремления к занятию естественными науками. Отец Бутлерова был добрый, но слабохарактерный человек и почти не принимал участия в воспитании сына. Однако, когда маленький Бутлеров стал обучаться грамоте и другим предметам, отец постоянно повторял ему, что он сам должен пробивать себе дорогу.

Восьми лет мальчик был отдан в Казань в частный пансион, а затем перешел в четвертый класс 1-й Казанской гимназии, которую окончил в 1844 г. шестнадцати лет. В этом же году А. М. Бутлеров поступил на естественное отделение физико-математического факультета Казанского университета. Ввиду молодости он не был принят в число штатных студентов, а только допущен к слушанию лекций и потому пробыл на первом курсе два года.

Первые годы своего пребывания в университете Бутлеров сильно увлекался ботаникой, зоологией, особенно энтомологией. Для собирания коллекций он совершал частые экскурсии в окрестности Казани.

Летом 1847 г. А. М. Бутлеров вместе с профессором минералогии П. И. Вагнером отправился в большую экспедицию в киргизские степи. Девятнадцатилетний юноша показал себя широко образованным и наблюдательным натуралистом, о чем свидетельствует его дневник, который он вел самым аккуратным образом. Во время экспедиции Бутлеров заболел брюшным тифом. В почти безнадежном состоянии он был привезен Вагнером в Симбирск, куда спешно был вызван из Казани отец. Молодой организм поборол болезнь, но отец заразился от сына и умер. Таким образом, Бутлеров, как и Н. Н. Зинин, остался один, без родителей. Оправившись от болезни и горя, Бутлеров некоторое время продолжал увлекаться ботаникой и зоологией. Однако лекции Клауса и Зинина изменили его планы. Он окончательно решил посвятить себя химии. Увлекаясь всем новым, он обращал вначале свое внимание на внешнюю сторону химических явлений. По рассказам профессора зоологии Н. П. Вагнера (известного также своими сказками под псевдонимом Кота-Мурлыки), Бутлеров любил приготовлять красивые кристаллические вещества, производить эффектные опыты с горением, а по окончании семестра и студенческих экзаменов пускал фейерверки. Но постепенно его занятия химией приняли более осмысленный и систематический характер, чему, несомненно, способствовали его знаменитые учителя - Клаус и Зинин. Впоследствии сам Бутлеров в своих воспоминаниях о Н. Н. Зинине писал: «Глубокий, живой и оригинальный ум Зинина, соединенный с необыкновенной беспритязательностью и приветливостью в обращении, всюду влек к нему молодежь, преданную науке. Клаус и Зинин были замечательными экспериментаторами, и несомненно, что под руководством таких учителей Бутлеров уже на студенческой скамье получил основательную лабораторную подготовку, чего нельзя было сказать о теоретической стороне его научных занятий. В чем состояли лабораторные занятия Бутлерова после переезда Зинина в Петербург, не известно. Университет он окончил в 1849 г. со степенью кандидата за представленное им сочинение,- как это ни кажется странным в настоящее время,- не по химии, а по зоологии на тему: «Дневные бабочки волго-уральской фауны».

В следующем году Клаус представил Бутлерова к оставлению при университете для подготовки к профессорскому званию. Это представление энергично поддержали факультет и Совет университета.

Осенью того же, 1850, года А. М. Бутлеров успешно сдал магистерский экзамен, и в начале 1851 г. представил в факультет свою первую диссертацию «Об окислении органических соединений», после защиты которой он был избран в Совете университета адъюнктом и сделался штатным преподавателем университета. Предполагавшаяся заграничная командировка А. М. Бутлерова не состоялась. В 1852 г. Клаус перешел в Дерпт и на 23-летнего адъюнкта легла вся тяжесть преподавания химии. В 1854 г. А. М. Бутлеров блестяще сдал при Московском университете докторский экзамен и защитил на степень док-гора химии диссертацию «Об эфирных маслах».

После защиты диссертации в научной жизни Бутлерова случилось одно очень важное событие. Из Москвы он поехал в Петербург повидаться и поговорить о химических вопросах со своим учителем Н. Н. Зининым. В своих химических воззрениях Зинин в это время прочно стоял на основах учения Лорана и Жерара. По поводу этой встречи и ее результатов Бутлеров впоследствии рассказывал: «Непродолжительных бесед с Н. Н. Зининым в это мое пребывание в Петербурге было достаточно, чтобы время это стало эпохой в моем научном развитии. Н. Н. указал мне на значение учения Лорана и Жерара… и советовал руководствоваться в преподавании системой Жерара. Я последовал этим советам...».

В 1857 г. А. М. Бутлеров получает годичную командировку за границу и в течение года посещает все лучшие европейские лаборатории Германии, Франции, Англии, Швейцарии, Италии. Большую часть времени он провел в Париже, который был в то время центром химической науки. Главным моментом в заграничной поездке А. М. Бутлерова надо считать, однако, не его знакомства с лабораториями и лабораторной техникой, а его встречи и непосредственное общение с виднейшими представителями химической науки. Владея в совершенстве европейскими языками,. Бутлеров не только знакомился, но и вступал в, продолжительные беседы, а иногда и научные споры с такими выдающимися химиками, как Вюрц, Кольбе, Кекуле, Бунзен, Эрленмейер. Бутлеров поехал за границу не только с солидным запасом знаний по химии и всей доступной ему химической' литературы, но и с огромным запасом здоровой научной критики его молодого и ясного ума. По возвращении из-за границы Бутлеров прежде всего занялся основательным переустройством университетской лаборатории. А тут было что переустроить. В лаборатории не было газа, все химические операции производились на спиртовых лампах. Органический анализ производился на печи, обогреваемой древесным углем. Бутлеров хлопочет об устройстве небольшого газогенератора внутри самой лаборатории. Правление отпускает необходимые средства, и в течение самого короткого времени газогенератор сооружается; он помещается под лестницей, ведущей во второй этаж: здания. Газовыми мастерами и рабочими нанимаются два отставных солдата. «Кто знает, что значит взрыв газа,- замечает в своих воспоминаниях но этому поводу В. В. Марковников, - тот согласится, что мы работали как бы на вулкане».

Переоборудовав лабораторию, Бутлеров с необыкновенной энергией принимается за экспериментальные работы и в течение короткого срока выпускает ряд первоклассных исследований. Прежде всего он успешно продолжает свои исследования над получением и изучением свойств и превращений йодистого метилена, полученного им в лаборатории Вюрца в Париже.


В 1859 г. Бутлеров открывает полимер формальдегида и дает ему название «диоксиметилен» (по-современному триоксиметилен ([-CH2O-]3) ). Действием аммиака на диоксиметилен Бутлеров получает весьма интересное, сложного состава вещество, которому он дает название «гексаметилентетрамин». Гексаметилентетрамин, под названием «уротропина», до настоящего времени находит обширное применение в медицине как антиподагрическое средство, для дезинфекции мочевых путей и для лечения многих других болезней.

В 1861 г. Бутлеров делает замечательное в истории химии открытие, а именно: при действии известкового раствора на диоксиметилен он впервые получает путем синтеза сахаристое вещество, которое он называет «метиленитаном». Гексаметилентетрамин Этим синтезом он как бы завершает ряд синтезов классиков органической химии:

Велер синтезирует щавелевую, кислоту (1826) и мочевину (1828), Кольбе - уксусную кислоту (1848), Вертело -жиры (1854) и, наконец, Бутлеров - сахар (1861). В том же году, по соображениям теоретического порядка, Бутлеров пытается отнять йод от йодистого метилена с целью получения свободного метилена; но вместо метилена он получает этилен - факт огромной важности для интерпретации строения непредельных органических соединений.

Уже этих, кратко перечисленных открытий было бы достаточно, чтобы имя Бутлерова навсегда осталось в истории химии как первоклассного синтетика. Однако все эти работы - лишь вступление к его обширной и замечательной научной деятельности.

Одновременно с развертыванием таланта Бутлерова как первоклассного экспериментатора пробуждается его гений теоретика. Он подвергает критике господствующие в то время в области изучения органических соединений теорию типов и теорию замещений и приходит к заключению, что они уже не вмещают всего фактического материала.

В то же время на Западе блестящие идеи Кекуле и Коупера о четырехвалентной природе углеродного атома и о способности углеродных атомов целеобразно соединяться друг с другом как бы повисли в воздухе. Кекуле, после' того как он высказал некоторые основные положения теории химического строения, придавал этим высказываниям и положениям второстепенное значение и еще долгое время находился во власти идей Жерара. Достаточно сказать, что в своем известном учебнике химии Кекуле, в согласии с учением Жерара, допускает для каждого химического соединения несколько рациональных формул. Коупер, отвергнув теорию типов Жерара и исходя из положений, до некоторой степени противоположных взглядам Кекуле, также приходит к ряду основных положений теории химического строения и даже пишет многие формулы строения, очень похожие на современные (принимая атомный вес кислорода равным 8); однако в дальнейшем он не развивает своих взглядов. И только у Бутлерова созревает идея о химическом строении органических соединении во всем ее объеме. Его теоретические размышления принимают вполне законченную форму, и он приходит к выводу о необходимости обменяться своими новыми взглядами с учеными Запада

Не без труда он получает вторую заграничную командировку и в 1861 г. вновь посещает лучшие лаборатории Германии, Бельгии и Франции.

сентября 1861 г. на съезде немецких врачей и натуралистов в городе Шпейере Бутлеров делает свой знаменитый доклад «О химическом строении тел». Он развивает в совершенно законченной форме новые взгляды на строение органических соединений и впервые предлагает ввести в химическую науку термин «химическая структура», или «химическое строение», подразумевая под этим распределение сил химического сродства, или, иначе, распределение связей отдельных атомов, образующих химическую частицу. Доклад Бутлерова и его новые взгляды на строение органических соединений были холодно приняты немецкими химиками, за исключением отдельных лиц, из которых прежде всего надо упомянуть Эрленмейера, позднее Вислиценуса. Приведем наиболее замечательное место из доклада А. М. Бутлерова: «Если попытаться теперь определить химическое строение веществ и если нам удастся выразить его нашими формулами, то формулы эти будут хотя еще не вполне, но до известной степени настоящими рациональными формулами. Для каждого тела возможна будет в этом смысле лишь одна рациональная формула, и когда создадутся известные общие законы зависимости химических свойств тела от их химического строения, то подобная формула будет выражением всех его свойств».

Сколь ни точна была только что приведенная формулировка Бутлерова относительно связи химических свойств тел с их строением, фактическое положение этого основного вопроса теории химического строения было далеко не ясным. Дело в том, что в то время считалось твердо установленным, что для соединения состава С2Н6 возможно существование изомеров. Считали, что один из них был получен Франкландом и Кольбе при действии металлического калия на нитрил уксусной кислоты, другой - Франкландом при действии цинка и воды на йодистый этил. Теория типов без труда объясняла эти удивительные факты: оба соединения должны быть отнесены к типу водорода, причем первое соединение трактовалось как двузамещенное типа водорода и представляло диметил, второе соединение являлось одно замещенным типа водорода и должно было рассматриваться как водородистый этил.

По теории химического строения, развиваемой Бутлеровым, соединению состава С2Н6 отвечает только одна формула строения, и таким образом оказывалось, что как будто факты противоречат новой теории. Несомненно, что отчасти это и было причиной скептического отношения немецких химиков к докладу Бутлерова в Шпейере, а быть может, в еще большей степени вообще слабое развитие техники исследования.

Научное кредо Бутлерова прежде всего заключалось в том, что для обобщения и объяснения фактического материала необходимы теории, однако факты, тем более новые факты не должны принудительным или искусственным образом втискиваться в теоретические представления, сколь бы совершенными эти представления ни казались. Поэтому Бутлеров искал выхода для объяснения фактов, противоречащих его теории химического строения, а именно он сделал предположение: 1) что четыре «пая» (т. е. валентности) углеродного атома расположены в виде плоскостей тетраэдра и 2) что эти паи различны. В таком случае легко можно было объяснить наличие двух изомеров этана. Позднее известный немецкий химик К. Шорлеммер, друг К. Маркса и Ф. Энгельса, путем тщательных исследований доказал, что «водородистый этил» и «диметил» - одно и то же соединение.

Здесь важно отметить, что Бутлеров впервые в истории химии высказал предположение о возможности тетраэдрического строения соединений углеродного атома с четырьмя заместителями, причем представление Бутлерова не было каким-либо развитием взглядов Пастера о «молекулярной диссимметрии» и о тетраэдрическом строении оптически деятельных молекул.

Позднее Кекуле построил «шаровую» тетраэдрическую модель углеродного атома. «Думаю,- говорит по этому поводу известный комментатор трудов Бутлерова, проф. А. И. Горбов,- что приоритет тетраэдрической модели углеродного атома должен остаться за Бутлеровым». Не довольствуясь развитием положений теории химического строения Бутлеров приходит к заключению, что для успеха нового учения необходимо получение новых фактов, из него вытекающих. Поэтому, вскоре после возвращения в Казань, он приступает к обширным экспериментальным исследованиям, главнейшим результатом которых прежде всего явился знаменитый бутлеровский синтез триметилкарбинола - первого представителя третичных спиртов. Этот синтез положил начало, можно сказать, бесконечному ряду синтезов, которые, модифицируясь и трансформируясь, восходят до наших дней.

