Бурение нефтяных и газовых скважин

  • Вид работы:
    Отчет по практике
  • Предмет:
    Геология
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    1,75 Мб
  • Опубликовано:
    2013-02-01
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Бурение нефтяных и газовых скважин

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Государственное образовательное учреждение

Высшего профессионального образования

"Северо-Кавказский федеральный технический университет"






ОТЧЕТ

по первой учебной практике

по бурению нефтяных и газовых скважин


студента гр. БНГ - 101

Аджикеримова Б.К

Руководитель практики

Пономаренко В.А.




Ставрополь

Содержание

. Техника безопасности и противопожарные мероприятия

. Способы бурения скважин, области применения

. Буровые установки, их классификация. Буровые вышки

. Комплекс оборудования для вращения бурильной колонны - роторы, вертлюги

. Подъемный комплекс - талевая система: кроноблоки, талевые блоки, крюки, крюкоблоки, талевые канаты, устройства для крепления талевого каната

. Буровые лебедки, их устройство, ленточный тормоз, вспомогательные тормоза

. Устройства, механизмы и оборудования для механизации и автоматизации спуско-подъемных операций

. Забойные двигатели: трубобуры, электробуры, винтовые двигатели, их конструкция и область применения

. Породоразрушающие инструменты, их конструкция

. Бурильная колонна, ее назначение. Элементы бурильной колонны, их конструкция и назначение

. Буровые растворы, назначение и требования к ним. Типы буровых растворов. Свойства буровых растворов, приборы для определения свойств. Химические реагенты и утяжелители для обработки буровых растворов. Оборудование для приготовления, очистки и обработки буровых растворов

. Контрольно - измерительные приборы при проводке скважины. Система контроля за процессом бурения

. Конструкция скважины. Обсадные колонны. Типы обсадных труб. Технологическая оснастка обсадных колонн

. Цементирование скважин. Тампонажные материалы. Оборудование для цементирования скважин

. Освоение и испытание скважин

. Осложнения и аварии при бурении скважин

. Противовыбросовое оборудование, назначение, конструкция и схемы обвязок

. Ловительные работы и инструмент. Капитальный ремонт скважин

. Основные виды работ по капитальному ремонту скважин

. Глушение скважин, жидкости глушения

. Исследование и обследование скважин

. Ремонтно-исправительные работы

. Изоляционные работы

. Возвратные работы

. Борьба с пробкообразованием

. Зарезка и бурение второго ствола

. Методы повышения нефтеотдачи пластов

. Подземный ремонт с применением гибких труб

1. Техника безопасности и противопожарные мероприятия

В соответствии со СНиП Ш-4-80 (2000), ГОСТ 12.0.004-90 и ГОСТ 12.1.004-91 должна обеспечиваться система техники безопасности и пожарной защиты

Для обучения рабочих правилам безопасности труда и производственной санитарии проводится инструктаж: вводный, первичный на рабочем месте, повторный, внеплановый, текущий.

Принимаемые на работу рабочие в обязательном порядке получают инструктаж о мерах пожарной безопасности и действиях на случай возникновения пожара, применении первичных средств пожаротушения.

Вводный инструктаж проводит инженер по технике безопасности или уполномоченное лицо по приказу в организации (предприятии) по технике безопасности и противопожарным мероприятиям.

Данные о проведении вводного инструктажа и проверки знаний рабочих регистрируются в журнале с обязательными подписями инструктируемого и инструктирующего.

Первичный инструктаж на рабочем месте, повторный, внеплановый и текущий проводит непосредственный руководитель работ (производитель работ, мастер) с каждым рабочим индивидуально с показом практически безопасных приемов труда и противопожарных средств.

После проведения первичного инструктажа рабочие в течение первых 2...5 смен выполняют работу под наблюдением мастера или бригадира, после чего оформляется допуск к самостоятельной работе, регистрируемый в журнале.

Текущий инструктаж проводят с рабочими перед выполнением работ, на которые оформляется наряд-допуск.

На каждом объекте должен быть медпункт или выделено место в комнате для смены одежды (вагончике) для размещения аптечек с медикаментами, носилок и других средств для оказания первичной медицинской помощи пострадавшим.

Проверку знаний правил безопасности труда и производственной санитарии инженерно-техническими работниками по списку вышестоящей организации проводит не реже одного раза в год комиссия вышестоящей организации.

Рабочие, инженерно-технические работники и служащие должны обеспечиваться спецодеждой, спецобувью и другими средствами индивидуальной защиты согласно ГОСТ 12.4.011-89 номенклатуры специальной одежды, специальной обуви и других средств индивидуальной защиты. Рабочие и линейные инженерно-технические работники, занятые на работах с вредными и опасными условиями труда, должны проходить медицинский осмотр в порядке и сроки, установленные Минздравом.

О каждом несчастном случае на стройке пострадавший или свидетель должен немедленно известить мастера, начальника участка или руководителя работ. Мастер должен немедленно организовать первую помощь пострадавшему и направить его в медицинский пункт, сообщить о происшедшем руководителю, сохранить до расследования обстановку на рабочем месте и состояние оборудования в момент происшествия (если это не угрожает окружающим людям, не вызывает аварии и не нарушает непрерывности технологического процесса). Начальник участка должен срочно сообщить о происшедшем несчастном случае руководителю и профсоюзному комитету организации (предприятия). В течение 24 часов начальник участка совместно со старшим общественным инспектором по охране труда и инженером по технике безопасности должен установить обстоятельства и причину происшедшего несчастного случая, составить акт о несчастном случае в четырех экземплярах и направить его главному инженеру стройорганизации (предприятия).

Несчастный случаи (НС) на производстве - это случай, происшедший с работающим вследствие воздействия опасного производственного фактора (для застрахованного - это страховой случай).

Несчастные случаи в зависимости от причин, места и времени происшествия делятся на две группы: несчастные случаи, связанные с работой, и несчастные случаи, не связанные с работой (бытовые травмы),

Несчастные случаи, не связанные с производством, но происшедшие на производстве - это несчастные случаи, происшедшие при изготовлении предметов в личных целях, самовольном использовании транспорта предприятия, участии в спортивных мероприятиях на территории предприятия, при хищении имущества предприятия.

Бытовые несчастные случаи - это несчастные случаи, происшедшие в быту (дома) или при нахождении на предприятии вне рабочего времени.

Контроль за своевременным и правильным расследованием и устранением причин по несчастным случаям осуществляют вышестоящие организации, построечные комитеты профсоюзов, общественные инструкторы по охране труда, технические инспектора профсоюзов, органы Госгортехнадзора и Энергонадзора.

Противопожарная безопасность.

Мероприятия по противопожарной защите включают:

контроль материалов, продуктов и оборудования;

активное ограничение распространения огня с использованием средств пожарной сигнализации, систем автоматического пожаротушения и переносных огнетушителей;

устройство пассивных систем, ограничивающих распространение огня, дыма, жара и газов за счет секционирования помещений;

эвакуацию людей из горящего здания в безопасное место.

В целях обеспечения пожарной безопасности объектов должны быть своевременно осуществлены все требуемые законами, нормами, правилами и другими нормативными документами противопожарные мероприятия, которые разрабатываются и реализуются на всех этапах проектирования, строительства и эксплуатации зданий и сооружений различного назначения.

ПОЖАРНАЯ ПРОФИЛАКТИКА.

Под пожарной профилактикой понимаются обучение пожарной технике безопасности и комплекс мероприятий, направленных на предупреждение пожаров. Противопожарная защита - это мероприятия, направленные на уменьшение ущерба в случае возникновения пожара. Между этими двумя основными задачами пожарной безопасности не всегда можно провести четкую границу, как, например, в случае действий, направленных на ограничение сферы распространения огня при загорании.

Поскольку большую часть времени большинство людей проводят в зданиях, основное внимание уделяется обеспечению пожарной безопасности зданий. Специализированных мер пожарной профилактики и защиты требует пожарная безопасность лесов, автотранспорта, железнодорожного, воздушного и морского транспорта, а также подземных туннелей и шахт.

От вида горючего материала зависит класс пожара, который определяет способы и средства тушения. В нормативных документах ряда стран пожары разделяются на четыре класса:- возгорание обычных горючих материалов, таких, как древесина, бумага и пластмассы;- возгорание легковоспламеняющихся или горючих жидкостей, газов и смазочных материалов;- возгорание электропроводки; D - возгорание горючих металлов.

Степень пожароопасности зависит от вида и количества горючего материала в рассматриваемой пожароопасной зоне.

До недавнего времени пожарная профилактика традиционно ограничивалась обучением технике безопасности и мерами по предупреждению пожаров и всегда входила в обязанности муниципальных управлений пожарной охраны. Сегодня круг мероприятий по пожарной профилактике расширен, и в него вошли проверка и утверждение проектов строительства, контроль за выполнением норм по пожарной безопасности, сбор данных, а также инструктаж и обучение широкой общественности и специальных контингентов.

Задачи пожарной профилактики можно разделить на три широких, но тесно связанных комплекса мероприятий:

обучение;

пожарный надзор, предусматривающий разработку государственных норм пожарной безопасности и строительных норм, а также проверку их выполнения;

обеспечение оборудованием и технические разработки;

Из трех перечисленных комплексов мероприятий наиболее сложным является пожарный надзор. В сферу надзора включены нормы пожарной профилактики, строительные пожарные нормы и правила, стандарты изготовления и установки противопожарного оборудования и стандарты пожарной безопасности на товары широкого потребления.