Синтез триметилкарбинола

Вслед за изданием «Введения» на русском языке последовал его перевод на немецкий язык. Перевод был сделан преподавателем Казанского земледельческого училища Решем и издан в Лейпциге в 1867 г. Появление «Введения» на немецком языке способствовало распространению среди зарубежных химиков взглядов Бутлерова, ибо «Введение» представляло собою первый случай в мировой химической литературе, когда теория химического строения была последовательно проведена через все важнейшие классы органических соединений. Эрнст фон Мейер, известный автор «Истории химии», по поводу «Введения» и роли Бутлерова в развитии теории химического строения высказался так: «Бутлеров оказал особенно сильное влияние своим «Учебником органической химии», вышедшим на немецком языке в 1868 г.». Замечательно, что эти слова были сказаны долголетним сотрудником Кольбе, который оставался противником взглядов Бутлерова до конца своих дней. Все рассмотренные нами капитальные теоретические и экспериментальные труды Бутлерова относятся к казанскому периоду его деятельности.

В августе 1867 г. А. М. Бутлеров отправился в третий раз за границу, где он занялся поправлением своего здоровья и редактированием немецкого издания «Введения».

В мае 1868 г., по предложению и мотивированному представлению Д. И. Менделеева, Бутлеров был избран ординарным профессором Петербургского университета. Бутлеров на это предложение ответил согласием. Из-за границы Бутлеров вернулся в августе и до декабря того же, 1868, года оставался в Казани, заканчивая преподавание.

После переезда в Петербург Бутлеров прежде всего занялся переустройством университетской лаборатории и с присущей ему энергией скоро наладил в ней ряд экспериментальных работ, являющихся продолжением казанских. В то же время он принял самое деятельное участие во вновь учрежденном Русском химическом обществе и в заседании 6 февраля 1869 г. был избран членом Общества. В начале 1869 г. произошло важное событие в истории развития русской химической науки: 10 февраля только что учрежденное Русское химическое общество получило от Главного управления по делам печати разрешение на издание без предварительной цензуры «Журнала Русского химического общества». Таким образом, русские химики получили, наконец, возможность публиковать научные исследования в своем периодическом печатном органе. В первом, небольшом по объему томе молодого журнала, вышедшем под редакцией Н. А. Меншуткина, было опубликовано 36 оригинальных работ русских химиков, в том числе знаменитая статья Д. И. Менделеева «Соотношение свойств с атомным весом элементов» и две статьи А. М. Бутлерова: «О хлористом метилене» и «О бутилене из бутильного алкоголя брожения».

В 1870 г. Бутлеров был избран адъюнктом Академии Наук, в следующем году экстраординарным академиком, а в 1874 г. ординарным академиком-Одновременно Бутлеров состоял профессором Высших женских курсов и принимал самое горячее участие в развитии и укреплении высшего женского образования. В 70-х годах А. М. Бутлеров приступает к продолжению начатых еще в Казани работ над непредельными углеводородами. Эти работы генетически связаны с его первыми работами над изучением свойств йодистого метилена и синтезированными им третичными спиртами. Особенно замечательны его работы: «Об изодибутилене» (1877), «Об изотрибутилене», изучение действия фтористого бора на полимеризацию непредельных углеводородов, особенно пропилена, и многие другие. В то же время Бутлеров не перестает развивать и совершенствовать теорию химического строения; таковы, например, его статьи: «Современное значение теории химического строения» (1879) и «Химическое строение и теория замещения» (1882 и 1885).

Кипучая научная и общественная деятельность А. М. Бутлерова оборвалась внезапно. 5 августа (ст. ст.) 1886 г. Бутлеров скончался 58 лет отроду в деревне Бутлеровке, Спасского уезда, Казанской губернии, где и похоронен.

Химическая наука и русская общественность понесли тягчайшую утрату. Значение научной и педагогической деятельности А. М. Бутлерова огромно.

А. М. Бутлеров - не только один из основоположников того научного направления в области органической химии, которое вот уже в течение почти 90 лет служит неиссякаемым источником бесконечного ряда открытий, в равной мере имеющих и теоретическое и практическое значение, А. М. Бутлеров - родоначальник казанской бутлеровской школы химиков, распространившей свое влияние, можно смело сказать, на все научные центры, на все необъятное пространство нашей великой страны. Без всякого преувеличения еще раз можно повторить, что казанская химическая лаборатория, где А. М. Бутлеров производил свои наиболее замечательные теоретические и экспериментальные исследования, поистине является колыбелью русской органической школы химии.

Александр Михайлович Зайцев (1841-1910)

Преемником А. М. Бутлерова в Казани по кафедре органической химии был А. М. Зайцев. А. М. Зайцев продолжал поддерживать и развивать лучшие традиции своего учителя. Научная и педагогическая деятельность его сыграла огромную роль в деле развития бутлеровской школы и бутлеровского направления в химии.

Александр Михайлович Зайцев родился в г. Казани 20 июня 1841г. в купеческой семье Михаила Саввича Зайцева. Мать А. М. Зайцева - Наталия Васильевна Ляпунова. Отец А. М. Зайцева хотел направить сына по торговой части, но дядя будущего химика, Михаил Васильевич Ляпунов, убедил отдать мальчика в гимназию и в дальнейшем принимал большое участие в воспитании племянника.

А. М. Зайцев окончил 2-ю Казанскую гимназию в 1858 г. по отделению законоведов. М. В. Ляпунов лично подготовил племянника по латинскому языку, которого, как «законовед», не проходил А. М. Зайцев в гимназии, но экзамен по которому необходимо было сдать для поступления в университет.

Сдав экзамен по латинскому языку, А. М. Зайцев поступил на камеральное отделение юридического факультета Казанского университета. В университете Зайцев стал увлекаться химией, несомненно под влиянием Бутлерова, талант которого как ученого и как преподавателя развернулся к этому времени во всю ширь. Университет А. М. Зайцев окончил в 1862 г. В этом же году он отправился на собственный счет за границу для продолжения своего химического образования. Два года он работал в Марбурге под руководством Г. Кольбе. С августа 1864 г. по апрель 1865 г. он провел в Париже, где работал в лаборатории Медицинской школы под руководством А. Вюрца. Последний семестр своего пребывания за границей А. М. Зайцев снова провел в лаборатории Кольбе.

Первые работы А. М. Зайцева по химии носят явные признаки пребывания их автора за границей. Кандидатская диссертация «Об окисях тиоэфиров» и магистерская «О действии азотной кислоты на некоторые органические соединения двуэквивалентной серы и о новом ряде органических сернистых соединений, полученных при этой реакции», выполнены на темы Г. Кольбе. В Казань А. М. Зайцев возвратился в 1865 г. После защиты в 1868 г. магистерской диссертации, вскоре после перехода Бутлерова в Петербург, А. М. Зайцев был избран в марте 1869 г. Советом университета доцентом по кафедре химии. В это же время А. М. Зайцев энергично работал и подготовлял свою докторскую диссертацию на тему бутлеровского направления - «О новом способе превращения жирных кислот в соответствующие им алкоголи. Нормальный бутильный алкоголь и превращение его во вторичный бутильный алкоголь», которую и защитил в 1870 г. при Казанском университете. В ноябре того же, 1870, года Зайцев утверждается экстраординарным, а через год ординарным профессором по кафедре химии, которую и занимал почти в течение 40 лет до самой смерти (19 августа 1910 г.).

Русские химики высоко ценили научные заслуги А. М. Зайцева. В течение ряда лет он неоднократно был избираем членом Совета Отделения химии. С 1904 г. он председатель Отделения и Совета Отделения химии, а с 1905 г., продолжая состоять председателем Отделения и Совета Отделения химии, он - президент Русского физико-химического общества. В 1885 г. А. М. Зайцев был избран членом-корреспондентом Академии Наук. В последние годы деятельности ему было предложено: Академией высшее ученое звание академика, но Александр Михайлович, всегда отличавшийся необычайной скромностью, отклонил почетное предложение, не желая расставаться с казанской лабораторией. Значение научной и научно-педагогической деятельности А. М. Зайцева для развития органической химии очень велико и прежде всего определяется чрезвычайным развитием и усовершенствованием бутлеровских синтезов. Работы Зайцева в этом направлении привели к разработке методов получения спиртов различных классов, вошедших в историю химии под названием «зайцевских спиртов» и «зайцевских синтезов». Все эти работы являются классическими, их главная цель-укрепление теории химического строения. Большое теоретическое значение имеют также работы А. М. Зайцева о порядке присоединения элементов галоидоводородных кислот к непредельным углеводородам и изучение обратной реакции отщепления галоидоводородных кислот. Эти фундаментальные вопросы органической химии, впервые со всей определенностью выдвинутые В. В. Марковниковым, нужно отнести к категории наиболее интересных и трудных для понимания химических процессов. Эмпирические правила, которые были установлены в результате работ Марковникова и Зайцева, носят в нашей науке название «правила Марковникова - Зайцева». Достаточно сказать, что подобного рода реакции, освещающие темную область явлений изомеризации, изучались Марковниковым и Зайцевым в те далекие времена, когда еще не существовало электронных представлений, в свете которых все эти реакции и превращения деятельно изучаются в настоящее время.

Отщепление водорода по правилу Зайцева


Обширные работы лаборатории А. М. Зайцева были посвящены многоатомным спиртам и окисям. Генетически связаны с синтезами спиртов реакции получения непредельных кислот, оксикислот и лактонов. Интересный класс органических соединений- лактоны - был открыт А. М. Зайцевым в 1873 г.

Большое значение для химии высших жирных кислот и в связи с этим для развития жировой промышленности имеют работы А. М. Зайцева и его учеников над высшими Лактон непредельными кислотами и высшими оксикислотами.

Не менее велика также роль А. М. Зайцева в создании зайцевской школы химиков как преемственного развития бутлеровской школы. Из лаборатории Зайцева вышло более 150 работ, выполненных как им лично, так и его многочисленными учениками на его темы и под его руководством. Число учеников А. М. Зайцева огромно; в этом отношении Александр Михайлович занимает в истории русской химии едва ли не первое место. В списке его учеников, работы которых напечатаны в «Журнале Русского физико-химического общества», числится 72 химика. Многие из них впоследствии стали выдающимися учеными и заняли кафедры в различных высших учебных заведениях России. Из числа наиболее известных учеников Зайцева прежде всего надо назвать Е. Е. Вагнера, И. И. Канонникова, С. Н. Реформатского, А. Н. Реформатского, А. А. Альбицкого, В. И. Сорокина и многих других.

Александр Ерминингельдович Арбузов. ( 1877-1968 г)

А. Е. Арбузов родился 30 августа 1877г. в селе Арбузовом-Баране, Казанской губернии. По окончании 1-й Казанской классической гимназии Е 1896 г. А. Е. Арбузов поступил на естественное отделение физико-математического факультета Казанского университета. По окончании университета в 1900 г. он был представлен проф. А. М. Зайцевым профессорским стипендиатом по кафедре органической химии. Однако еще до утверждения он занял, по представлению проф. Ф. М. Флавицкого, должность ассистента при кафедре органической химии и химического сельскохозяйственного анализа в НовоАлександрийском институте сельского хозяйства и лесоводства. Еще будучи студентом Казанского университета, А. Е.Арбузов выполнил в лаборатории А. М. Зайцева, под его руководством, свою первую научную работу «Об аллилметилфенилкарбиноле», замечательную тем, что в ней впервые синтетическое применение цинкоорганических соединений, открытое Бутлеровым и широко разработанное его учениками и особенно Зайцевым, претворено в магнийорганический синтез, практически одновременно с разработкой магнийорганического синтеза Гриньяром. Эта работа была напечатана в «Журнале Русского химического общества» в 1901 г.

В 1905 г. он защитил при Казанском университете магистерскую диссертацию «О строении фосфористой кислоты и ее производных». В этой работе, тема которой была навеяна чтением «Основ химии» Д. И. Менделеева, А. Е. Арбузов впервые получил в чистом виде эфиры фосфористой кислоты, открыл явление их каталитической изомеризации в эфиры алкилфосфиновых кислот и нашел специальную реакцию для соединений трехвалентного фосфора - образование комплексных соединений с галоидными солями закиси меди.

химический русский ломоносов бородин

Получение полного фосфористого эфира

Перегруппировка Арбузова

Эта работа А. Е. Арбузова была удостоена Русским физико-химическим обществом премии им. Зинина и Воскресенского.

В 1906 г. А. Е. Арбузов был избран на кафедру органической химии и химического сельскохозяйственного анализа Ново-Александрийского института сельского хозяйства и лесоводства, а в 1911 г. избран по всероссийскому конкурсу на кафедру органической химии Казанского университета, освободившуюся после смерти его учителя А. М. Зайцева.

В 1914 г. А. Е. Арбузов защитил при Казанском университете докторскую диссертацию «О явлениях катализа в области превращений некоторых соединений фосфора». В этой работе он обобщил и продолжил наметившиеся еще в магистерской работе открытия, широко исследовав установленное им явление превращения эфиров кислот трехвалентного фосфора под влиянием галоидных алкилов в эфиры кислот пятивалентного фосфора.

Явление «арбузовской изомеризации» приобрело фундаментальное значение в химии фосфорорганических соединений, открыв новые синтетические возможности, широко использованные самим А. Е. Арбузовым, его учениками и последователями и не исчерпанные и по сию пору. Без преувеличения можно сказать, что арбузовская изомеризация стала столбовой дорогой синтеза в ряду фосфорорганичеоких соединений.

В этот период А. Е. Арбузов плодотворно работал в области эфиров сернистой кислоты, химии индола, термохимии (соединения эфира с бромом) и был занят также физико-химическими исследованиями в области кислотного катализа ацеталей кетонов. Ныне химики постоянно пользуются методами Арбузова для получения гомологов индола, ацеталей, кетонов, алкоголятов натрия и др. Однако фосфорорганические соединения и в дальнейшем продолжали привлекать основное внимание А. Е. Арбузова. Он исследовал молекулярные рефракции и молекулярные объемы фосфорорганических соединений, много работал над получением фосфорорганических соединений с асимметрическим атомом фосфора. Совместно со своим сыном Б. А. Арбузовым он исследовал строение обладающего замечательными свойствами хлорангидрида

Бойда. Большое внимание А. Е. Арбузов уделил исследованию свойств и реакций металлических производных диалкиловых эфиров фосфонуксусной кислоты, где им установлены отношения таутомерии, подобные отношениям в натрмалоновом или натрацетоуксусном эфире, и даны методы синтеза фосфорорганических соединений, основанные на использовании этих свойств. Эти исследования привели его, с одной стороны, к изучению явления таутомерии вообще, а с другой - дали возможность открыть новый, очень изящный способ получения свободных радикалов. Наглядность этого способа столь велика, что по почину А. Е. Арбузова он широко применяется для демонстрации на лекциях. После классических исследований А. Михаэлиса, А. Е. Арбузов столь основательно развил этот раздел химии, что в настоящее время химия фосфорорганических соединений по своей разработанности, по открытому многообразию форм может быть поставлена на один уровень с химией органических соединений мышьяка или серы.

Подобно классикам русской химии А. Е. Арбузов много сил уделил исследованию отечественных источников органических соединений. Но если внимание его предшественников и современников было привлечено к нефти, то А. Е. Арбузов сосредоточил его на русских скипидарах и смолах хвойных.


Он разработал новый метод подсочки хвойных, дающий возможность получать смолу хвойных растений в наименее измененном виде. В широких исследованиях, проведенных близ Казани, на Раифской лесной даче, им было открыто, что в системе смоляных ходов хвойных существует давление порядка 2-3 атм. Использовав мощные дефлегмационные колонки собственной конструкции и физико-химический метод исследования Дармуа-Дюпона, А. Е. и Б. А. Арбузовы исчерпывающе выяснили состав и свойства русских скипидаров. Исследования А. Е. Арбузова-образцовые в этой области. Следует отметить, что в проведении этих исследований, равно как и в других, А. Е. Арбузову очень помогало то, что он в совершенстве изучил стеклодувное искусство. Являясь виртуозом стеклодувом-художником, А. Е. Арбузов создал собственные конструкции химических приборов, некоторые из которых, как, например, колба Арбузова, получили широкое распространение в химических лабораториях.

Особого упоминания заслуживает роль А. Е. Арбузова как хранителя традиций русской химии. Живо интересуясь историей русской химии и являясь одним из представителей казанской школы химиков, А. Е. Арбузов ревностно собирает и хранит документы и реликвии этой школ. Эти материалы и изустные предания, хранящиеся в его памяти, трудно переоценить. Колба Арбузова В период первой мировой войны А. Е. Арбузов много занимался практической деятельностью, организовав в Казани ряд химико-фармацевтических производств.

Из учеников А. Е. Арбузова необходимо в первую очередь отметить его сына, крупного химика-органика, профессора Казанского университета, члена-корр. Академии Наук СССР Б. А. Арбузова, профессора Казанского химико-технологического института Гильма Камая, проф. Пищимуку и целое поколение талантливых молодых научны работников-химиков, ныне работающих с А. Е. и Б. А. Арбузовыми.

Второй этап развития Петербургского химического центра

Александр Иванович Горбов (1859-1939)

Большое значение для развития русской химической науки, и в том числе органической химии, имела выдающаяся научная и литературная деятельность русского ученого А. И. Горбова ученика и многолетнего сотрудника А. М. Бутлерова и Д. И. Менделеева.

Александр Иванович Горбов родился 11 мая 1859 г. в Москве. В 1878 г. он окончил с золотою медалью Орловскую гимназию, а в 1883г. Петербургский университет со степенью кандидата химических наук. По предложению А. М. Бутлерова он был оставлен при университете.

В течение 1881-1885 гг. А. И. Горбов работал под руководством А. М. Бутлерова сначала в университетской лаборатории, а затем в лаборатории Академии Наук.

С 1886 г. Горбов заведовал качественным анализом в университете и одновременно был в постоянном научном общении с Д. И. Менделеевым. С

г. А. И. Горбов заведовал химической лабораторией Николаевской инженерной академии, в стенах которой протекала его профессорская и преподавательская деятельность. В качестве руководителя лаборатории Горбов вместе с проф. И. Г. Малюгой принял деятельное участие в теоретической и практической разработке вопроса о получении бетона и других вяжущих материалов, необходимых для долговременных фортификационных сооружений. Он принимал также деятельное участие в разработке вопроса о получении дешевого водорода для военных целей. Первый способ получения водорода действием алюминия на едкий натр, предложенный А. И. Горбовым, был принят Главным инженерным управлением Военного министерства России, второй способ был реализован Сименсом и Шуккертом в Германии и третий - проф. Жобером во Франции. По инициативе А. И. Горбова былпоставлен вопрос о получении для военных целей азотной кислоты. Он принимал также заметное участие в разрешении многих других важных вопросов, интересующих военно-инженерное ведомство.

Научная деятельность А. И. Горбова началась еще в студенческие годы, когда он издал специальный курс, читанный Н. Н. Любавиным: «Глицины и амиды угольной кислоты, не содержащие серы».

Наибольшей известностью из области органической химии пользовалась работа А. И. Горбова «Кислоты окси- и гидроокситетровые». Однако главное значение А. И. Горбова в деле развития химической науки заключается в прекрасных статьях его по вопросам теоретической химии и истории химии. Таковы, например, статьи: «О пространственном расположении атомов в частицах органических соединений и о способе определения его в непредельных геометрических изомерах»; «А. М. Бутлеров и химическое строение». В этой замечательной историко-критической статье о Бутлерове, А. И. Горбов с предельной научной объективностью, ясностью и точностью интерпретирования исторических фактов показывает значение и роль А. М. Бутлерова в создании теории химического строения органических соединений.

До сего времени еще недостаточно оценены широкими химическими кругами его замечательные статьи в «Энциклопедическом словаре Брокгауза и Эфрона». Эти статьи, составляющие в общей сложности солидный труд, объемом около 300 страниц убористого текста, написаны главным образом по истории развития теоретических воззрений в органической химии. Положительно можно утверждать, что статьи Горбова: «Радикал», «Унитарная теория», «Изомерия», «Химическое строение», «Стереоизомерия» и многие другие по ясности и исторической точности излагаемого материала, который он всегда черпал из первоисточников, не уступают, а во многом и превосходят труды таких широко известных историков химии, как Г. Копп, А. Ладенбург, Э. фон Мейер и Н. А. Меншуткин.

В течение более чем 50 лет А. И. Горбов принимал активное участие в жизни Русского химического общества, занимая должности библиотекаря, казначея и делопроизводителя Общества. Он был одним из организаторов «Журнала прикладной химии» и до самой смерти состоял бессменным его редактором.

Умер А. И. Горбов 25 февраля 1939 г. в возрасте 80 лет.

Сергей Васильевич Лебедев (13 июля 1874, Люблин - 2 мая 1934, Ленинград)

С. В. Лебедев родился 13 июля 1874 г. в г. Люблине. На девятом году он лишился отца, и вся его семья переехала в Варшаву.

Среднее образование Лебедев получил в Варшавской 1-й гимназии. По окончании в 1895 г. гимназии он поступил в Петербургский университет на естественное отделение физико-математического факультета. В 1897 г. мы видим Лебедева в лаборатории Фаворского. За 1897-1899 гг. он выполнил под руководством Фаворского дипломную работу на тему: «Исследование трихлорометоксифенилкарбинола».

В 1906 г. Лебедев работал в Париже в Сорбонне у известного химика В. Анри. По возвращении из-за границы он, по совету Фаворского, начал исследования над полимеризацией непредельных органических соединений - бромистого винила и эфиров акриловой кислоты, и уже в 1908 г. Доложил на заседании Химического общества о скоростях полимеризации эфиров акриловой кислоты.

С. В. Лебедеву удалось в короткий срок впервые разрешить проблему промышленного получения синтетического каучука. Следует отметить, что в синтезе каучука русские химики сыграли выдающуюся роль. Уже первые работы А. М. Бутлерова над полимеризацией непредельных углеводородов, в частности его знаменитые работы над уплотнением изобутилена, можно считать как бы преддверием к синтезу высокополимерных веществ, в том числе и каучуков. Однако вопросом строения каучука и его связи с непредельными углеводородами Бутлеров не занимался.

Полимеризация бутадиена (в качестве катализатора - металлический натрий )

В конце 1909 г. С. В. Лебедев впервые получил и демонстрировал термополимер синтетического полимера из дивинила (бутадиена). Для осуществления синтеза каучука в промышленном масштабе предстояло разрешить вторую, не менее важную задачу: получение в достаточном количестве и притом дешевого исходного продукта (изопрена, бутадиена и т. п.) и изучение условий полимеризации, применимых в технике. Эта вторая задача, на трудность разрешения которой указывал еще В. Тильден, потребовала огромного напряжения сил химиков. Решение задачи получения исходных соединений для синтеза каучука также было осуществлено главным образом русскими химиками.

Получение изопрена пирогенетическим разложением скипидара, очевидно, не могло иметь практического значения как вследствие недостатка исходного сырья, т. е. скипидара, так и потому, что скипидар представляет ценный продукт, имеющий непосредственное применение.

Получение изопрена пиролизом паров скипидара( дипентена)

Очень интересными и важными надо считать работы И. И. Остромысленского, который, во-первых, показал, что при процессах пирогенетического разложения органических веществ всегда образуется в том или ином количестве бутадиен, и, во-вторых, разработал метод получения бутадиена из этилового спирта и уксусного альдегида. Остромысленский выразил надежду, что оба процесса, т. е. получение из этилового спирта уксусного альдегида и реакцию последнего со второй молекулой этилового спирта для получения

бутадиена, можно будет осуществить в едином, с точки зрения технической, процессе. Однако самому эту задачу ему не удалось разрешить.

Задача получения дивинила (бутадиена) из спирта была блестяще разрешена С. В. Лебедевым. Свои интереснейшие как с теоретической, так и с практической стороны работы Лебедев начал еще в лаборатории Фоворского в Петроградском университете и только в 1917 г. перенес свои исследования в направлении синтеза каучука в лабораторию Военно-медицинской академии, где он получил кафедру химии. Применяя смешанный катализатор, С. В. Лебедев впервые осуществил одновременно дегидрогенизацию и дегидратацию молекул спирта при температуре 425° с образованием в качестве главного продукта реакции дивинила, с выходом около 20°/о (лабораторные и первые заводские данные).


К концу 1912 г. результаты своих, исследований Лебедев изложил в виде монографии «Исследования в области полимеризации двуэтиленовых углеводородов». Эту монографию Лебедев представил в Совет Петербургского университета в качестве магистерской диссертации и в апреле 1913 г. блестяще ее защитил.

За классические исследования в области полимеризации двуэтиленовых углеводородов Академия Наук в 1914 г. присудила Лебедеву Большую премию имени И. Д. Толстого и почетную золотую медаль. Замечательно, что все эти выдающиеся по своему теоретическому значению и по экспериментальному мастерству исследования были выполнены им почти единолично.

Во время Первой мировой войны Лебедев принимал большое участие в разрешении очень важного вопроса - о получении толуола пиролизом нефти. Совместно с А. Ф. Добрянским профессором и специалистом по переработке нефти, С. В. Лебедевым был разработан метод получения толуола из нефти.


Владимир Васильевич Марковников (1838-1904)

Оживление деятельности химической лаборатории Московского университета, построенной в 1823 г., а затем и ее быстрый расцвет связаны с избранием на кафедру химии в звании ординарного профессора питомца Казанского университета и ученика А. М. Бутлерова, В. В. Марковникова В. В. Марковников был первым и, несомненно, наиболее выдающимся учеником А. М. Бутлерова. Его острый аналитический ум при одновременной способности к синтезу и широким обобщениям, его острая наблюдательность и искусство .экспериментатора позволили ему в самый короткий срок стать не только лучшим учеником Бутлерова, но и его соратником по углублению идеи строения органических соединений.