. Способы бурения скважин, области применения

Способы бурения различаются прежде всего по способу разрушения горных пород:

механическое (разрушение породы осуществляется либо породоразрушающими инструментами, либо такими бездолотными способами, как взрывной, электрогидравлический, имплозионный, пароструйный, гидромониторный, гидроэрозионый);

термическое (разрушение породы происходит за счет возникновения в них термических напряжений и различных эффектов). В зависимости от способа и характера термического воздействия на породу выделяют огнеструйное, плазменное, электродуговое, лазерное, электронагревательное и др.;

химическое (разрушение породы осуществляется за счет использования высокоактивного химического вещества).

Виды бурения

Колонковое бурение - наиболее широко распространенный способ проходки скважин. Основным преимуществом такого вида бурения являются универсальность (возможность проходки скважин почти во всех разновидностях горных пород), возможность получения керна с незначительными нарушениями природного сложения грунта, сравнительно большие глубины бурения, хорошая освоенность технологии. Существенные недостатки - малый диаметр скважин.

Медленновращательное бурение. Сущность его состоит в том, что скважина углубляется инструментом режущего типа путем срезания с забоя сплошной стружки. Способ бурения отличается простотой технологии.

Шнековое бурение. Особенность способа состоит в том, что процессы углубления скважины и продуктов разрушения совмещены. Преимущества: высокая механическая скорость, сравнительно большой диаметр скважин, не нужна вода для промывки.

Винтовое бурение. Применяется редко. Сущность состоит том, что винтовой породоразрушающий инструмент завинчивается в грунт, а затем извлекается на поверхность. При этом размещенный на лопастях инструмента грунт срезается по боковым поверхностям. Способ может использоваться только в рыхлых и мягких грунтах.

Роторное бурение. Применяется только для бурения гидрогеологических скважин на воду, позволяет бурить скважины любого диаметра на любую глубину.


Ударно-канатное бурение. Отличается простотой технологии, высокой производительностью. Недостатки метода: невозможность проходки скважин в скальных грунтах, малая длина рейса, невозможность отбора качественных монолитов.

Вибрационный метод бурения. Наиболее производительный метод (до 50-70 м/смену). Вибрационное бурение обеспечивает проведение качественной геологической документации исследуемого разреза.

Глубина скважин

Проектная глубина скважин наряду с ее значением определяет тип и мощность выбираемого бурового станка, основные параметры бурового оборудования и инструмента, отчасти начальный диаметр скважины и др.

В соответствии с глубиной бурения скважины условно подразделяются:

• до 10 м (неглубокие);

• от 10 до 30 м (средней глубины);

• от 30 до 100 м (глубокие);

• свыше 100 м (весьма глубокие).

Многозабойное бурение

Сущность многозабойного способа бурения состоит в том, что из основного ствола скважины с некоторой глубины проводят один или несколько стволов, т.е. основной ствол используется многократно. Полезная же протяженность скважин в продуктивном пласте и, следовательно, зона дренирования (поверхность фильтрации) возрастают (рис. 1.2). Дополнительные стволы могут переходить в горизонтальные.

Первые скважины были пробурены этим способом в 1947 г. на Краснокаменском и Ишимбаевском месторождениях. В сочетании с турбобуром многозабойное бурение развивалось успешнее. На Бориславском месторождении максимальный зенитный угол искривления составил 53° на длине 446 м. В Краснодарском крае число дополнительных стволов в многозабойных скважинах доводилось до пяти-шести при длине 50-150 м и расстоянии между крайними стволами до 300 м. Число боковых скважин может достигать 10, а длина их - 400 м и более.

Проведенный А.Г. Калининым технико-экономический анализ по одному из месторождений показал, что стоимость одной многозабойной скважины в 2, 4 раза превышает стоимость однозабойной скважины, но дебит в первом случае в 18 раз выше, чем во втором.

Преимущества многозабойного способа бурения сводятся к тому, что можно получить скважины с увеличенным дебитом, повысить общую нефтеотдачу месторождения, сократить число скважин, вовлечь в промышленную разработку малодебитные месторождения с низкой проницаемостью пород, повысить поглощающую способность нагнетательных скважин.


Бурение скважин осуществляется с помощью буровых установок оборудования и инструмента.

Буровая установка - это комплекс наземного оборудования необходимый для выполнения операций по проводке скважины В состав буровой установки входят:

• буровая вышка;

• оборудование для механизации спускоподъемных операций

• наземное оборудование, непосредственно используемое при бу-

• силовой привод;

• циркуляционная система бурового раствора;

• привышечные сооружения.

Буровая вышка - это сооружение над скважиной для спуска и подъема бурового инструмента, забойных двигателей, бурильных и обсадных труб, размещения бурильных свечей (соединение двух-трех бурильных труб между собой длиной 25...36 м) после подъема их из скважины и защиты буровой бригады от ветра и атмосферных осадков.

Различают два типа вышек: башенные и мачтовые. Башенная вышка представляет собой правильную усеченную четырехгранную пирамиду решетчатой конструкции. Вышки мачтового типа бывают од-ноопорные и двухопорные (А-образные). А-образные вышки более трудоемки в изготовлении и поэтому более дороги. Они менее устойчивы, но их проще перевозить с места на место и затем монтировать. Основными параметрами вышки являются грузоподъемность, высота, емкость "магазинов" (хранилищ для свечей бурильных труб), размеры верхнего и нижнего оснований, длина свечи, масса.

Грузоподъемность вышки - это предельно допустимая вертикальная статическая нагрузка, которая не должна быть превышена в процессе всего цикла проводки скважины.

Высота вышки определяет длину свечи, которую можно извлечь из скважины и от величины которой зависит продолжительность спус-коподъемных операций. Чем больше длина свечи, тем на меньшее число частей необходимо разбирать колонну бурильных труб при смене бурового инструмента. Сокращается и время последующей сборки колонны. Поэтому с ростом глубины бурения высота и грузоподъемность вышек увеличиваются. Так, для бурения скважин на глубину 300...500 м используется вышка высотой 16... 18 м, глубину 2000...3000 м - высотой - 42 м и на глубину 4000...6500 м - 53 м.

Емкость "магазинов" показывает, какая суммарная длина бурильных труб диаметром 114... 168 мм может быть размещена в них. Практически вместимость "магазинов" говорит о том, на какую глубину может быть осуществлено бурение с помощью конкретной вышки.

Размеры верхнего и нижнего оснований характеризуют условия работы буровой бригады с учетом размещения бурового оборудования, бурильного инструмента и средств механизации спускоподъемных операций. Размер верхнего основания вышек составляет 2x2 м или 2, 6x2, 6 м, нижнего - 8x8 м или 10x10 м.

Общая масса буровых вышек равна нескольким десяткам тонн.


. Буровые установки, их классификация. Буровые вышки

Буровая установка или буровая - комплекс бурового оборудования и сооружений, предназначенных для бурения скважин. Состав узлов буровой установки, их конструкция определяется назначением скважины, условиями и способом бурения.

Буровая установка для разведки и разработки месторождений нефти и газа в общем виде включает:

§   Буровые сооружения (буровая вышка, основание вышки, мостки, стеллажи).

§   Спуско-подъёмное оборудование (лебёдка, кронблок, крюкоблок).

§   Силовое оборудование для привода лебёдки, ротора и буровых насосов (двигатели электрические или дизельные), оборудование для вращения бурильной колонны (ротор, СВП).

§   Оборудование циркуляционной системы (ёмкости, буровые насосы, манифольд, вертлюг).

§   Оборудование для очистки бурового раствора от выбуренной породы (вибросита, пескоотделители, илоотделители, центрифуги).

§   Оборудование для приготовления бурового раствора (гидроворонки, гидромешалки, шламовые насосы).

§   Противовыбросовое оборудование (превенторы), привышечные сооружения (котельная, склад ГСМ).

Классификация буровых установок

По виду работ:

§   для эксплуатационных работ.

§   для разведочных работ.

§   для технических скважин.

По способу бурения делятся на установки:

§   вращательного бурения.

§   вращательно-ударного бурения.

§   ударного бурения.

§   ударно-вращательного бурения.

§   вибрационного бурения.

§   огнеструйного бурения.

§   разрядно-импульсного бурения.

По типу привода:

§   электрические (AC/DC) буровые установки.

§   электрогидравлические буровые установки.

§   дизельэлектрические буровые установки.

§   дизельные буровые установки.

По технике передвижения:

§   самоходные буровые установки.

§   передвижные буровые установки.

§   стационарные буровые установки.

По вариантам дислокации:

§   наземные.

§   морские.

Буровая установка состоит из :

§   Исполнительные органы (ротор, лебёдка, талевая система, вышка, буровой насос, вертлюг, циркуляционная система)

§   Энергетические органы (дизельные и электродвигатели, силовая пневмо- и гидросистема, приводы)

§   Вспомогательные органы (металлоконструкции основания, укрытий, механизмы передвижения, мост приёмный, вспомогательная лебёдка, тали, системы освещения, водоснабжения, отопления, вентиляции, эвакуации)

§   Органы управления (системы пневмо- и электроуправления)

§   Органы информации (система контроля параметров бурения)

Буровые вышки

Вышка является ключевым узлом оборудования буровой установки и предназначена для выполнения следующих функций:

§   проведения спуско-подъёмных операций с бурильными и обсадными трубами.