Влияние В. В. Марковникова на развитие органической химии огромно.

Он был ученым мирового масштаба.

Владимир Васильевич Марковников родился в 1838 г. в деревне Черноречье близ Нижнего-Новгорода. Детство В. В. Марковникова протекало в селе Ивановском, Княгининского уезда, Нижегородской губернии, в имении его отца. Десяти лет Марковников был отдан в нижегородский Александровский дворянский институт, который успешно окончил в 1856 г. В том же году В. В. Марковников поступил в Казанский университет на камеральное отделение юридического факультета.

При прохождении университетского курса Марковников первоначально хотел посвятить себя изучению технологии, которую в то время преподавал один из пионеров технического образования в России - М. Я. Киттары. Но с переходом Киттары в 1857 г. в Московский университет, Марковников оставил свое первоначальное намерение и стал усиленно заниматься химией. На третьем курсе он начал слушать лекции по органической химии А. М. Бутлерова, только что вернувшегося из заграничной командировки. Университетский курс Марковников окончил в 1860 г. со степенью кандидата и, по представлению Бутлерова, был оставлен при университете для подготовки к профессорскому званию. В конце того же года Марковников был утвержден в должности лаборанта при химической лаборатории. В 1862 г. он начал преподавание аналитической химии.

Через три года, по окончании университета, Марковников сдал магистерский экзамен, а в 1865 г. защитил магистерскую диссертацию «Об изомерии органических соединений». Вскоре после этого он был командирован на два года за границу, причем основная цель командировки заключалась в подготовке к преподаванию технической химии. По совету Н. И. Пирогова, на обязанности которого лежало наблюдение за командированными молодыми учеными, Марковников изменил свои первоначальные планы и начал слушать лекции по химии у Эрленмейера, Коппа и Кирхгофа. В. В. Марковников работал в лабораториях Эрленмейера и Байера в Берлине, но главным образом в лаборатории Кольбе в Лейпциге. Чрезвычайно характерно, что Марковников, не стесняясь тем, что в разговоре Кольбе называл его Негг Dосtог, прошел, наряду со студентами, курс аналитической химии, считая преподавание этого важного отдела химии в русских университетах совершенно неудовлетворительным. Не менее также характерно для будущего знаменитого ученого, что и в лаборатории Эрленмейера и в лаборатории Кольбе он работал на собственные темы. Он продолжал здесь свои казанские исследования над изомасляной кислотой, которую Эрленмейер ошибочно принимал за нормальную масляную.

К концу заграничной командировки В. В. Марковников уже начал развивать свою идею о взаимном влиянии атомов в химических соединениях. Столь необычное поведение молодого русского ученого, командированного за границу с целью усовершенствования в химических науках, сам Марковников в своих воспоминаниях о Бутлерове объясняет так: «Мое положение в лаборатории Кольбе было несколько иное, чем всех остальных. Уже три года как я был магистром и работал на собственные темы. Уже в первый год по приезде в Германию я убедился, что казанская лаборатория в теоретическом отношении далеко опередила все лаборатории Германии».

В 1867 г., когда еще не окончился срок командировки, Марковников был избран Советом Казанского университета доцентом по кафедре химии. Не дожидаясь конца командировки, Марковников вернулся в Казань и приступил к преподаванию химии, заменив уехавшего за границу А. М. Бутлерова. Весною 1869 г. Марковников защитил на степень доктора свою знаменитую диссертацию «Материалы по вопросу о взаимном влиянии атомов в химических соединениях». А. М. Бутлеров, бывший оппонентом, дал самую высокую оценку диссертационной работе Марковникова; принимая во внимание ее исключительное теоретическое значение, он выразил пожелание, чтобы труд Марковникова был переведен на один из иностранных языков. На это пожелание Марковников ответил: «Если высказанные здесь мысли представляют интерес, то желающие могут пользоваться этим русским сочинением».

Здесь следует напомнить, что в то время все поднятые в диссертации Марковникова глубоко принципиальные вопросы не обсуждались совсем или же были до крайности запутаны. Марковников вспоминает, как впоследствии знаменитый своим синтезом ализарина Гребе однажды в лаборатории А. Байера задал Марковникову вопрос: «Почему хлор в хлористом ацетиле содержится иначе, чем в хлористом этиле? Шорлеммер в 1867 г. уверял меня, что при охлорении парафинов он получит хлориды нормальных алкоголей, я же утверждал, что у него будет смесь с преимущественным содержанием вторичных хлоридов».

Значение идей Марковникова о взаимном влиянии атомов в молекуле химических соединений западноевропейскими химиками было оценено значительно позже появления его знаменитой диссертации. Только 30 лет спустя после опубликования диссертации Марковникова известный американский химик Михаэль занялся обсуждением вопроса о влиянии атомов в молекуле соединения на течение реакций; он так отметил научную заслугу Марковникова: «Большая заслуга Марковникова состоит в том, что он не только рассмотрел вопрос во всей его общности, но в то же время вывел некоторые в высшей степени важные правила, вытекавшие из его взглядов...» «К сожалению,- прибавляет в заключение Михаэль,- его сочинение появилось только на русском языке, вследствие чего содержание его осталось неизвестным большинству химиков».

Можно добавить, что идеи Марковникова столь глубоки, что их истинный смысл и значение стали выясняться лишь в самое последнее время в свете электронных, представлений и всех новейших завоеваний физики и химии о строении вещества.

Вскоре после защиты докторской диссертации Марковников, в связи с переходом Бутлерова в Петербург, получил в свое заведование лабораторию и чтение всех курсов химии в Казанском университете. В мае 1869 г. Марковников был избран Советом Казанского университета экстраординарным и менее чем через год, в марте 1870 г., ординарным профессором по кафедре химии.

В Казани Марковников оставался недолго. В декабре 1871 г. он получил предложение Совета Новороссийского университета (ныне Одесского) занять кафедру химии. Предложение было им принято. Но еще до утверждения профессором Марковников вместе с шестью другими профессорами подал в отставку по политическим мотивам, однако отставка не состоялась, и он был утвержден профессором Новороссийского университета. В Новороссийском университете Марковников нашел хорошие условия для работы. К этому времени Н. Н. Соколовым была организована хорошо обставленная химическая лаборатория. После ухода по болезни из университета Н. Н. Соколова, Марковников вступил в заведование химической лабораторией, быстро наладил работу и скоро выпустил со своими учениками ряд исследований.

В Одессе Марковников оставался тоже недолго. В 1873 г. Советом Московского университета он был избран на кафедру химии. После некоторых, колебаний он принял предложение перейти в Москву. Причина колебаний заключалась в том, что в Одессе Марковников мог работать в прекрасно оборудованной лаборатории, в Москве же существовала лишь старая химическая лаборатория, построенная в 1838 г. Марковников предвидел, что ему придется положить немало трудов на приведение лаборатории в состояние, пригодное для осуществления его обширных научных замыслов. Ректором Московского университета, знаменитым историком С. М. Соловьевым были даны Марковникову обещания выполнить все его пожелания на этот счет.

В большом докладе ректору Московского университета В. В. Марковников указал, что «большие затраты на исправление старой лаборатории были бы неблагоразумны. Университет нуждается в более обширной лаборатории, настоятельность этой нужды с каждым годом будет становиться обязательнее... Вот почему я полагал бы более целесообразным ходатайствовать перед правительством об ассигновании достаточной суммы для устройства новой лаборатории». Прошло однако более 10 лет, прежде чем началась постройка новой химической лаборатории. Все это отняло у Марковникова много сил и здоровья. Открытие новой химической лаборатории состоялось 14 сентября 1887 г., т. е. через 14 лет после переезда Марковникова в Москву.

Марковников вдохнул новую жизнь в преподавание химии в Московском университете и в организацию научных исследований по химии. Прежде всего, он поставил на должную высоту преподавание аналитической химии: к занятиям допускались лишь лица, предварительно сдавшие коллоквиум. Что касается преподавания и постановки практических занятий и научных, работ по органической химии, то в этом отношении Марковников ставил на первый план самостоятельную работу студента и молодого научного работника. Своим помощникам по преподаванию Марковников постоянно повторял наказ: «Никогда не следует тискать в рот жареных голубей». В результате такой системы преподавания практиканты и молодые научные работники должны были самостоятельно разбираться в иностранных химических журналах и принимать самостоятельные решения при выполнении тех или иных заданий своего руководителя В. В. Марковникова.

Нововведения не замедлили сказаться: в лаборатории Марковникова скоро появилось много молодых людей, желающих работать по химии на научные темы. В чем же заключалась причина такого быстрого и необычайного успеха лаборатории Марковникова? На этот вопрос дает ответ один из первых учеников Марковникова по Московскому университету, академик И. А. Каблуков: «Вышедший из „бутлеровской школы",- пишет в своих воспоминаниях И. А. Каблуков,- В. В. Марковников внес в химическую лабораторию Московского университета традиции своего учителя А. М. Бутлерова, который сам всегда работал на глазах учеников, всегда сам рассказывал о своих работах ученикам, которым поэтому показалось бы по меньшей мере странным делать секрет относительно своих работ от соседей. Такая лабораторная атмосфера, несомненно, влияла возвышающим образом на всех работающих. Такие лаборатории, действительно, напоминают „храмы науки"». Эта работа «сообща», как выражается И. А. Каблуков, привлекала и увлекала молодежь.

Из химической лаборатории Московского университета впервые за все время его существования стали выходить одно за другим настоящие научные химические исследования. Так, уже в 1875 г., т. е. через два года после перехода в Москву Марковникова, из его лаборатории вышло 13 работ, из которых, семь принадлежали ему лично. Достойно также упоминания, что химическая лаборатория Марковникова была первой русской лабораторией, открывшей свои двери женщинам. В числе первых работ, вышедших из Московской лаборатории Марковникова, можно упомянуть работу Лермонтовой «О получении нормального бромистого пропилена (триметиленбромида)».

Наряду с экспериментальными исследованиями, Марковников продолжает развивать свои теоретические положения, впервые изложенные им в докторской диссертации. Он не только подкреплял и развивал своими блестящими экспериментальными исследованиями теорию химического строения своего учителя А. М. Бутлерова, но и углублял идею строения органических соединений. В работе, вышедшей в 1876 г. (т. е. в московский период деятельности),- «О законах образования прямых соединений непредельными органическими частицам», В. В. Марковников так говорит об этом углублении: «Теория химического строения объясняет, почему этилен, соединяясь с иодистоводородной кислотой, дает тот же йодистый этил, который получается из этилового спирта, но она не могла объяснить, почему амилен, происходящий из амильного алкоголя брожения, соединяясь с иодистоводородной кислотой, образует иодюр, изомерный с тем, в который непосредственно переходит тот же алкоголь. Подобные реакции не входят в область явлений, захватываемых этой теорией». Свои обобщения в этом направлении, известные всем органикам «правила Марковникова», он сформулировал так : «Когда несимметричный алкен соединяется с галогеноводородной кислотой, галоген присоединяется к атому углерода, содержащему меньше атомов водорода, то есть к атому углерода, на который больше влияют другие атомы углерода», «При присоединении галогеноводорода к несимметричному алкену атом водорода присоединяется к более гидрогенизированному атому углерода»,

«Когда ненасыщенная молекула CnHmX присоединяется к другой молекулярной системе YZ при низкой температуре, более отрицательный элемент или группа Y соединяется с менее гидрогенизированным атомом углерода или с тем, который уже был соединён с каким-либо отрицательным элементом; но при более высоких температурах именно элемент Z присоединяется к менее гидрогенизированному атому углерода»,

  <#"660494.files/image038.gif">

Циклобутан циклопентан циклогексан

Нафтены ( циклоалканы)

Большая заслуга В. В. Марковникова заключается прежде всего в том, что для выяснения этой темной области органических соединений он выделил из кавказской нефти большое число индивидуальных соединений, по возможности изучил их строение, произвел обширные экспериментальные исследования и синтезировал значительное число представителей полиметиленового ряда. Им были разработаны многие оригинальные методы синтеза как углеводородов полиметиленового ряда, так и их производных, например циклических кетонов, нафтеновых, кислот и многих других.

В 1892 г. была опубликована его вторая большая статья «Нафтены и их производные в общей системе органических соединений». В ней он расширяет понятие нафтенов и указывает, что природные спирты, кварцит, инозит - принадлежат к группе нафтенов. В дальнейшем Марковников каждый год опубликовывал большое число (иногда больше десяти) работ, относящихся к области соединений полиметиленового ряда. Статьи под общим заглавием «Исследования в области циклических соединений» печатались до самой его смерти.

В 1899 г. он приходит к очень важному вопросу о возможном присутствии в нефти метилпентаметилена, что позднее блестяще подтвердилось.

Метилпентаметилен

За свои выдающиеся исследования в области изучения кавказской нефти Марковников в 1900 г. был удостоен Международным нефтяным конлрессом золотой медали. Таким образом, его научные заслуги были признаны западноевропейскими и американскими учеными. По отзыву знаменитого итальянского химика Станислао Канницаро, Марковников обогатил «чистую науку новым типом углеродистых соединений, которые всегда будут связаны с именем В. В. Марковникова».