§   поддержания бурильной колонны на талевой системе при бурении с разгрузкой.

§   размещения комплекта бурильных труб и утяжелённых бурильных труб (УБТ), извлечённых из скважины.

§   размещения талевой системы и средств механизации спуско-подъёмных операций, в частности механизмов АСП, КМСП или платформы верхового рабочего, устройства экстренной эвакуации верхового рабочего, системы верхнего привода и вспомогательного оборудования.

Буровые вышки классифицируются: по назначению - для агрегатов капитального ремонта скважин, для передвижных (мобильных) буровых установок, для кустовых и стационарных, для морских буровых установок; по конструкции - мачтовые и башенные. Мачтовые вышки бывают: А-образные, П-образные, 4-х опорные и с открытой передней гранью.

. Комплекс оборудования для вращения бурильной колонны - роторы, вертлюги

Вертлюги

Вертлюг - один из основных узлов механизма подачи бурового раствора, несет на себе наибольшую нагрузку в процессе бурения и от его надежности зависит безотказная работа всей буровой установки. Вертлюг обеспечивает подачу промывочной жидкости через буровой рукав от неподвижного стояка манифольда во вращающуюся колонну бурильных труб и поддержание вращающегося инструмента при бурении.

Система верхнего привода

Система верхнего привода (СВП) является принципиально новым типом механизмов буровых установок, обеспечивающим выполнение целого ряда технологических операций. Верхний привод представляет собой подвижный вращатель, оснащенный комплексом средств механизации спуско-подъемных операций.

Система верхнего привода предназначена для быстрой и безаварийной проводки вертикальных, наклонно-направленных и горизонтальных скважин при бурении. Верхний привод совмещает функции вертлюга и ротора, и оснащается комплексом устройств для работы с бурильными трубами при выполнении спуско-подъемных операций.

Основные преимущества применения СВП:

экономия времени в процессе наращивания труб при бурении;

уменьшение вероятности прихватов бурового инструмента;

расширение (проработка) ствола скважины при спуске и подъеме инструмента;

повышение точности проводки скважин при направленном бурении;

повышение безопасности буровой бригады;

снижение вероятности выброса флюида из скважины через бурильную колонну;

облегчение спуска обсадных труб в зонах осложнений за счет вращения и промывки;

повышение качества керна.

Роторы

Роторы предназначены для вращения бурильного инструмента и поддержания колонны бурильных труб при бурении скважины.

. Подъемный комплекс - талевая система:кроноблоки, талевые блоки, крюки, крюкоблоки, талевые канаты, устройства для крепления талевого каната

Талевая система

Талевая (полиспастовая) система или оснастка буровых установок предназначена для преобразования вращательного движения барабана лебедки в поступательное (вертикальное) перемещение крюка, к которому крепится бурильная колонна, и уменьшения нагрузки на ветви каната. В зависимости от типа буровой установки и глубины скважины применяют оснастку: 3х4, 4х5, 5х6, 6x7.

Талевый блок является подвижной частью талевой системы. Предназначен, также как кронблок, для выполнения спуско-подъёмных операций и других работ, необходимых при бурении скважин. В буровых установках применяют талевые блоки двух видов:

·              одноосные - все шкивы смонтированы на одной оси, укреплённой в боковых щёках;

·              соосные с двумя осями - две сборки шкивов смонтированы каждая отдельно, а между осями оставлено пространство для пропуска свечи.

Талевый блок шестишкивный 1 - серьга; 2 - подвеска; 3 - корпус; 4 - кожух; 5 - ось шкивов; 6 - роликоподшипники; 7 - шкив; 8 - крышка

·              Талевый блок должен иметь минимальные габариты, особенно ширину, т.к. он движется внутри вышки в пространстве между пальцами магазина с бурильными свечами. Поэтому должно быть обеспечено минимально безопасное расстояние между блоком и элементами вышки. Талевый блок обычно выполняют из двух сварных боковых щёк, соединённых наверху полой траверсой, а внизу - поперечной подвеской, которая присоединяется с помощью пальцев. Эти детали составляют силовой каркас блока.

Крюки подъемные эксплуатационные относятся к подвижной части талевой системы, предназначены для подвешивания на них штропов, трубных или штанговых элеваторов, вертлюгов и других приспособлений при монтаже, демонтаженаземного оборудования.

Крюки КН предназначены для работы в районах с умеренным климатом, а КР - для умеренного и холодного климата (район I2 ).

Крюки изготавливаются двух типов: однорогие (исполнение 1) грузоподъемностью до 20 т и трехрогие (исполнение II) грузоподъемностью 32 т и более.

Крюк состоит из рога, подвески и серьги.

Рог кованый включает сменное седло с защелкой для фиксирования седла при спуско-подъемных операциях. Вогнутая цилиндрическая поверхность седла соответствует размеру сопрягаемого с ним штропа элеватора или серьги вертлюга.

Подвеска, соединяющая рог крюка с серьгой, состоит из литого стального корпуса, амортизирующей пружины, ствола, установленного на упорном подшипнике. Конструкция подвески допускает свободное вращение рога крюка со стволом как под нагрузкой, так и без нагрузки. Амортизационная пружина и упорный подшипник помещены внутри корпуса и закрыты крышкой для предохранения их от атмосферных осадков и загрязнения.

С помощью серьги крюк подвешивается к талевой системе. Для подвешивания штангового элеватора при подъеме насосных штанг применяется подвесной крюк.

Крюкоблоки это талевые блоки, жестко соединенные с крюком. В процессе бурения крюкоблок соединен с вертлюгом, а при выполнении спуско-подъемных операций - с элеватором.

Крюкоблоки являются подвижной частью талевой системы и предназначены для ведения спуско-подъемных операций, поддержания на весу колонны бурильных и обсадных труб и бурового инструмента в процессе бурения.

Рис.. Крюкоблок

Кронблок устанавливают на верхней площадке вышки, называемой наголовником. Это неподвижный элемент талевой системы.

Кронблок 1 - шкивы; 2 - ось; 3 - рама; 4 - предохранительный кожух; 5 - вспомогательные шкивы

Конструкция кронблока зависит от типа вышки, действующей нагрузки и объёма СПО. Шкивы кронблоков монтируют на подшипниках качения на одной или двух соосно расположенных осях, установленных в опорах на раме, либо соосно. При несоосной схеме ось шкива, служащего для подвижной струны талевого каната, располагается перпендикулярно к оси остальных шкивов. Кронблоки с несоосным расположением шкивов применяют в мачтовых вышках, установках с буровой лебёдкой, расположенной ниже пола буровой, для того, чтобы подвижный конец каната не цеплял ферму мачты. Или при использовании АСП (автоматическая система подачи) с механизированной расстановкой свечей.

Двухсекционный блок с соосным расположением осей, в котором шкив с осью перпендикулярны, смонтирован на опоре, установленной на полке рамы. Две секции (трёхшкивные) смонтированы на опорах. Каждый шкив смонтирован на оси на двух цилиндрических роликоподшипниках, внешние кольца которых зафиксированы в ступицы шкива пружинным кольцом, а внутренние - на оси распорными кольцами. Смазка к подшипникам каждого шкива подаётся через пресс-маслёнку по каналам, просверленным по оси.

Талевые канаты

Талевые канаты бывают прямой и крестовой свивки. В талевых системах применяют канаты крестовой свивки, при которой проволоки вьются в пряди в одну сторону, а сами пряди в канате - в противоположную. Канаты крестовой свивки изготавливают правого и левого направления с одним сердечником. Правые свивают по часовой стрелке, левые - против часовой стрелки. В соответствии с принятым в буровых лебедках местом крепления ходового конца каната и направлением его намотки на барабан талевые канаты должны быть правой свивки.

Устройство для крепления талевого каната

Неподвижный конец каната крепится к полу буровой при помощи механизма, который также предназначен для периодического перепуска каната с целью повышения его срока службы. Механизм состоит из литого стального корпуса, в отверстия кронштейна закреплена ось, на которой на двухрядном коническом подшипнике вмонтирован консольный рычаг. На этой оси также на двухрядном коническом подшипнике установлен барабан, на который навивается неподвижный конец каната.

После навивки на барабан, канат при помощи фиксатора соединяется с консольным рычагом, на противоположном конце которого - сжимное устройство талевого каната. Между проушинами консольного рычага и корпуса находится датчик усилия действующего в канате. Механизм рассчитан на канат диаметром до 30 мм и растяжением до 450 Кн. Канат пропускается следующим образом: отпускают болты зажимного устройства и подают запасную часть каната, а ведущий его конец наматывают на барабан лебёдки. После перепуска требуемой длины каната болты вновь затягивают и регулировочным винтом настраивают положение консольного рычага.

. Буровые лебедки, их устройство, ленточный тормоз, вспомогательные тормоза

Буровые лебёдки являются основными исполнительными механизмами для подъёма-спуска бурильной колонны, удержания её навесу или медленного опускания при подаче долота на забой в процессе бурения, спуска обсадных колонн и других работ.