Еще в декабре 1903 г. он сделал обширный доклад о своих последних работах в Химическом обществе в Петербурге, а 29 января 1904 г. его не стало.

В. В. Марковников оставил после себя знаменитую московскую марковниковскую школу химиков. Многие ученики Марковникова стали впоследствии известными учеными» некоторые из них приобрели мировую известность.

Одним из старейших учеников В. В. Марковникова и достойным продолжателем его школы является М. И. Коновалов.

Михаил Иванович Коновалов. (1 ноября 1858 г., деревня Будихино, Рыбинского уезда Ярославской губернии - 12 декабря 1906 г., Киев)

Имя М. И. Коновалова навсегда вошло в историю науки как химика, который своими блестящими исследованиями над действием азотной кислоты на парафиновые углеводороды разрушил десятками лет существовавшее мнение о неспособности парафиновых углеводородов нитроваться с образованием нитропроизводных.

Отец Коновалова - зажиточный крестьянин, занимался трактирным промыслом. Молодому Коновалову предстояла незавидная доля его братьев - продолжать трактирное дело рано умершего отца. Мальчик уже был приспособлен работать за трактирной стойкой, но украдкой обучался грамоте и читал первые попавшиеся ему под руку книжки. Стремление к учению взяло верх, и в 1873 г., когда ему пошел 15-й год, он вместе с матерью пешком отправился в Ярославль и, после некоторых затруднений, был определен в 4-й класс гимназии. Уже к концу первого полугодия Коновалов получил по всем предметам круглое пять; он скоро занял первое место в классе и окончил гимназию с золотой медалью.

По окончании гимназии он поступил в 1880 г. на естественное отделение физико-математического факультета Московского университета. В университете скоро определились стремления его к химии, и он с увлечением начал работать в лаборатории В. В. Марковникова. В 1884 г. он окончил университет и, по представлению Марковникова, был оставлен при университете.

В 1889 г. М. И. Коновалов защитил магистерскую диссертацию на тему Марковникова: «Нафтены, гексагидробензолы и их производные». При выполнении экспериментальной части этой работы М. И. Коновалов благодаря своей тонкой наблюдательности сделал одно, казалось бы небольшое, открытие, касавшееся действия азотной кислоты на нефтяные углеводороды предельного характера. Вскоре удалось показать, что, вопреки существовавшему мнению, слабая азотная кислота при нагревании в запаянных сосудах способна действовать на углеводороды предельного характера с образованием нитросоединений. Это замечательное открытие одним ударом разрушило преграду, существовавшую между соединениями парафинового и ароматического ряда, и тот предрассудок, которого в этом отношении придерживались многие, даже выдающиеся химики. М. И. Коновалов подверг открытую им реакцию детальному изучению. Полученный при этом богатый экспериментальный материал составил предмет его докторской диссертации - «Нитрующее действие азотной кислоты на углеводороды предельного характера» (М., 1893). В дальнейших работах он изучил многочисленные химические превращения полученных им в большом количестве новых представителей нитропроизводных. В результате ему удалось найти переходы от нитросоединений к оксимам, аминам, альдегидам, кетонам и т. п. Одним словом, как он сам любил выражаться, реакцией нитрования он оживил химических мертвецов, к каким причислялись парафины за их химическую инертность.

Реакция Коновалова

Коноваловской реакцией нитрования широко пользовался его учитель В. В. Марковников в своих преследованиях углеводородов кавказской нефти. М. И. Коновалов энергично продолжал изучать реакцию нитрования углеводородов и между прочим поставил опыты нитрования в открытых сосудах, причем некоторые опыты дали очень благоприятные результаты. Преждевременная смерть прервала его блестящую научную деятельность.

М. И. Коновалов скончался 12 декабря 1906 г. в Киеве, где он состоял с 1899 г. профессором и деканом, а затем и директором Политехнического института.

Чрезвычайно поучительна дальнейшая судьба коноваловской реакции нитрования. В истории применения успехов химии к промышленности немало встречается примеров, когда вновь открытые в лаборатории химические реакции, сами по себе представляющие высокий теоретический интерес, в течение долгого времени не находят никакого практического приложения в промышленности. Так было с реакцией восстановления ароматических нитросоединений Зинина, применение которой в промышленности произошло лишь через 15 лет; так было с реакцией превращения ацетилена и его гомологов в альдегиды и кетоны Кучерова: получение в заводском масштабе уксусного альдегида по реакции Кучерова было осуществлено в Германии приблизительно через 25 лет после ее открытия; так было с реакцией полимеризации этиленовых углеводородов в присутствии фтористого бора Бутлерова: синтез так называемого бутил-каучука по реакции Бутлерова был осуществлен в Америке более чем через 50 лет после ее открытия.

Реакции Кучерова

Реакция Грисса

Реже случаи, когда промышленность и техника быстро сумели оценить значение нового научного открытия и применить его на практике. Такова, например, реакция диазотирования Грисса, реакция восстановления непредельных, соединений водородом в присутствии никелевого катализатора Сабатье и Сандерена и некоторые другие.

«Инкубационный» период реакции Коновалова продолжался более 50 лет, в итоге американские химики и инженеры сумели осуществить коноваловскую реакцию нитрования парафинов в паровой фазе, и в результате начала быстро развиваться химическая промышленность, базирующаяся на нитровании парафинов.

Николай Яковлевич Демьянов. (15 (27)марта 1861 года, Тверь - 19 марта 1938, Москва)

К представителям школы Марковникова следует отнести также одного из наиболее выдающихся русских органиков с мировым именем - академика Н. Я. Демьянова. Широкую известность у нас и за границей приобрели классические работы Демьянова в области изучения изомеризации циклических углеродистых соединений с малым числом углеродных атомов в цикле.

В возрасте трех лет он лишился отца и воспитывался матерью. Его детство прошло в деревенской обстановке, и он с юных лет приобрел любовь к природе. В 1872 г., в возрасте 11 лет, Демьянов был отдан в Московскую 4-ю гимназию, которую окончил в 1882 г. В этом же году он поступил в Московский университет на естественное отделение физико-математического факультета, где скоро увлекся лекциями и работами в лаборатории В. В. Марковникова.

В лаборатории Марковникова Н. Я. Демьянов работал одновременно с М. И. Коноваловым и Д. Н. Прянишниковым. Первую научную экспериментальную работу «Об окислении а-оксимасляной кислоты» Демьянов выполнил под руководством В. В. Марковникова. По окончании университета он еще год продолжал вольнослушателем посещать лекции И. А. Каблукова по физической химии, Н. Н. Любавина по технической химии и некоторое время работал в лаборатории Н. Е. Лясковского над декстринами.

В 1887 г. он получил предложение занять место ассистента по кафедре неорганической и аналитической химии в Петровской (ныне Тимирязевской) сельскохозяйственной академии, и с этого времени вся научная и преподавательская деятельность его протекала в стенах этого высшего научного учреждения. Здесь Демьянов знакомится с проф. Г. Г. Густавсоном, широко известным своими превосходными исследованиями в области бромирования ароматических углеводородов в присутствии бромистого алюминия. Вскоре Демьянов делается ближайшим сотрудником Густавсона, который таким образом становится вторым после Марковникова руководителем в его первых химических работах.

Под непосредственным руководством Густавсона Демьянов выполняет в 1888 г. работу «Получение и свойства аллена». В 1890 г. Густавсон выходит в отставку и преподавание органической химии поручается Демьянову. В 1894 г. он назначается адъюнкт-профессором и начинает свою блестящую научную и преподавательскую деятельность. Он скоро находит собственный химический путь и в течение короткого времени подготавливает и защищает магистерскую диссертацию «О действии азотистой кислоты на три-, тетра- и пентаметилендиамины» (1895).

Структурные формы хирального аллена

В 1899 г. Демьянов защищает при Московском университете докторскую диссертацию «О действии азотного ангидрида и азотноватой окиси на этиленовые углеводороды. К вопросу о взаимодействии углеводородов с высшими окислами азота» и вскоре получает звание ординарного профессора.

Обе диссертации представляют собою как бы первый этап его научной деятельности; в них уже виден выдающийся экспериментатор, но его яркий и вполне оригинальный талант исследователя начинает только развертываться.

Наиболее ценная часть магистерской диссертации, являющейся вступлением к его замечательным работам в области изомеризации циклов, заключается в синтезе метилтриметилена и других гомологов триметилена и в изучении их отношений к брому, йодистому водороду и серной кислоте различной крепости. В результате этого исследования установлено, что вступление метильного радикала в триметиленовое кольцо понижает его прочность, или, иначе, повышает его способность к размыканию. Этот вывод важен и ценен потому, что он представляет собою начало проникновения в природу циклической связи и начало экспериментального изучения устойчивости полиметиленовых циклов.

В докторской диссертации Демьянов уделил особое внимание выяснению строения продуктов присоединения азотистого ангидрида к этиленовым углеводородам, так называемых нитрозитов. Работы в этом направлении быстро привлекли внимание как русских, так и западноевропейских ученых. Демьянов получил известность как первоклассный химик. Знаменитый немецкий химик Виланд в результате этих исследований должен был отказаться от своих взглядов на строение нитрозитов.

Начиная с 90-х годов, Демьянов уделяет главное внимание изучению превращений полиметиленовых углеводородов и их производных. Следует особо подчеркнуть, что изучение полиметиленовых соединений, представляющих собою как бы мост между парафинами и углеводородами ароматического ряда, было осуществлено почти исключительно русскими химиками, прежде всего В. В. Марковниковым, Г. Г. Густавсоном, Н. Я. Демьяновым, Н. М. Кижнером, Е. Е. Вагнером, Н. Д Зелинским, А. Е. Фаворскими и другими.

Начало замечательных исследований Демьянова связано с выяснением строения так называемого «углеводорода Густавсона», полученного Густавсоном при действии цинковой пыли и спирта на тетрабромид пентаэритрита и признанного им за винилтриметилен. Решение этого, казалось бы простого, вопроса представляло необычайные трудности и было весьма поучительно: лишь в результате работ ряда выдающихся химиков (Е. Е. Вагнера, А. Е. Фаворского, Н. Д. Зелинского, О. Г. Филиппова и др.) было установлено, что «углеводород Густавсона» есть смесь метиленциклобутана и метилциклобутена.

Метилциклобутан Метилциклобутен

«Реактив Густавсона»

В 1901 г. Н. Демьянов совместно с М. Лушниковым сделал попытку синтезировать метиленциклобутан, исходя из циклобутилметиламина, через соответствующий спирт циклобутилкарбинол, однако при действии азотистой кислоты на циклобутилметиламин они получили лишь незначительное количество ожидаемого спирта. Главный продукт реакции, к удивлению, представлял смесь циклопентанола и циклопентена, т. е. в результате реакции произошло расширение четырехчленного кольца в пятичленное. Этот выдающийся в теоретическом отношении факт послужил исходным пунктом ряда систематических исследований над расширением и сужением циклов производных полиметиленовых углеводородов, осуществленных Демьяновым совместно со своей дочерью М. Н. Дояренко-Демьяновой. В этих исследованиях, справедливо считающихся классическими, Демьянов на обширном экспериментальном материале показал общность явления расширения и сужения циклов, короче - явлений изомеризации циклов, и вывел ряд закономерностей, которым эти замечательные превращения подчиняются. Позднее его ученики распространили реакцию Демьянова на гетероциклические соединения.

Чтобы в полной мере оценить значение этих работ, следует вспомнить, что химия кольчатых углеродистых и гетероциклических соединений, кроме определенного типа нефтей, захватывает обширные и наиболее важные и трудные отделы, каковы терпены, алкалоиды, витамины, гормоны. Установление строения многих представителей этих отделов, особенно терпенов, представляло, казалось, неодолимые трудности. Достаточно сказать, что для камфоры было предложено более 30 формул строения. Эти трудности происходили, как было выяснено, в результате легко протекающих реакций изомеризации циклов как в сторону расширения, так и в сторону сужения последних.

Швейцарский химик Л. Ружичка, один из наиболее выдающихся органиков-синтетиков, относительно исследований Н. Я. Демьянова пишет: «Среди различных известных реакций расширения кольца, реакция, указанная Демьяновым, представляет особый интерес, так как она во всех до сих пор изученных случаях (от трех- до семичленного кольца) позволяет определенное углеродное кольцо превратить в кольцо с ближайшим числом звеньев».

Умер Н. Я. Демьянов 19 марта 1938 г.

Н. Я. Демьянов был главою большой химической школы. Среди его учеников имеется много талантливых химиков-органиков. Из их числа можно назвать прежде всего его дочь М. Н. Дояренко-Демьянову, Н. А. Розанова, Н.

Перегруппировка Демьянова И. Гаврилова, В. В. Феофилактова, А. С. Онищенко, Н. И. Потухина и других.

Алексей Евгеньевич Чичибабин. (1871-1945)

Одним из наиболее выдающихся ранних сотрудников Н. Я. Демьянова является Алексей Евгеньевич Чичибабин, впоследствии химик с мировым именем.