По конструкции буровые лебёдки делятся на две группы:

·              Двух или трёхвальные (У2-5-5 и У2-2-11). Расшифровка обозначений: У - завод Уралмаш; первая цифра - номер агрегата; вторая цифра - число скоростей лебёдки (для У2-5 с учётом скоростей коробки скоростей, а для У2-2 с учётом только скоростей лебёдки без коробки скоростей); третья цифра - номер модели в хронологической порядке проектирования.

·              Одновальные с коробкой переменных передач (ЛБУ-750, ЛБУ-1100, ЛБУ-1700). Расшифровка обозначений: ЛБ - лебёдка буровая; У - завод Уралмаш; 750, 1100, 1700 - мощность на барабане в лошадиных силах.

Буровые лебёдки первой группы состоят из сварной рамы, на которой вмонтирован подшипник качения, подъёмный вал с барабаном для навивки талевого каната, промежуточные и трансмиссионные валы. Все валы кинематически связаны между собой цепными передачами, которые передают им крутящие моменты и используются для регулирования частоты вращения валов. На промежуточном валу, кроме звёздочек цепной передачи, в ряде случаев установлены специальные катушки для проведения работы по подтаскиванию грузов, навинчиванию и развинчиванию труб, при спуско-подъёмных операциях. Такие валы называются катушечными. В одно и двухвальных лебёдках катушки не устанавливаются, а для выполнения работ по подтаскиванию грузов и свинчиванию труб используют вспомогательные лебёдки и пневмораскрепители. Рама лебёдки закрыта предохранительными щитами.

Подъёмный вал лебёдки оборудуется двумя видами тормозов - ленточным с ручным и пневматическим управлением (расположенными на тормозных шкивах барабана лебёдки) и гидравлическим или электрическим (соединённым через муфту с подъёмным валом).

Ленточные тормоза служат для удержания колонны труб навесу, регулирования скорости спуска и полного торможения, а также для подачи долота на забой при бурении скважин. Гидравлические или электрические тормоза нужны для замедления спуска колонны и облегчения работы на ленточном тормозе.

Для обеспечения равномерной подачи долота на забой все современные конструкции лебёдок оснащаются автоматами АПД или регуляторами РПД подачи долота, которые соединяются цепными передачами с подъёмным валом и во время бурения включаются с цепными кулачковыми муфтами. Лебёдки снабжены специальной трансмиссией для вращения ротора.

В лебёдках ЛБУ-1100, ЛБУ-1700, ЛБУ-3000, входящих в комплекты буровых установок соответственно БУ-5000, БУ-6500, БУ-8000 с электроприводом, трансмиссия ротора отсутствует, а привод ротора осуществляется от отдельного электродвигателя.


Буровая лебедка ЛБУ-750

Одновальная лебёдка ЛБ-750 состоит из: станины, на которой на двух кронштейнах в подшипниках смонтирован подъёмный вал барабана с тормозными шкивами, шинопневматическими фрикционными муфтами и кулачковой муфтой, а также звёздочками цепных передач. На станине также смонтирован пульт управления лебёдкой, промежуточный вал привода ротора и вспомогательный тормоз.

. Устройства, механизмы и оборудования для механизации и автоматизации спуско-подъемных операций

Механизация спуско-подъемных операций может идти по пути создания механизмов непрерывной подачи инструмента в скважину или из нее.

Для механизации спуско-подъемных операций применяются талевая система и буровая лебедка. Талевая система состоит из неподвижного кронблока, который устанавливается в верхней части буровой вышки, талевого блока, соединяемого с кронблоком талевым канатом, один конец которого крепится к барабану лебедки, а другой конец закрепляется неподвижно у бурового крюка. Талевая система является полиспастом ( система блоков), который предназначен для уменьшения натяжения талевого каната и для снижения скорости спуска бурильного инструмента, обсадных и бурильных труб.

Оборудование для механизации спуско-подъемных операций включает кренблок, талевый блок, вертлюг и лебедку. С их помощью осуществляются спуск и подъем бурильной колонны, спуск обсадной колонны, подача долота и ряд вспомогательных работ при свинчивании и развинчивании бурильных и обсадных труб.

Оборудование для механизации спуско-подъемных операций включает талевую систему и лебедку. Талевая система состоит из неподвижного кронблока, установленного в верхней части буровой вышки, талевого блока, соединенного с кронбло-ком талевым канатом, один конец которого крепится к барабану лебедки, а другой закреплен неподвижно, и бурового крюка. Талевая система является полиспастом ( системой блоков), который в буровой установке предназначен в основном, для уменьшения натяжения талевого каната, а также для снижения скорости движения бурильного инструмента, обсадных и бурильных труб.

К оборудованию механизации спуско-подъемных операций метут быть отнесены роторы для разбуривания песчаных и цементных пробок, устанавливаемые на подвижной траверсе.

В комплексе механизации спуско-подъемных операций типа АСП для работы в сложных климатических условиях применена система промышленного телевидения. Кроме того, для полупогружных буровых установок и для буровых судов в магазинах для бурильных свечей предусматриваются индивидуальные защелки для каждой свечи.

В подземном ремонте скважин механизация спуско-подъемных операций не только облегчает труд, но и является основным фактором повышения производительности труда.

Разработан ряд устройств по механизации вспомогательных спуско-подъемных операций, в их числе комплексы АСП-1, АСП-3 - автоматизации управления клиновыми захватами, ключом для свинчивания и развинчивания бурильных труб и устройство для расстановки свечей - труб бурового инструмента. Эти конструкции выпущены еще в ограниченном количестве и отрабатываются на буровых. Однако они не охватывают всех работ на буровой.

бурильный забойный нефтеотдача пласт

8. Забойные двигатели: турбобуры, электробуры винтовые двигатели, их назначение, область применения

ЗАБОЙНЫЙ ДВИГАТЕЛЬ - погружная машина, преобразующая гидравлическую, пневматическую или электрическую энергию, подводимую с поверхности, в механическую работу породоразрушающего инструмента (долота) при бурении скважин. Энергия к забойному двигателю подводится от источника по колонне бурильных труб или кабелю. Преобразование подведённой энергии в механическую работу осуществляется в рабочих органах забойного двигателя. По типу движения, сообщаемого породоразрушающему инструменту, различают забойные двигатели вращательные и ударные, по виду энергоносителя - гидравлические, пневматические и электрические, по особенностям породоразрушающего инструмента - для бурения сплошным забоем и колонковые, по конструкции - одинарные, секционные, шпиндельные, редукторные и т.п.

Наиболее существенно отличаются по устройству и принципу действия забойные двигатели вращательного (турбобур, винтовой забойный двигатель и электробур) и ударного типов (гидро- и пневмоударник). Рабочим органом забойного двигателя вращательного типа (рис. 1, рис. 2, рис. 3) является система статор-ротор.

Статор фиксирован от проворота в корпусе забойного двигателя, а ротор - на валу. Корпус забойного двигателя соединён с колонной бурильных труб, вал - с долотом. Энергоноситель в рабочих органах забойного двигателя вращательного типа создаёт на роторе и статоре моменты силы, равные по величине и противоположные по направлению (так называемый активный и реактивный моменты). Активный момент используется на вращение долота, реактивный момент воспринимается колонной бурильных труб и гасится на стенках скважин и в приводных механизмах, размещённых на поверхности. Основные элементы забойного двигателя вращательного типа, помимо рабочих органов: осевая и радиальные опоры, уплотнение выхода вала.

Наибольшее использование забойного двигателя вращательного типа (табл. 1) имеют в бурении на нефть и газ (свыше 80% общего объёма).

ТУРБОБУР - забойный гидравлический двигатель для бурения глубоких скважин преимущественно на нефть и газ. На первом этапе турбинного бурения (1924-34) применялся Т., изобретённый в СССР в 1922 М. А. Капелюшниковым совместно с Н. А. Корневым и С. М. Волохом. В этом Т. высокооборотная одноступенчатая турбина передавала вращение долоту через планетарный, заполненный маслом редуктор.

В 1935-50 применялся безредукторный Т. с многоступенчатой турбиной, вал которой непосредственно вращает долото (авторы П. П. Шумилов, Р. А. Иоаннесян, Э. И. Тагиев, М. Т. Гусман). В многоступенчатом Т. общий перепад давлений дифференцируется по ступеням турбины, а момент на валу определяется суммой моментов, развиваемых каждой ступенью. Многоступенчатый Т. - машина открытого типа, вал его вращается в радиальных и осевых резинометаллических подшипниках, смазкой и охлаждающей жидкостью для которых является циркулирующая промывочная жидкость - глинистый раствор. Для получения максимальных значений кпд лопатки турбины профилируют так, чтобы безударный режим их обтекания совпадал с максимумом мощности турбины. С 1970 для снижения частоты вращения вала турбины в Т. применяют ступени гидродинамического торможения, позволившие бурить при 150- 250 об/мин. С начала 70-х гг. внедряются Т. с независимой подвеской секции и с демпфирующими устройствами, которые обладают увеличенным сроком межремонтной работы и улучшают условия работы шарошечных долот за счёт снижения вибрации бурильной колонны. Для работы с гидромониторными долотами, без дополнительного нагружения буровых насосов, начато применение Т. с разделённым потоком на нижней секции (рис. 2), который отличается тем, что перепад давлений, срабатываемый в его нижней секции, равен перепаду давлений в штуцерах гидромониторного долота. При этом нижняя секция Т. работает на части потока, подаваемого в скважину.

В разведочном бурении для отбора керна в полом валу Т. размещается съёмная грунтоноска. Для бурения в условиях борьбы с кривизной ствола скважины используют Т. с вращающимся корпусом.

ВИНТОВОЙ ЗАБОЙНЫЙ ДВИГАТЕЛЬ - гидравлический забойный двигатель объёмного типа, рабочие органы которого выполнены по схеме планетарного механизма, приводимого в действие за счёт энергии промывочной жидкости. Первые винтовые забойные двигатели с высокой частотой вращения разработаны в США в 1962 Харрисоном на базе обращённого однозаходного героторного винтового насоса Муано. Многозаходный винтовой забойный двигатель с низкой частотой вращения создан в CCCP в 1966-70 С. С. Никомаровым, М. Т. Гусманом и др.

Многозаходный винтовой забойный двигатель- героторный планетарный механизм, статор которого выполнен в виде стального цилиндра с привулканизированным к его внутренней поверхности многозаходным резиновым винтом.

Ротор (однозаходный или многозаходный винт с числом заходов, на единицу меньшим, чем у винта статора) расположен внутри статора. Под давлением промывочной жидкости ротор, обкатываясь по внутренней поверхности статора, совершает планетарное движение, которое через универсальные шарниры передаётся валу шпинделя, вращающему породоразрушающий инструмент. Диаметр винтового забойного двигателя 54-195 мм, частота вращения около 2-6 с-1, вращающий момент 80-5000 Нм, перепад давления 4-6 МПа, расход промывочной жидкости 0, 0015-0, 036 м3/с и более. Наиболее эффективны винтовые забойные двигатели при проходке глубинных интервалов.

ЭЛЕКТРОБУР - забойная буровая машина с погружным электродвигателем, предназначенная для бурения глубоких скважин, преимущественно на нефть и газ. Идея электробура для ударного бурения принадлежит русскому инженеру В. И. Делову (1899). В 1938-40 в CCCP А. П. Островским и Н. В. Александровым создан и применён первый в мире электробур для вращательного бурения, опускаемый в скважину на бурильных трубах.

Электробур состоит из маслонаполненного электродвигателя и шпинделя. Мощность трёхфазного электродвигателя зависит от диаметра электробура и составляет 75-240 кВт. Для увеличения вращающего момента электробура применяют редукторные вставки, монтируемые между двигателем и шпинделем и снижающие частоту вращения до 350, 220, 150, 70 об/мин. Частота вращения безредукторного электробура 455-685 об/мин. Длина электробура 12-16 м, наружный диаметр 164-290 мм.

При бурении электробур, присоединённый к низу бурильной колонны, передаёт вращение буровому долоту. Электроэнергия подводится к электробуру по кабелю, смонтированному отрезками в бурильных трубах. При свинчивании труб отрезки кабеля сращиваются специальными контактными соединениями. К кабелю электроэнергия подводится через токоприёмник, скользящие контакты которого позволяют проворачивать колонну бурильных труб. Для непрерывного контроля пространственного положения ствола скважины и технологических параметров бурения при проходке наклонно направленных и разветвлённо-горизонтальных скважин используется специальная погружная аппаратура (в том числе телеметрическая). При бурении электробуром очистка забоя осуществляется буровым раствором, воздухом или газом.

В CCCP с помощью электробура проходится свыше 500 тысяч м скважин ежегодно. Использование электробура благодаря наличию линии связи с забоем особенно ценно для исследования режимов бурения.

. Породоразрушающие инструменты, их конструкция

Породоразрушающий инструмент (ПРИ) предназначен для разрушения горной породы на забое при бурении скважины.

По принципу разрушения породы весь ПРИ можно классифицировать следующим образом:

) ПРИ режуще-скалывающего действия, предназначенный для разбуривания вязких и пластичных пород небольшой твердости ( вязких глин, глинистых сланцев и др.) и малоабразивных.;

) ПРИ дробяще-скалывающего действия, предназначенные для разбуривания неабразивных и абразивных пород средней твердости, твердых, крепких и очень крепких пород;

) ПРИ истирающе-режущего действия, предназначенные для бурения в породах средней твердости, а также при чередовании высокопластичных маловязких пород с породами средней твердости и даже твердыми.

По назначению весь ПРИ можно разделить также на три группы:

) Для бурения сплошным забоем (без отбора керна) - буровые долота;

) Для бурения по кольцевому забою (с отбором керна) - бурголовки;

) Для специальных работ в пробуренной скважине (выравнивание и расширение ствола) и в обсадной колонне (разбуривание цементного камня ) и т.д.)

По конструктивному исполнению ПРИ делится на три группы:

) Лопастной;

) Шарошечный;

) Секторный.

По материалу породоразрушающих элементов ПРИ делится на четыре группы:

) Со стальным вооружением;

) С твердосплавным вооружением;

) С алмазным вооружением;

) С алмазно-твердосплавным вооружением.

Долота

Долота лопастные

Лопастное долото в качестве рабочего элемента имеет лопасти, которые изготовляют либо с корпусом, либо приваривают к корпусу.

Лопастные долота относятся к инструменту режущего или режуще-скалывающего действия. Они предназначены для бурения в породах мягких и отчасти средней твердости.

Производят двух- и трехлопастные долота: двухлопастные диаметрами от 76, 0 до 165, 1 мм и трехлопастные - от 120, 6 до 469, 9 мм. Простейшим по конструкции является двухлопастное долото. Оно состоит из корпуса и двух лопастей, в головке корпуса имеется присоединительная резьба, а в нижней части ближе к лопасти расположены каналы для подачи промывочной жидкости к забою. У гидромониторных долот в каналах устанавливают насадки для формирования высокоскоростной струи промывочной жидкости.

На эффективность работы долота наиболее существенное влияние оказывают профиль лопасти долота и правильный подбор его конструкции по свойствам проходимых горных пород.

Рис.. Двухлопастное долото Рис. Трехлопастное долото типа МС; а, 6 - долото; в - сопло

Долота истирающе-режущие (ДИР)

Истирающе-режущие долота относятся к лопастным, но отличаются наличием разновысоких лопастей, армированных мелкими твердосплавными резцами.

Такое долото формирует ступенчатый забой и в зависимости от свойств проходимых пород может работать как режущее долото - по всей длине лопасти снимать слой с забоя, или как истирающее - каждый мелкий резец обособленно взаимодействует с забоем и скалывает очень мелкие частицы горной породы.

Рис.. Долото ДИР

Долота шарошечные

Шарошечным долотом называется породоразрушающий инструмент, у которого основным рабочим органом является шарошка. Наиболее распространены трехшарошечные долота; одно- и двухшарошечные долота производят в ограниченном количестве.

Каждая шарошка снабжена множеством породоразрушающих элементов, которые располагаются венцами. Вращение корпуса преобразуется во вращательное движение шарошек вокруг их оси. В результате происходит поражение забоя породоразрушающими элементами, периодически вступающими с ним в контакт. Венцы соседних шарошек расположены таким образом, что разрушают породу по всей поверхности забоя.

Применяют два способа оснащения шарошек породоразрушающими элементами:

· фрезерование зубьев из тела шарошки с последующей наплавкой твердого сплава;

· установка твердосплавных зубков (штырей) в гнезда методом холодного прессования.

Изготавливают шарошечные долота 39 номинальных диаметров - от 46 до 508 мм.

Рис. Корпусное шарошечное долото: а - Д394С; б - Д394Г

Рис.. Модификация отечественных одношарошечных долот:

а - основная (серийная); б-с кольцевыми расточками на шарошке; в-с нижней промывкой; г - с коническими зубками; 1 - корпус долота; 2 - шарошка

Рис.. Двухшарошечные долота: а - В112МГ; б - 2В93С; 1 - секция герметизированной опоры долота; 2, 6 - боковые и центральное промывочные отверстия, 3, 4, 5 - подшипники шариковый, роликовый и скольжения соответственно

Рис.. Трехшарошечные долота

Долота алмазные

Алмазное долото - это разновидность породоразрушающего инструмента, у которого в качестве породоразрушающих элементов используются алмазные зерна. Алмазные долота оснащаются в основном достаточно крупными алмазами - от 2 до 15 зерен/кар. Размер зерен подбирают в зависимости от твердости пород и места размещения алмазов на рабочей поверхности долота. С повышением твердости пород размер зерен уменьшают.


10. Бурильная колонна, её назначение. Элементы бурильной колонны, их назначение

Бурильная колонна - связующее звено между долотом, находящимся на забое скважины, и буровым оборудованием, расположенным на поверхности.

Бурильная колонна предназначена для подвода энергии (механической, гидравлической, электрической к долоту), обеспечения подачи бурового раствора к забою, создания осевой грузки на долото, восприятия реактивного момента долот забойного двигателя.