Известность А. Е. Чичибабина как выдающегося химика начинается после его выступления по вопросу о существовании свободных радикалов, открытых в 1900 г. американским химиком Гомбергом. Это замечательное открытие вначале, как известно, вызвало весьма скептическое отношение большинства химиков, что отчасти можно было объяснить неправильной постановкой вопроса самим Гомбергом. Впервые правильную мысль о характере соединения, полученного Гомбергом, высказал В. В. Марковников в 1902 г. в заседании Отделения химии Московского общества любителей естествознания, признав соединение, полученное Гомбергом, гексафенилэтаном, а не свободным радикалом - трифенилметилом.

В 1904 г. А. Е. Чичибабин впервые выступил по вопросу о строении углеводорода Гомберга. В согласии с мнением Марковникова, он признал этот углеводород также гексафенилэтаном и привел в подтверждение этого мнения несколько веских соображений. Позднее Чичибабин сделал по этому вопросу очень важное допущение о возможности диссоциации гексафенилэтана на свободные радикалы трифенилметила.

Одним из важнейших моментов в истории развития вопроса о возможности существования свободных радикалов надо считать опыты Чичибабина, относящиеся к термической диссоциации пентафенилэтана с образованием тетрафенилэтана и трифенилметила, выделенного, правда, в виде трифенилкарбинола. После этих работ Чичибабина большинство зарубежных химиков склонилось на сторону русских химиков. Решающие эксперименты, доказывающие возможность существования свободных радикалов, были произведены Шленком совместно с Еейкелем и Герценштейн.

Не менее интересны и важны исследования Чичибабина в области химии гетероциклических соединений и прежде всего исследования, касающиеся производных пиридина и хинолина. До работ Чичибабина различные замещенные пиридина и хинолина были малодоступными веществами. Особенно трудно получались производные а-замещенного пиридина.


Эти исследования А. Е. Чичибабина имеют ближайшее отношение и к химии алкалоидов и к химии самых разнообразных веществ, обладающих сильным физиологическим действием. Достаточно напомнить, что такое известное лекарственное соединение, как сульфидин и его аналоги, синтезируется с помощью а-аминопиридина.


Николай Матвеевич Кижнер. (1867-1935)

Во многих отношениях близок к Н. Я. Демьянову по характеру своей научной деятельности почетный академик Н. М. Кижнер- также один из наиболее выдающихся учеников В. В. Марковникова. Оба они могут быть с полным правом отнесены к представителям классического направления бутлеровской школы. Замечательные исследования Кижнера в области полиметиленовых углеводородов и более сложно построенных представителей алициклического ряда, а также открытые и разработанные им методы получения в исключительно чистом состоянии углеводородов алициклического ряда соперничают по своему изяществу и научному значению с исследованиями Н. Я. Демьянова над расширением и сужением колец производных алициклического ряда.

По окончании 1-й Московской гимназии он поступил в 1886г. на естественное отделение физико-математического факультета Московского университета. Уже на третьем курсе он отдает решительное предпочтение химии и становится сотрудником известного нашего термохимика В. Ф. Лугинина. На обязанности студента-третьекурсника лежала ответственная задача приготовления химически чистых органических препаратов, необходимых для термохимических определений.

Последний год своего пребывания в университете Кижнер работал в лаборатории В. В. Марковникова под непосредственным его руководством, и это окончательно определило дальнейший научный путь будущего химика.

По окончании в 1890 г. университета Н. М. Кижнер, по представлению Марковникова, был оставлен при университете. в звании сверхштатного лаборанта. Уже в 1895 г. Кижнер представил в Петербургский университет и защитил магистерскую диссертацию «Амины и гидразины полиметиленового ряда, методы их образования и превращения». В этой работе вполне наметился самостоятельный путь молодого ученого.

Через пять лет после защиты магистерской диссертации, в 1900 г., Кижнер защитил при Московском университете докторскую диссертацию «О действии окиси серебра и гидроксиламина на бромамины. О строении гексагидробензола». В 1901 г. он получил кафедру органической химии в Томском технологическом институте, где с необычайной энергией и быстротой устроил хорошо оборудованную химическую лабораторию. В ней он выполнил новую серию оригинальных исследований, в результате которых органическая химия обогатилась открытием классического метода превращения альдегидов и кетонов в углеводороды каталитическим разложением алкилиденгидразинов.

Вскоре после переезда Н. М. Кижнера в Томск у него обнаруживается тяжкое заболевание - гангрена конечностей, жестокая болезнь, до самой смерти державшая Кижнера, как в тисках. Блестящий экспериментатор бутлеровской школы, привыкший все делать собственными руками, он постепенно лишился почти всех пальцев на ногах и на руках. Надо удивляться могучему духу и воле его: инвалид в полном смысле этого слова, он продолжал экспериментально работать и выпускать одну работу за другой.

В 1906 г. за свои прогрессивные убеждения Н. М. Кижнер был выслан по распоряжению генерал-губернатора Западной Сибири из пределов генералгубернаторства и вернулся в институт только через год. В 1914 г. он, также не по своей воле, покинул Томск и переселился в Москву. С 1914 по 1917 г. Кижнер работал в Народном университете им. Шанявского.

Первые две студенческие работы Н. М. Кижнера выполнены на темы В. В. Марковникова. Вторая работа, имеющая своей целью получение гексагидробензола гидрогенизацией бензола иодистоводородной кислотой, относится к числу тех фундаментальных вопросов органической химии, которые могут быть названы классическими. Достаточно напомнить, что начало изучению гидрогенизации бензола иодистоводородной кислотой было положено гениальным французским ученым М. Бертело.


Надо полагать, что строгий руководитель, каким был В. В. Марковников, подметил выдающиеся способности экспериментатора у молодого студента, если он решил дать ему столь ответственную задачу. Очевидно, и на этот раз В. В. Марковников применил свой излюбленный педагогический прием: «Следует пускать студента,- любил он повторять,- на глубокое место: кто выплывет, значит будет толк». Н. М. Кижнер выплыл, несмотря на то, что место было не только глубокое, но и широкое. Студенческая работа Кижнера дала экспериментальный материал для решения труднейшего и одного из основных вопросов химии алициклических соединений.

В 1894 г. Н. М. Кижнер, после опубликования статьи А. Байера, впервые в истории этого вопроса высказал предположение, что «гексагидробензол», полученный по способу М. Бертело, не есть циклогексан, а представляет собой метилциклопентан, т. е., иначе говоря, в условиях реакции восстановления происходит превращение шестичленного цикла бензола в пятичленный цикл циклопентана. Эта блестящая мысль, свидетельствующая о силе таланта Кижнера, была позднее окончательно подтверждена работами В. В. Марковникова и Н. Д. Зелинского.


В своей магистерской диссертации Н. М. Кижнер детально изучил получение и свойства аминов и гидразинов полиметиленового ряда и мог сделать фундаментальный вывод о химической близости полиметиленовых аминов и аминов парафинового ряда. При изучении отношения право- и лево- вращающего ментиламинов к азотистой кислоте, Кижнер обнаружил поразительный факт: в то время как правовращающий ментиламин реагировал с азотистой кислотой при обыкновенной температуре с образованием главным образом углеводорода ментена, левовращающий ментиламин реагировал с азотистой кислотой только при нагревании с образованием нормального продукта левовращающего ментола.


В своей докторской диссертации Кижнер дал изящный метод получения замещенных гидразинов с радикалами полиметиленового ряда.

Наиболее блестящая научная деятельность Кижнера относится к томскому периоду, несмотря на его тяжкий недуг, который нередко на долгие месяцы приковывал его к постели. Именно здесь, продолжая изучать свойства гидразинов полиметиленового ряда, он открыл свой замечательный метод получения углеводородов, в том числе углеводородов, относящихся к классу терпенов, каталитическим разложением при нагревании алкилиденгидразинов (термин Кижнера) с небольшим кусочком едкого кали или платинированной глины.

Интересно, что эта реакция была описана несколько позднее немецким химиком Л. Вольфом, но в своей статье Л. Вольф не упоминает о работах Кижнера, опубликованных к тому времени не менее чем в шести статьях. В последовавшей полемике, где Кижнер отстаивал своей приоритет, Л. Вольф, правда в любезной форме, ответил Кижнеру, что он не знает русского языка (что для немецкого химика обычно) и что, кроме того, он, Вольф, за последние годы не просматривал известного рефератного журнала «Chemisches Zentralblatt», журнала, широко известного каждому начинающему химику. К сожалению, несмотря на бесспорный приоритет Кижнера, каталитический метод разложения замещенных гидразинов известен в науке как метод Кижнера - Вольфа.

Механизм реакции Кижнера-Вольфа

Дальнейшим развитием метода Кижнера явился не менее важный метод каталитического разложения пиразолиновых оснований. С помощью этой модификации основного метода разложения алкилиденгидразинов ему удалось легко синтезировать до того малодоступные замещенные углеводороды циклопропана, например гемдиметилметилциклопропан, фенилциклопропан и другие.

Свои богатейшие по результатам синтетические методы Н. М. Кижнер с неослабевающей энергией и успехом использовал до конца своей жизни.

Н. М. Кижнер скоропостижно скончался на своем научном посту 28 ноября 1935 г.

Николай Дмитриевич Зелинский (25 января (6 февраля) 1861, Тирасполь, Херсонская губерния - 31 июля 1953, Москва)

Зарождение нового научного центра в Московском университете связано с появлением в 1893 г. на кафедре органической химии Московского университета молодого, тогда еще мало кому известного ученого, ныне академика и одного из самых выдающихся химиков-органиков- Н. Д. Зелинского.

Размах научной деятельности Н. Д. Зелинского необычайно широк. Зелинского правильнее всего отнести к химикам-романтикам, т. е. к той категории ученых, которые не ограничиваются какой-нибудь одной, хотя бы и очень важной областью науки, а захватывают, в своих исследованиях, целы ряд вопросов или даже проблем, часто не имеющих между собою непосредственной связи. Их беспокойный ум не может, как это делает ученый-классик, выбрать себе прямую и дальнюю дорогу, а жаждет все новых и новых путей, жаждет познать тайны многих неизвестных областей.

Н. Д. Зелинский работал в различных отделах органической химии. В молодые годы его привлекают вопросы стереохимии, этого важнейшего этапа в развитии теории химического строения. Второй круг вопросов, которыми живо интересуется Н. Д. Зелинский,- это химия нафтенов и алициклических соединений вообще. С химией нафтенов тесно связана химия нефтей, изучению которых Зелинский также посвящает много времени и сил.

Особое его внимание привлекают вопросы катализа (или, как он их называет, контактных явлений) в теоретическом и в практическом направлениях. С большим успехом Н. Д. Зелинский работал в области химии аминокислот и белков. Перечисленный, далеко неполный круг вопросов, которым занимается и интересуется Н. Д. Зелинский, достаточно подтверждает сказанное мною выше об общем характере научной деятельности нашего маститого ученого.

Николай Дмитриевич Зелинский родился 6 февраля 1861 г. в г. Тирасполе, Херсонской губернии. По окончании Ришельевской гимназии в Одессе, Н. Д. Зелинский поступил на естественное отделение физико-математического факультета Новороссийского университета. Он окончил университет в 1884 г. и был оставлен при университете в качестве профессорского стипендиата. В университете Зелинский работал сначала под руководством проф. Е. Ф. Клименко, а позднее, на старших курсах, под руководством А. А. Вериго, В. М. Петриева и главным образом П. Г. Меликова. Одновременно с занятиями по химии он слушал лекции таких знаменитостей, как А. О. Ковалевский (зоология), И. И. Мечников (эмбриология).

В 1885 г. Зелинский был командирован с научной целью за границу, где работал у И. Вислиценуса в Лейпциге и В. Мейера в Геттингене. Работая у В. Мейера на заданную тему, Зелинский при синтезе тетрагидротиофена в качестве промежуточного продукта получил дихлордиэтилсульфид (иприт). Не зная ядовитых свойств синтезированного им впервые соединения, он получил жестокие ожоги, которые заставили его прервать научные занятия в лаборатории и почти весь летний семестр пролежать в больнице.

Иприт

В 1889 г., Зелинский защитил магистерскую диссертацию «К вопросу об изомерии в тиофеновом ряду». Через два года, в 1891 г., он защитил докторскую диссертацию «Исследование явлений стереоизомерии в рядах предельных углеродистых соединений». В 1893 г. Н. Д. Зелинский назначается экстраординарным профессором Московского университета по кафедре аналитической и органической химии, и с этих пор начинается его выдающаяся, блестящая научная деятельность в Московском университете, продолжающаяся, за исключением шестилетнего невольного перерыва, до сих пор. Перерыв профессорской деятельности Зелинского произошел в 1911 г., когда он вместе с другими профессорами и преподавателями (свыше ста) покинул Московский университет в знак протеста против увольнения президиума Совета Московского университета в составе профессоров А. А. Мануйлова, М. А. Мензбира и П. А. Минакова. Однако перерыв в работе в Московском университете не прекратил его научной деятельности. Зелинский переселился в Петербург, где занял место директора Центральной лаборатории Министерства финансов; здесь он быстро развил интенсивную научную деятельность. В Московский университет Зелинский вместе со .многими другими профессорами вернулся в 1917 г., после Февральской революции.