Основные элементы, составляющие бурильную колонну, - ведущие трубы, бурильные трубы, бурильные замки, переводники, центраторы бурильной колонны, утяжеленные бурильные трубы.

Ведущие трубы предназначены для передачи вращения от ротора к бурильным трубам. Бурильные трубы составляют основную часть колонны. При роторном бурении колонна бурильных труб служит для передачи вращения долоту и для подачи бурового раствора к забою скважины.

Бурильные замки соединяют между собой отдельные бурильные трубы. Переводники предназначены для соединения элементов бурильных колонн, имеющих разные размеры или разнотипные резьбы, а также для присоединения подсобных и ловильных инструментов к бурильным трубам. Центраторы бурильной колонны служат для предупреждения искривления ствола скважины при бурении забойными двигателями. Утяжеленные бурильные трубы, устанавливаемые непосредственно над долотом или забойным двигателем, создают необходимую жесткость в нижней части бурильной колонны и обеспечивают нагрузку на долото в заданных пределах.

Конструкция элементов бурильной колонны

Трубы бурильные ведущие представляют собой толстостенную трубу, имеющую в сечении квадратную, шестигранную или крестообразную форму с концентрично расположенным круглым или квадратным отверстием для прохода бурового раствора.

Наиболее распространены ведущие трубы с квадратным сечением. Шестигранные и крестообразные ведущие трубы применяются редко.

Ведущие трубы конструктивно выполняются в двух вариантах: сборными, составленными из трех деталей, и цельными.

Трубы бурильные ведущие (сборные), изготовляемые предпочтительно квадратного сечения, включают собственно трубу (штангу), верхний переводник (ПШВ) для соединения ведущей трубы с вертлюгом и нижний переводник (ПШН) для присоединения к бурильной колонне.

Свободный конец верхнего переводника для соединения с вертлюгом снабжен левой замковой резьбой; свободный конец нижнего переводника, предназначенный для соединения с бурильной колонной, имеет правую замковую резьбу.

Наиболее распространены ведущие трубы сборной конструкции вследствие простоты изготовления. Они выполняются в соответствии с ТУ 14-3-126-73 и нормалью Н 293-49 следующих размеров (по стороне квадрата): 65, 80, 115, 140 и 155 мм.

Наряду с ведущими трубами сборной конструкции промышленностью осваиваются цельнокатаные ведущие трубы. В этом случае конструкция предусматривает исключение резьбового соединения в местах присоединения верхнего и нижнего переводников с ведущей трубой.

Бурильные трубы. Бурильные трубы и соединительные муфты к ним изготовляются следующих размеров (условный наружный диаметр): 60, 73, 89, 102, 114, 127, 140 и 168 мм с толщиной стенок от 7 до 11 мм.

В настоящее время существует несколько разновидностей бурильных труб, различающихся по конструктивному исполнению:

Трубы бурильные сборной конструкции с навинченными замками. Трубы этой конструкции изготавливаются двух видов (ГОСТ 631-75): трубы с высаженными внутрь концами и трубы с высаженными наружу концами. Бурильные трубы сборной конструкции с коническими блокирующими (стабилизирующими) поясками (ТБНК - трубы бурильные с высаженными наружу и ТБВК - трубы бурильные с высаженными внутрь концами), применяемые для уменьшения переменных напряжений в резьбовом соединении в опасном сечении по последнему витку резьбы труб. Иногда у стандартных бурильных труб вследствие безупорного резьбового соединения замка с трубой происходят усталостные поломки высаженных концов бурильных труб, особенно при роторном способе проводки скважин. В бурильных трубах с блокирующими (стабилизирующими) поясками за счет удлинения у замковых деталей цилиндр ческой выточки и обточки гладкого пояска на трубе вблизи резьбы достигает плотное сопряжение замка с трубой, навинчиваемого в горячем состоянии. Трубы бурильные с блокирующими поясками позволяют повысить предел выносливости по сравнению со стандартными трубами приблизительно на 40 %.

Трубы бурильные с приварными соединительными концами. Отличительная особенность этих труб - замена резьбы сваркой в местах соединения замка с трубой. Трубы между собой соединяются посредством крупной замковой резьбы. Трубы этой конструкции могут быть трех типов: ТБП - трубы бурильные с приваренными соединительными концами к трубной заготовке, не имеющей высаженных концов; ТБПВ - трубы бурильные с приваренными соединительными концами к трубной заготовке с высаженными наружу концами; ТБПВЭ - отличающиеся от труб ТБПВ конструкцией соединительных концов. Бурильные трубы типа ТБП применяют только в турбинном бурении, а типа ТБПВ - как в роторном, так и турбинном бурении. Трубы типа ТБПВЭ созданы для бурения скважин электробуром.

Трубы с высаженными наружу концами и нарезанной на них крупной (замковой) резьбой (беззамковые раструбные трубы), предназначенные для использования при бурении с погружными забойными двигателями и в роторном бурении.

Замки для бурильных труб предназначаются для соединения в колонну бурильных труб. Они состоят из двух деталей: замкового ниппеля с наружной резьбой и замковой муфты с внутренней крупной резьбой. Посредством таких резьб указанные детали соединяются между собой. Для соединения с бурильными трубами на замковых деталях нарезана мелкая трубная резьба.

Замки каждого типа изготавливаются с правой или левой замковой резьбой для соединения с бурильной трубой.

Утяжеленные бурильные трубы (УБТ) предназначены для установки в нижнюю часть бурильной колонны с целью увеличения ее жесткости, большей устойчивости и передачи нагрузки на долото. Комплект утяжеленных труб состоит из одной наддолотной трубы, имеющей на обоих концах внутреннюю замковую резьбу, и промежуточных труб, снабженных на верхнем конце внутренней замковой резьбой, а на нижнем - наружной.

Переводники для колонны бурильного инструмента представляют собой разновидность соединительных элементов бурильной колонны. Применяют 5 основных типов переводников. Их подразделяют на 2 группы:

штанговые - для соединения трубы бурильной ведущй с вертлюгом и бурильными трубами;

промежуточные - для соединения других элементов колонны.

Материалы, применяемые для изготовления элементов колонны бурильного инструмента

Материалами для изготовления элементов колонны бурильного инструмента являются конструкционные среднеуглеродистые и легированные стали. При изготовлении все элементы бурильной колонны должны подвергаться термической обработке для улучшения свойств материалов.

В последние годы стали широко применяться облегченные бурильные трубы из специальных сплавов. Легкосплавные бурильные трубы (ЛБТ), предназначенные для турбинного и роторного бурения, изготовляют из алюминиевого сплава с внутрь высаженными концами. На ЛБТ навинчиваются замки облегченной конструкции.

. Буровые растворы, назначение и требования к ним. Типы буровых растворов. Свойства буровых растворов, приборы для определения свойств. Химические реагенты и утяжелители для обработки буровых растворов. Оборудование для приготовления, очистки и обработки буровых растворов

Буровой раствор - сложная многокомпонентная дисперсная система суспензионных, эмульсионных и аэрированных жидкостей, применяемых для промывки скважин в процессе бурения.

Использование буровых растворов для бурения скважин предложено впервые в 1833 году французским инженером Фловилем, который, наблюдая операцию канатного бурения, при которой аппарат бурения наткнулся на воду, заметил, что фонтанирующая вода очень эффективно удаляет буровой шлам из скважины. Он изобрел аппарат, в котором предполагалось закачивать воду под буровую штангу, откуда буровой шлам вымывался водой на поверхность между буровой штангой и стволом скважины. Принцип остался неизменным до сих пор.

Назначение буровых растворов :

При циркуляции в скважине буровой раствор:

§   создает противодавление поровому давлению ;

§   очищает забой от выбуренной породы ;

§   формирует фильтрационную корку на стенках скважины, укрепляя таким образом неустойчивые отложения. Уменьшает воздействие фильтрата бурового раствора на породы разобщением разбуриваемых пластов и открытого ствола ;

§   транспортирует выбуренную породу из скважины и удерживает ее во взвешенном состоянии после прекращения циркуляции;

§   передает гидравлическую энергию на забойный двигатель и долото;

§   предупреждает осыпи, обвалы и др.;

§   обеспечивает качественное вскрытие продуктивных пластов;

§   обеспечивает смазывающее и антикоррозионное действие на буровой инструмент ;

§   охлаждает и смазывает долото;

§   обеспечение охраны окружающей среды;

§   предотвращает возможность возникновения осложнений при бурении (дифференциальный прихват, поглощения, нефтегазопроявления и т. п.);

§   обеспечение информации о геологическом разрезе.

Глинистые буровые растворы получили наибольшее распространение при бурении скважин. Для бурового дела наибольший интерес представляют три группы глинистых минералов: бентонитовые (монтмориллонит, бейделлит, нонтроиит, сапонит и др.), каолиновые (каолинит, галлуазит, накрит и др.) и гидрослюдистые (иллит, бравиазит и др.). Наилучшими качествами с точки зрения приготовления бурового раствора обладают монтмориллонит и другие бентонитовые минералы. Так, из 1 тонны бентонитовой глины можно получить около 15 м3 высококачественного глинистого раствора, тогда как из глины среднего качества - 4...8 м3, а из низкосортных глин - менее 3 м3.