В петербургский период Н. Д. Зелинским выполнен ряд очень интересных и важных работ. Особенно большое теоретическое значение имеют выполненные им совместно с В. С. Садиковым работы по гидролизу белков, приведшие к новой постановке вопроса о строении белковых тел. В этот же период им проделаны важные в практическом отношении работы по ароматизации нефти. Во время первой мировой войны Н. Д. Зелинский со своими сотрудниками выполнил свою замечательную работу по выработке универсального противогаза против отравляющих веществ, впервые примененных немцами 2 апреля 1915 г. на фронте против французских частей, а три недели спустя - против русских частей. Угольный противогаз Н. Д. Зелинского сохранил жизнь и здоровье многим тысячам солдат и офицеров русской армии.

После возвращения в 1917 г. в Московский университет, Н. Д. Зелинский свою научную и общественную деятельность развивает все возрастающими темпами.

Н. Д. Зелинский - глава обширной химической школы и роль его в развитии органической химии в нашей стране чрезвычайно велика. Общее число учеников Н. Д. Зелинского достигает 130 человек. Многие из учеников Н. Д. Зелинского заняли кафедры в высших учебных заведениях, многие из них стали всемирно известными учеными. Здесь прежде всего надо назвать Л. А. Чугаева, Н. А. Шилова, А. Н. Лебедева, В. В. Лонгинова, Н. А. Розанова, А. В. Раковского, В. В. Челинцева.

Н. Д. Зелинским совместно с учениками опубликовано около 500 научных статей и сообщений, из которых более половины относится к дореволюционному периоду, обнимающему собою промежуток времени более 30 лет.

Многие исследования его имеют одинаково большое значение как теоретическое, так и практическое. К таким работам прежде всего надо отнести работы по пирогенетической ароматизации нефти, а также по каталитической ароматизации нафтенов; сюда же примыкают работы по бензинизации нефтей.

Совместно со Г. Л. Стадниковым в 1906 году Зелинским была открыта реакция синтеза аминокислот, в которой в качестве исходных компонентов используются карбонильные соединения.

Реакция Стадникова-Зелинского

Особенно интересны и глубоки по содержанию исследования Зелинского с сотрудниками в области гидрогенизационного и дегидрогенизационного катализа, а также исследования особых случаев сопряженного гидрогенизационно-дегидрогенизационного катализа - замечательных химических превращений, которым Зелинский дал. название «необратимого катализа».

«Необратимый катализ» Зелинского

Наряду с напряженной научной деятельностью Н. Д. Зелинский ведет не менее интенсивную общественную и общественно-педагогическую работу. Под последней подразумевается его деятельность по организации различных научно-педагогических учреждений. Таково участие Зелинского в организации в Москве в конце 90-х годов Высших женских курсов, в 1917 г. преобразованных во 2-й Московский университет; его участие в организации Народного университета им. Шанявского и т. д.

Н. Д. Зелинский - один из наиболее деятельных членов Русского физико-химического общества, Московского общества испытателей природы, Общества любителей естествознания, антропологии и этнографии, Общества содействия успехам опытных наук и их практических применений им. X. С. Леденцова; был активным членом Всесоюзного химического общества им. Д. И. Менделеева и многих других научных организаций.

В последние годы Н. Д. Зелинский состоял президентом Московского общества испытателей природы.

Все это ярко свидетельствует о том, что в лице Н. Д. Зелинского мы имели выдающегося ученого химика-общественника, обширная деятельность которого имела огромное значение для развития в нашей стране химической науки и особенно органической химии.

Лев Александрович Чугаев. (1873-1922)

Л. А. Чугаев широко известен у нас и за границей как первоклассный органик-синтетик - автор прекрасного ксантогенного метода получения непредельных малостойких (лабильных) углеводородов, особенно из группы терпенов. Еще большую известность приобрел Л. А. Чугаев как выдающийся представитель координационного учения в области химии комплексных соединений. Чугаев не только обогатил этот своеобразный отдел химии («органическую химию в миниатюре», как выражался он сам) огромным и интереснейшим экспериментальным материалом, но и сумел дать собственное оригинальное направление в дальнейшем развитии глубочайшей идеи координационной теории, предложенной знаменитым швейцарским химиком Вернером.

Лев Александрович Чугаев блестяще окончил естественное отделение физико-математического факультета Московского университета и в 1903 г. защитил при Московском университете на степень магистра химии диссертацию «Исследования в области терпенов и камфоры». В 1906 г. он защитил докторскую диссертацию «Исследования в области комплексных соединений (М., 1906).

С 1904 г. Л. А. Чугаев - профессор Высшего технического училища в Москве; в 1908 г., по предложению физико-математического факультета Петербургского университета, он занял кафедру неорганической химии Петербургского университета.

Переходя к рассмотрению его научного наследия, остановимся прежде всего на его магистерской диссертации.

Получение нестойких, легко изомеризующихся углеводородов, особенно представителей терпеновой группы, имеет длинную и поучительную историю. Десятки первоклассных химиков стремились выработать такой метод получения непредельных углеводородов, который гарантировал бы отсутствие перегруппировок во всех стадиях того или иного синтеза. Однако надежного метода найти не удалось. Это и понятно: химия таких отделов органической химии, как химия терпенов, необычайно разрослась и во многих отделах была полна противоречий.

Классическим примером в этом отношении может служить химия ментена, который, казалось, с большой легкостью может быть получен из доступного природного спирта - ментола. Однако различными исследователями получены до десяти ментенов, индивидуальность которых не подтвердилась. Л. А. Чугаев вырабатывает метод превращения спиртов в углеводороды, переходя через ксантогеновые эфиры.

Его тщательные исследования показали, что термическое разложение эфиров ментилксантогеновой кислоты - наиболее надежный метод получения индивидуального тена. «Ксантогеновый метод,- пишет он в диссертации,- привел к открытию нового типа терпенов с температурой кипения около 150°». В дальнейшем им было показано, что ксантогеновый метод может быть с успехом применен для получения непредельных углеводородов с открытыми цепями.


В этой же диссертационной работе Чугаев с исчерпывающей полнотой подвергает рассмотрению 31 формулу строения камфоры и, в соответствии с новыми собственными экспериментальными данными, приходит к выводу, что единственная формула строения камфоры, отвечающая ее физическим и химическим свойствам, это - вторая формула Бредта. Этот вывод его имел важное значение, потому что в то время еще не все химики признавали формулу Бредта.


Л. А. Чугаев очень много и успешно занимался также вопросами соотношения различных физико-химических и особенно оптических свойств органических соединений с их строением; таков, например, вопрос о зависимости величины молекулярного вращения и положения соединения в гомологическом ряду («правило Чугаева») и другие. Им же изучены в систематических исследованиях случаи аномальной вращательной дисперсии. Все это - новые тропинки и пути в темной области связи физических свойств органических соединений с их строением.

Начиная с 1905 г., Чугаев все более и более увлекается химией комплексных соединений к немалому огорчению органиков. Однако научная объективность заставляет признать, что в области изучения комплексных соединений им получены еще более ценные результаты. Органическая химия в настоящее время проникает в Камфора химию почти всех элементов периодической системы двумя главными путями: первый путь - это химия металло-, или, шире формулируя, химия элементоорганических соединений, второй путь идет через химию комплексных соединений. Не переставая быть органиком, Чугаев пошел по второму пути. Огромная эрудиция его в области органической химии позволила быстро наметить пути, ведущие в малоисследованную страну комплексных соединений.

В 1905 г. Чугаев открывает свойство а-диоксимов давать с металлами VIII группы прочные, хорошо кристаллизующиеся комплексы, каковы комплексы а-диоксимов с Ni, Рt, Рd, Fe, Со; с этих пор начинаются его замечательные успехи в области применения и развития координационной теории А. Вернера.


Л. А. Чугаев был изумительным экспериментатором, работоспособность его была колоссальна, и потому нет ничего удивительного, что его сообщения из новой области комплексных соединений, одно интереснее другого, стали появляться как из рога изобилия.

Л.А. Чугаев скоро начинает привлекать к участию и своих исследованиях способных молодых ученых, и на глазах у всех химиков вырастает чугаевская школа химиков: Можно считать, что к началу 20-х годов его школа уже ясно обозначилась. Из числа ранних учеников Л. А. Чугаева можно назвать В. Субботина, Б. Орелкина, Э. Фридмана, выдающегося ученого академика В. Г. Хлопина, академика И. И. Черняева; члена-корр. АН СССР В. В. Лебединского, Диоксим никеля члена-корр. АН СССР А. А. Гринберга, Н. К. Пшеницына и др.

Замечательно, что уже в первом своем сообщении о комплексах а-диоксимов с металлами VIII группы Чугаев сообщает об открытии качественной реакции на никель, известной каждому химику. «Прибавлю,- пишет Чугаев в своем сообщении от 30 января 1905 г.,- что образование соединения никеля с диоксимом диацетила является весьма характерной и чувствительной реакцией на никель. Явственная реакция (образование красного кристаллического осадка) получается при разведении Ni-соли 1 : 80 000».

И в дальнейших своих исследованиях Чугаев не только остается на почве теоретического развития вернеровских представлений о координационном числе, но к связывает их с задачами практического характера. Достаточно напомнить, что он - инициатор и основатель Института по изучению платины. Значение этого начинания Чугаева очень велико, и нашими научными работниками при помощи комплексных соединений решаются задачи извлечения некоторых металлов платиновой группы в промышленном масштабе.

Л. А. Чугаев был выдающимся общественным деятелем. Особенно обширна его деятельность на научно-литературном поприще. Его перу принадлежит много монографий и статей научно-популярного характера. Он - автор таких известных трудов, как «Периодическая система химических элементов», «Происхождение химических элементов» и многих других. Кроме того, он состоял редактором отдела химии в журнале «Природа».

Безвременная смерть (1922) прекратила его блестящую научную и общественную деятельность.

Сергей Семенович Наметкин. (1876 - 1950)

Исследования С. С. Наметкина в области изучения процессов нитрования, а также в ряду терпенов и камфоры доставили ему широкую известность как у нас, так и за границей. Первая экспериментальная работа «Синтез метил 1-циклопентанол-1» была выполнена С. С. Наметкиным еще в студенческие годы на тему и под руководством Н. Д. Зелинского (1902). Несколько последующих работ также выполнено им совместно с Зелинским; они представляют собою главным образом экспериментальный материал из обширных исследований Зелинского в области полиметиленовых углеводородов.

Однако очень скоро С. С. Наметкин выходит на самостоятельный путь и выбирает для своих исследований дальнейшее изучение реакции Коновалова - нитрование азотной кислотой предельных углеводородов и родственных им соединений. Таким образом, по характеру своих работ он близко примыкает к школе Марковникова - Коновалова. Уже в своей первой статье, относящейся к изучению коноваловской реакции, С. С. Наметкин, на основании экспериментальных данных, приходит к важному выводу, что решающую роль в процессах нитрования играет не крепость азотной кислоты, а ее относительная масса и продолжительность нагревания.В отдельных случаях ему удается, ведя реакцию в открытых сосудах, получить выход нитропродуктов до 65% теоретического. Эти первые исследования С. С. Наметкина одновременно помогли выяснить основную причину неудачных опытов нитрования в открытых сосудах, проведенных М. И. Коноваловым.

В дальнейшем С. С. Наметкин предложил схему реакции нитрования и затем блестяще подтвердил ее рядом опытов. По его схеме реакция нитрования идет через изонитросоединение, которое переходит далее в настоящее нитросоединение или же с выделением закиси азота превращается в альдегиды, кетоны и продукты дальнейшего окисления последних - в соответствующие кислоты. Выяснив таким образом основные условия и в значительной мере сам механизм реакции нитрования, Наметкин, следуя классическому пути Коновалова, применяет реакцию нитрования как мощное орудие изучения строения и химического поведения самых различных соединений предельного и непредельного характера и в том числе таких сложных по строению веществ, какими являются терпены.


Лучшим подтверждением этого направления служит докторская диссертация С. С. Наметкина «Исследования из области бицикличееких соединений» (М., 1916). В этом обширном исследовании реакция нитрования уже не имеет самостоятельного значения, а носит скорее прикладной, служебный характер. В сущности говоря, с опубликованием этой работы становится очевидным, что центр тяжести научных устремлений Наметкина переносится в самую гущу вопросов, связанных с выяснением химических превращений и строения многих важнейших представителей класса терпенов и углеводородов, имеющих ближайшее отношение к камфоре и фенхону.


Этим исследованием он вошел в фарватер классического направления Бутлерова - Вагнера. Вступив в область изучения превращений и строения терпенов, он одновременно должен был встретиться со всеми теми трудностями, которые неминуемо ожидают исследователя, независимо от его опытности, в лабиринте превращений различных терпенов. Но как раз в преодолении этих трудностей и выступает на первый план талант и, так сказать, класс ученого химика-органика. В этом отношении С. С. Наметкин - достойный преемник Е. Е. Вагнера. Его работы по вопросу о стереохимии дигидропиненов, работы по количественному определению непредельных на основе известной реакции Н. А. Прилежаева служат тому подтверждением.