Глинистые растворы глинизируют стенки скважины, образуя тонкую плотную корку, которая препятствует проникновению фильтрата в пласты. Их плотность и вязкость таковы, что растворы удерживают шлам разбуренной породы даже в покое, предотвращая его оседание на забой при перерывах в промывке. Утяжеленные глинистые растворы, создавая большое противодавление на пласты, предупреждают проникновение пластовых вод, нефти и газа в скважину и открытое фонтанирование при бурении. Однако по этим же причинам затруднено отделение частиц породы в циркуляционной системе бурового раствора.

Применяются также другие буровые растворы на водной основе: малоглинистые (для бурения верхней толщи выветрелых и трещиноватых горных пород), соленасыщенные (при бурении в мощных толщах соленосных пород), ингибированные (обработанные химреагентами для предупреждения набухания разбуриваемых пород и чрезмерного обогащения раствора твердой фазой) и т.д.

К неглинистым относятся буровые растворы, приготовленные без использования глины. Безглинистый буровой раствор с конденсированной твердой фазой готовится на водной основе. Дисперсная фаза в нем получается химическим путем, в результате взаимодействия находящихся в растворе ионов магния с щелочью NaОН или Са(ОН)2. Химическая реакция приводит к образованию в растворе микроскопических частиц гидрооксида магния М§(ОН)2. Раствор приобретает гелеобразную консистенцию и после химической обработки превращается в седиментационно устойчивую систему. Такой раствор сохраняет свои структурно-механические свойства при любой минерализации. Поэтому его применяют в случаях, когда требуется обеспечить высокую устойчивость стенок скважины, но обеспечить контроль и регулирование минерализации раствора сложно.

Другим типом неглинистых буровых растворов являются биополимерные растворы. Биополимеры получают при воздействии некоторых штаммов бактерий на полисахариды. Свойства биополимерных растворов регулируются так же легко, как свойства лучших буровых растворов из бентонитовых глин. Вместе с тем, некоторые из них оказывают флокулирующее воздействие на шлам выбуренных пород, предупреждая таким образом образование суспензии. Кроме того, растворы биополимеров термоустойчивы. Сдерживает их применение относительно высокая стоимость.

Буровые растворы на углеводородной основе представляют собой многокомпонентную систему, в которой дисперсионной (несущей) средой является нефть или жидкие нефтепродукты (обычно дизельное топливо), а дисперсной (взвешенной) фазой - окисленный битум, асфальт или специально обработанная глина (гидрофобизированный бентонит).

Буровые растворы на углеводородной основе не оказывают отрицательного влияния на свойства коллекторов нефти и газа, обладают смазывающей способностью: при их использовании уменьшается расход мощности на холостое вращение бурильной колонны в стволе скважины и снижается износ бурильных труб и долот. Однако стоимость приготовления таких буровых растворов довольно высока, они пожароопасны, трудно удаляются с инструмента и оборудования.

Применяют буровые растворы на углеводородной основе для повышения эффективности бурения в породах-коллекторах и сохранения их нефтегазоотдачи на исходном уровне, а также для проводки скважин в сложных условиях при разбуривании мощных пачек набухающих глин и растворимых солей.

У эмульсионных буровых растворов дисперсионной средой является эмульсия типа "вода в нефти", а дисперсной фазой - глина. Буровой раствор, приготовленный на основе эмульсии типа "вода в нефти", называется обращенным эмульсионным или инвертной эмульсией. Жидкая фаза такого раствора на 60...70 % состоит из нефти или нефтепродуктов, остальное - вода. Однако содержание воды в инвертной эмульсии может быть доведено до 80 % и выше, если в нее ввести специальные эмульгаторы.

Эмульсионные буровые растворы используются при бурении в глинистых отложениях и солевых толщах. Они обладают хорошими смазочными свойствами и способствуют предупреждению прихвата инструмента в скважине.

Сущность бурения с продувкой газом заключается в том, что для очистки забоя, выноса выбуренной породы на дневную поверхность, а также для охлаждения долота используют сжатый воздух, естественный газ или выхлопные газы двигателей внутреннего сгорания. Применение газообразных агентов позволяет получить большой экономический эффект: увеличивается механическая скорость (в 10...12 раз) и проходка на долото (в 10 раз и более). Благодаря высоким скоростям восходящего потока в затрубном пространстве, ускоряется вынос выбуренных частиц породы. Использование газообразных агентов облегчает проведение гидрогеологических наблюдений в скважинах. Кроме того, увеличивается коэффициент нефтегазоотдачи пласта.

Аэрированные буровые растворы представляют собой смеси пузырьков воздуха с промывочными жидкостями (водой, нефтеэмульсиями и др.) в соотношении до 30:1. Для повышения стабильности аэрированных растворов в их состав вводят реагенты - поверхностно-активные вещества и пенообразователи.

Аэрированные буровые растворы обладают теми же свойствами, что и жидкости, из которых они приготовлены (для глинистых растворов - образуют глинистую корку, обладают вязкостью и напряжением сдвига, сохраняют естественную проницаемость призабойной зоны пласта при его вскрытии). Вместе с тем, большим преимуществом аэрированных жидкостей является возможность их применения в осложненных условиях бурения, при катастрофических поглощениях промывочных жидкостей, вскрытии продуктивных пластов с низким давлением.

Свойства буровых растворов, приборы для определения свойств.

Эффективность применения буровых растворов зависит от их свойств, к которым относятся плотность, вязкость, водоотдача, статическое напряжение сдвига, структурная однородность, содержание газов, песка; тиксотропия, содержание ионов Na, K, Mg.

Водоотдача бурового раствора характеризуется объемом фильтрата (от 2 до 10 см³), отделившегося от раствора через стандартную фильтровальную поверхность при перепаде давления ~ 100 кПа в течение 30 мин. Толщина осадка на фильтре (фильтрационная корка), которая образуется при определении водоотдачи, изменяется в пределах 1-5 мм.

Содержание твердой фазы в буровом растворе характеризует концентрацию глины (3-15 %) и утяжелителя (20-60 %). Для обеспечения эффективности бурения (в зависимости от конкретных геолого-технических условий) свойства бурового раствора регулируют изменением соотношения содержания дисперсной фазы и дисперсионной среды и введением в них специальных материалов и химических реагентов. Для предупреждения водонефтегазопроявлений при аномально высоких пластовых давлениях увеличивают плотность бурового раствора путем введения специальных утяжелителей (например, мелом до 1500 кг/м³, баритом и гематитом до 2500 кг/м³ и более) или уменьшают ее до 1000 кг/м³ за счет аэрации бурового раствора или добавления к нему пенообразователей (сульфанола, лигносульфоната). Содержание твердой фазы бурового раствора регулируется трехступенчатой системой очистки на вибрационных ситах; газообразные агенты отделяют в дегазаторе. Кроме того, для регулирования содержания твердой фазы в раствор вводят селективные флокулянты.

Особый класс реагентов применяют при регулировании свойств растворов на углеводородной основе. К ним относятся эмульгаторы (мыла жирных кислот, эмультал и другие), гидрофобизаторы (сульфанол, четвертичные амины, кремнийорганические соединения), понизитель фильтрации (органогуматы).

Готовят буровые растворы непосредственно перед бурением и в его процессе.

Химические реагенты:

)неорганические (соли, кислоты). 2) Полимеры (растительные полимеры); синтетические полимеры (смолы)). Химическая обработка бурового раствора заключается во введении в него определенных химических веществ с целью улучшения свойств без существенного изменения плотности. В результате химической обработки достигаются следующие положительные результаты: повышение стабильности бурового раствора, снижение его способности к фильтрации, уменьшение толщины и липкости корки на стенке скважины, регулирование вязкости раствора.

Оборудование для приготовления, очистки и обработки буровых растворов.

Устройства для приготовления и утяжеления буровых растворов по принципу действия делятся на механические и гидравлические. В связи с возрастающим применением порошкообразных материалов в последние годы преимущественное распространение получили гидравлические устройства. По сравнению с механическими глиномешалками они обладают более высокой производительностью, обеспечивают необходимое качество буровых растворов и экономное расходование материалов для их приготовления.

Механические двухвальные мешалки

Механические двухвальные мешалки применяют для приготовления и утяжеления буровых растворов из комовых материалов, а также для приготовления жидких химических реагентов.

Буровые растворы в двухвальных мешалках можно приготовлять из любых комовых материалов вплоть до смерзшихся кусков глины или утяжелителя. Высокое качество приготовления раствора сочетается с низкой производительностью. При загрузке глиномешалки комовой глиной выход суспензии составляет 2-4 м3/ч, а при загрузке глннопорощком - б м3/ч.

Разновидностью механических мешалок являются фрезерно-струйные мельницы (ФСМ), разработанные Воронежским инженерно-строительным институтом для приготовления и утяжеления буровых растворов из комовых материалов.

Фрезерно-струйная мельница ФСМ-3 состоит из следующих основных узлов: ротора, приемного бункера, предохранительной шарнирной плиты, диспергирующей рифленой плиты, ловушки н лотка для отвода готовой суспензии. Она является машиной непрерывного действия сравнительно высокой производительности.

Агрегат АППЖ-4

Агрегат АППЖ-4 предназначен для приготовления и утяжеления буровых растворов из комовых и порошкообразных материалов. Он состоит из фрезерно-метательной мельницы ФММ-5, пескового насоса, приемного резервуара и опорной рамы.