Реакция Прилежаева

Наибольшего блеска исследования С. С. Наметкина достигли при изучении гомологов камфоры, приведшие к открытию особого типа перегруппировок, получивших в науке название камфеновой перегруппировки второго рода, или «перегруппировки Наметкина», в отличие от камфеновой перегруппировки первого рода, или «перегруппировки Вагнера». Эта реакция позволяет с большей легкостью перейти к гомологам камфоры и многим другим производным камфорной группы.


К сказанному надо добавить, что значение открытия камфеновой перегруппировки второго рода далеко выходит за пределы химии терпенов. Изучение перегруппировки Наметкина позволило глубоко проникнуть в одну из самых интересных и интимных областей химии - в область внутримолекулярных перегруппировок. Применение схемы перегруппировки Наметкина многими иностранными учеными (Бредт - автор современной формулы строения камфоры, Губен-Пфанкух, Липп-Штуцингер и др.) позволило объяснить явление частичной или полной рацемизации соответствующих оптически-деятельных соединений.

Гавриил Гавриилович Густавсон. (1842 -1908)

Несколько особняком в истории органической химии стоит монументальная фигура выдающегося русского химика-органика Г. Г. Густавсона.

Среднее образование он получил в 3-й Петербургской гимназии. В 1865г. Он окончил естественное отделение физико-математического факультета Петербургского университета со степенью кандидата. По окончании университета Густавсон был в течение шести с половиной лет (с 1869 до половины 1875 г.) ассистентом и ближайшим помощником А. М. Бутлерова. За эти годы общения с Бутлеровым Густавсон впитал в себя все лучшее, что так обильно давал окружающим этот великий ученый, великий учитель и выдающийся человек.

В 1873 г. Густавсон защитил при Петербургском университете магистерскую диссертацию «Опыт исследования реакций взаимного обмена в отсутствие воды». В 1875 г. он получил кафедру органической химии в Петровской сельскохозяйственной академии, в которой вел преподавание и свои выдающиеся научные исследования в течение пятнадцати лет. Здесь Густавсоном выполнена и написана замечательная по глубине трактуемых вопросов докторская диссертация «Органические соединения в их отношении к галоидным солям алюминия» (М., 1884). В 1890 г. он оставил Петровскую академию и переселился в Петербург, где в течение ряда лет преподавал химию на Высших женских курсах. Обладая от природы слабым здоровьем, несмотря на цветущий внешний вид, Густавсон вскоре после переезда в Петербург, по совету врачей, оставил преподавание и стал вести одинокую, замкнутую жизнь. В своей квартире он устроил лабораторию, где и продолжал известные всем химикам исследования над разнообразными превращениями органических соединений. «Я чудесно наладил сожжение на бензиновых лампах, ставя их в воду. Этим можно добиться совершенно ровного горения и полной безопасности»,- писал Густав-сон в одном из своих писем к друзьям. Болезненное состояние отозвалось

на его научной и общественной деятельности. После оставления женских курсов он не принимал участия в работах высших учебных заведений. Больше того, он не дал согласия на выставление его кандидатуры в действительные члены Академии Наук.

Умер Г. Г. Густавсон в 1908 г. от разрыва сердца в возрасте 66 лет.

Научные исследования Густавсона представляют выдающийся интерес. Наиболее характерным в его исследованиях было прежде всего оригинальность, самобытность и глубина. Как типичный представитель бутлеровской школы, Густавсон свои труднейшие и блестящие исследования производил лично и в весьма скромной обстановке. Его магистерская диссертация на тему о реакциях двойного обмена в отсутствие воды представляла и представляет до сих пор большой научный интерес. Это исследование, по словам Д. И. Менделеева, оригинально задуманное и прекрасно выполненное, «принадлежит к числу первых, в которых совершенно ясно в пределе замещения выступает мера сродства элементов к галоидам; оно имеет большое значение для понимания двойных разложений в отсутствие воды». Надо добавить, что Густавсон был одним из первых не только русских, но и вообще химиков, которые главную задачу химии видели в изучении течения химических процессов. «Надо изучать химические процессы, а не отдельные вещества»,- постоянно повторял он.

Не менее широкую известность приобрели его работы по превращению органических веществ под влиянием галоидных солей алюминия. Начало этих замечательных исследований тесно связано с изучением реакций двойного обмена в отсутствие воды. В одном из опытов при действии брома и бромистого алюминия на хлористый этилиден Густавсон заметил выделение бромоводорода. Испытывая далее действие брома в присутствии бромистого алюминия на бензол и другие ароматические углеводороды, он обнаружил каталитическое действие бромистого алюминия на течение реакции бромирования.

Вся его последующая научная работа была посвящена главным образом выяснению механизма каталитического действия галоидных соединений алюминия на различные реакции органических соединений.

Г. Г. Густавсон принял деятельное участие в разработке известного синтеза алкилзамещенных и других производных ароматических углеводородов и других классов ароматических соединений, открытого французскими учеными Фриделем и Крафтсом.


Эту реакцию по всей справедливости можно назвать реакцией Фриделя-Крафтса-Густавсона.

Третью группу работ составляют исследования Г. Г. Густавсона в области циклических соединений. Ему принадлежит открытие способа получения триметилена и его гомологов действием цинка на двугалоидопроизводные предельных углеводородов. При изучении этой реакции он получил много соединений, очень интересных с точки зрения устойчивости циклов. Уже приготовленный им диметилтриметилен обнаружил необычайные свойства непредельности и с большей легкостью при действии брома давал двубромпроизводное, уподобляясь в этом отношении непредельным этиленны.м углеводородам.

В целях развития полученных интересных данных Густав-сон обратился к изучению реакции цинка на тетрабромид пентаэритрита в предположении получить углеводород с двумя трехчленными циклами или продукты его изомерных превращений. Полученное при этой реакции вещество при определении его строения представило необычайные трудности. Сам Густавсон главный продукт реакции признал за винилтриметилен. Однако строение этого углеводорода было расшифровано им неправильно. Долгое время это вещество носило в химии название «углеводорода Густавсона». Потребовалась напряженная работа многих выдающихся химиков, пока было окончательно установлено, что «углеводород Густавсона» представляет смесь двух соедиений.

Реакция Густавсона

Значение этих трудных исследований Густавсона, помимо их самостоятельной ценности, определяется хотя бы тем, что при продолжении этих работ Н. Я. Демьянов, который может считаться также учеником Густавсона, открыл свои замечательные реакции расширения циклов.

Наконец, нельзя не упомянуть, что Г. Г. Густавсон был одним из пионеров в области организации преподавания и научных исследований агрономической химии. Им была составлена программа курса и практических заня'тий по агрономической химии. Его курс лекций, под названием «Двадцать лекций агрономической химии» (М., 1889), имел необычайный успех. Эту важную линию в приложении химической науки к вопросам сельского хозяйства блестяще продолжил Н. Я. Демьянов.

Список литературы

1.       Андреев А. И. О дате рождения Ломоносова // Ломоносов. Сборник статей и материалов. Т. 3. М.-Л.: 1951.  <http://gidropraktikum.narod.ru/Lomonosov-birthday.djvu>

.        В. А. Стеклов. «Михайло Васильевич Ломоносов». 1922,

.        Б. Н. М е н ш у т к и н. «Труды М. В. Ломоносова по физике и химии»

.        Ловиц Т.Е. «Избранные труды по химии и химической технологии». Редакция, статьи и примечанияН.А.Фигуровского.

.        Сало В. М. «К открытию Т. Е. Ловицем явления адсорбции углем». // Фармация. 1985. (М.: Издательство Академии Наук СССР, 1953. - Классики науки)

.        «О чем мог прочитать Петрушка в учебнике химии» И. А. Леенсон «Химия и жизнь» №2, 2010

.        Соловьев Ю.И. «Герман Иванович Гесс». М.: Изд-во АН СССР, 1962

.        Фигуровский Н. А., Елагина К. Ц., Александр Абрамович Воскресенский (1809‒1880), «Труды института истории естествознания и техники АН СССР», 1958, т. 18

.        Волков В.А., Вонский Е.В., Кузнецова Г.И. «Выдающиеся химики мира». - М.: ВШ, 1991. 656 с

.        Меншуткин Б. Н. <http://ru.wikipedia.org/w/index.php?title=%D0%9C%D0%B5%D0%BD%D1%88%D1%83%D1%82%D0%BA%D0%B8%D0%BD,_%D0%91%D0%BE%D1%80%D0%B8%D1%81_%D0%9D%D0%B8%D0%BA%D0%BE%D0%BB%D0%B0%D0%B5%D0%B2%D0%B8%D1%87&action=edit&redlink=1> Жизнь и деятельность Николая Александровича Меншуткина. - СПб.: Тип. М. Фроловой, 1908. 376 с

.        Фигуровский Н. А., Соловьев Ю. И. Александр Порфирьевич Бородин. М.-Л.: Изд-во АН СССР, 1950. - 212 с.

.        Быков Г. В. Александр Михайлович Бутлеров. - М., 1961

.        Реформатский А. Н., Биография профессор А. М. Зайцева, «Журнал Русского физико-химического общества. Часть химическая, отдел 1 <http://ru.wikipedia.org/wiki/%D0%96%D1%83%D1%80%D0%BD%D0%B0%D0%BB_%D0%A0%D1%83%D1%81%D1%81%D0%BA%D0%BE%D0%B3%D0%BE_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%BE-%D1%85%D0%B8%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B3%D0%BE_%D0%BE%D0%B1%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%B0>», 1911. т. 43, в. 6

.        А. Е. Арбузов «Краткий очерк развития органической химии в России» Издательство Академии Наук СССР Москва 1948 год

.        Гречкин Н. П., Кузнецов В. И. <http://ru.wikipedia.org/wiki/%D0%9A%D1%83%D0%B7%D0%BD%D0%B5%D1%86%D0%BE%D0%B2,_%D0%92%D0%BB%D0%B0%D0%B4%D0%B8%D0%BC%D0%B8%D1%80_%D0%98%D0%B2%D0%B0%D0%BD%D0%BE%D0%B2%D0%B8%D1%87_%28%D1%85%D0%B8%D0%BC%D0%B8%D0%BA%29> Александр Ерминингельдович Арбузов, 1877-1968. - М.: Наука, 1977. 229с

.        Окатов А. П., Александр Иванович Горбов, "Журнал прикладной химии", 1939, т. 12

.        Платэ А. Ф., Быков Г. В., Эвентова М. С. // Владимир Васильевич Марковников. Очерк жизни и деятельности. М., 1962.

.        Старосельский П. И., Никулина Е. П. «Михаил Иванович Коновалов (1858-1906)». М.:Наука, 1981 г. С.235

.        Волков В. А., Куликова М. В. Судьба «невозвращенца» Чичибабина А.Е (в свете неопубликованных документов) <http://www.ihst.ru/projects/sohist/papers/priroda/1993/9/122-128.pdf> // Природа <http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B8%D1%80%D0%BE%D0%B4%D0%B0_%28%D0%B6%D1%83%D1%80%D0%BD%D0%B0%D0%BB%29>. 1993. № 9.

.        Богатова Т.В., Зайцева Е.А. Николай Матвеевич Кижнер // Химия, 1996, № 39, С. 2.

.        Казанский Б. А., Несмеянов А. Н. <http://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D1%81%D0%BC%D0%B5%D1%8F%D0%BD%D0%BE%D0%B2,_%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80_%D0%9D%D0%B8%D0%BA%D0%BE%D0%BB%D0%B0%D0%B5%D0%B2%D0%B8%D1%87>, Платэ А. Ф. <http://ru.wikipedia.org/w/index.php?title=%D0%9F%D0%BB%D0%B0%D1%82%D1%8D,_%D0%90%D0%BB%D1%8C%D1%84%D1%80%D0%B5%D0%B4_%D0%A4%D0%B5%D0%BB%D0%B8%D0%BA%D1%81%D0%BE%D0%B2%D0%B8%D1%87&action=edit&redlink=1> Работы академика Н. Д. Зелинского и его школы в области химии углеводородов и органического катализа. / Ученые записки МГУ. Вып. 175. - М., 1956

.        Звягинцев О. Е., Соловьев Ю. И., Старояльский П. И., Лев Александрович Чугаев, М., 1965.

.        Сергей Семенович Намёткин // АН СССР. Материалы к биобиблиографии ученых СССР. Сер. химических наук. Вып. 2. - М.-Л., 1946. Мусабеков Ю. С. История органического синтеза в России. - Москва, 1958.

.        Энциклопедический словарь Брокгауза и Эфрона,

.        А. И. Горбов, -« А. М. Бутлеров и химическое строение»

.        Грандберг И.И. Органическая химия 4-е изд., перераб. и доп. - М.: Дрофа, 2001. - 672 с.

Похожие работы на - Выдающиеся химики-органики России

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!