Агрегат АПГ1Ж-4 работает следующим образом: комки глины попадают в бункер и, предварительно смешавшись с водой, захватываются лопастями ротора, затем отбрасываются на два ряда ножей-решеток. Пройдя через решетку сливного люкз, образовавшаяся суспензия попадает в приемный резервуар. При этом отдельные куски глины имеют размер 3-4 мм. Из приемного резервуара суспензия засасывается Песковым насосом и подается в струйную камеру.


Техническая характеристика

Производительность по готовой суспензии, м'/ч.. 10-15

Гидравлические смесители эжекторного типа

Гидросмесители эжекторного типа применяют для приготовления и утяжеления буровых растворов из порошкообразных материалов, а также для химической обработки буровых растворов сухими порошкообразными реагентами.

В настоящее время гидравлические смесители эжекторного типа отечественные машиностроительные заводы отдельно не изготовляют, а они входят в комплект различных агрегатов, например, в цементосмесительные машины, блок приготовления БПР, блок гидросмесителей БГС.

Блок гидросмеснтелей БГС

Блок гидросмеснтелей БГС предназначен для приготовления, утяжеления н химической обработки буровых растворов из сухих порошкообразных материалов, а также для питания вспомогательного трубопровода буровой установки.

Блок состоит из сварной рамы / (рис. VIII.9), двух центробежных шламовых насосов 5 с электродвигателями, двух гидравлических смесителей эжекторного типа 8. двух столиков 2 с дисковыми ножами для разрыва бумажных мешков, нагнетательного трубопровода 6 с поворотными шиберными заслонками сливного трубопровода 4 и всасывающего трубопровода 7.


Блок приготовления буровых растворов БПР

Блок БПР предназначен для хранения на буровой сухих порошкообразных материалов (глины, утяжелителя, химических реагентов) и приготовления из них различных буровых растворов. Блок может быть использован также для приготовления цементных растворов.

Конструкцией блоха предусмотрены пневматические погрузка, выгрузка и транспортировка порошкообразных материалов.


Выносной гидроэжекторный смеситель 9 (рис. XV. 1) представляет собой струйный аппарат, в котором для образования гидросмеси порошкообразных материалов используется кинетическая энергия жидкости. Буровые насосы под давлением не более 4 МПа нагнетают жидкость по трубе 12 в сопло 11 смесителя, снабженного сменными штуцерами диаметром 30 мм для работы с глинопорошками и диаметром 20 мм для работы с утяжелителями. Вследствие сужения струи скорость жидкости в сопле увеличивается, а давление падает. Из сопла жидкость с пониженным давлением поступает в камеру всасывания. В результате создаваемого разряжения в камеру всасывания из силоса 1 по шлангу 7 засасывается порошкообразный материал, который увлекается жидкостью в камеру смешения и далее в конически расходящийся насадок (диффузор). При прохождении по диффузору скорость потока уменьшается, а давление возрастает и полученный раствор по патрубку 10 сливается в приемную емкость циркуляционной системы. За один цикл смешения плотность раствора возрастает на 0, 3-0, 35 г/см3. При недостаточной плотности полученного раствора проводится повторное смешение. Гидроэжекторный смеситель имеет относительно низкий к.п.д., однако обладает высокой надежностью благодаря отсутствию подвижных частей. Блоки для приготовления бурового раствора рассчитаны для работы с бестарными и затаренными глинопорошками. Основная масса глинопорошков доставляется автоцементовозами и под действием сжатого воздуха перегружается по трубе 3 в силос 1. Перед подачей в гидроэжекторный смеситель порошкообразные материалы разрыхляются воздухом, нагнетаемым в силос по аэродорожкам 6 системы аэрирования 5. Избыточный воздух выносится в атмосферу через фильтр 2, установленный на крышке силоса. Нижняя часть силоса имеет конусообразную форму и снабжена разгрузочным устройством 4, регулирующим подачу материала в гидроэжекторный смеситель. Материалы, используемые в небольших количествах, доставляются в затаренном виде и засыпаются в воронку 8, из которой поступают в камеру смешения гидроэжектора. Воронка снабжена разгрузочным клапаном для регулирования подачи материала. В циркуляционной системе буровых установок применяются блоки БПР-70 и БПР-40.

. Контрольно - измерительные приборы при проводке скважины. Система контроля за процессом бурения

Одной из наиболее актуальных задач при проведении геологоразведочных работ является непрерывный контроль и управление полным технологическим циклом строительства скважины с целью оптимизации процесса бурения, прогнозирования и своевременного предотвращения аварийных ситуаций.

Решением этих задач занимаются информационно-измерительные службы геолого-технологических исследований (ГТИ) скважин в процессе бурения, которые на основе комплексного использования информации о технологических режимных параметрах бурения (свойств бурового раствора, шлама, керна и данных газовой хроматографии) позволяют осуществить единый геологический и технологический контроль за процессом бурения. Однако область применения ГТИ включает, как правило, исследование поисковых, разведочных и опорно-параметрических скважин. Применение ГТИ на эксплуатационных скважинах экономически не всегда целесообразно, и поэтому очень часто эксплуатационное бурение ведется без соответствующего контроля за технологическим процессом, с использованием морально устаревших, разрозненных контрольно-измерительных средств. В связи с этим возникла необходимость создания единых информационно-измерительных систем контроля и управления процессом бурения скважин, работающих в автономном режиме.

. Конструкция скважины. Обсадные колонны. Типы обсадных труб. Технологическая оснастка обсадных колонн

Конструкция скважины характеризуется числом спущенных обсадных колонн, их размерами (наружный диаметр и длина) и местоположением интервалов цементирования пространства за колоннами.

Для обоснования конструкции скважины используют опыт бурения па соседних площадях и результаты геологоразведочных работ.

Для крепления скважин применяются следующие типы обсадных колонн:

) направление - для предотвращения размыва устья;

) кондуктор - для крепления верхних неустойчивых интервалов разреза, изоляции горизонтов с грунтовыми водами, установки на устье противовыбросового оборудования;

) промежуточная обсадная колонна (одна или несколько) - для предотвращения возможных осложнений при бурении более глубоких интервалов путем крепления и изоляции вышележащих пластов, несовместимых по условиям бурения с нижележащими; при бурении однотипного разреза прочных пород обсадная колонна может отсутствовать;

) эксплуатационная колонна - для изоляции горизонтов и извлечения нефти и газа из пласта на поверхность.

Конструкция скважины называется одноколонной, если она состоит только из эксплуатационной колонны, двухколонной - при наличии одной промежуточной и эксплуатационной колонн, и т. д.

ОБСАДНАЯ КОЛОННА- предназначена для крепления буровых скважин, а также изоляции продуктивных горизонтов при эксплуатации; составляется из обсадных труб путём последовательного их свинчивания (иногда сваривания). Обсадные трубы, применяемые при бурении нефтяных и газовых скважин, изготовляются в основном из стали с двумя нарезанными концами и навинченной муфтой на одном конце (иногда безмуфтовые с раструбным концом). Резьба труб выполняется конической, треугольной или специального трапецеидального профиля. Для создания герметичности при высоких давлениях нефти и газа (более 30 МПа) применяются соединения с уплотнительными элементами. В CCCP обсадные трубы выпускаются по наружному диаметру от 114 до 508 мм, длиной 9, 5-13 м. Толщина стенок труб в зависимости от диаметров 5-16 мм. Различают семь групп прочности обсадных труб: Д, К, Е, Л, М, R, Т с пределом текучести 379-1065 МПа. На каждой трубе наносится маркировка с указанием диаметра, группы прочности, толщины стенки, номера трубы и даты выпуска.

Применяются обсадные колонны трёх видов: кондукторы, промежуточные и эксплуатационные колонны. Промежуточные колонны предназначены для крепления стенок нижних интервалов скважин. Кондукторы и промежуточные колонны обычно цементируются, но могут быть и съёмными (например, при бурении некоторых геологоразведочных скважин или глубоких скважин для борьбы с износом спущенных предыдущих промежуточных колонн). Эксплуатационная колонна перекрывает продуктивные горизонты. Через перфорационные отверстия в колонне в скважину поступают нефть и газ, которые перемещаются к устью по колонне насосно-компрессорных труб.

Под понятием "технологическая оснастка обсадных колонн" подразумевается определенный набор устройств, которыми оснащают обсадную колонну, чтобы создать условия для повышения качества процессов ее спуска и цементирования в соответствии с принятыми способами крепления скважин. Поэтому применение технологической оснастки при креплении скважин обязательно.

Изделия технологической оснастки одного наименования имеют несколько конструктивных модификаций, отличающихся друг от друга принципом действия.

Количество типов и размеров оснастки в зависимости от условий применения и диаметров обсадных колонн образует более 250 типоразмеров.

. Цементирование скважин. Тампонажные материалы. Оборудование для цементирования скважин

Цементированием называют процесс заполнения заданного интервала раствором вяжущих материалов (например цемента), который в состоянии покоя превращается в прочный непроницаемый камень.

Цементирование применяют для изоляции друг от друга проницаемых пластов, вскрытых скважиной; установки цементных мостов, изолирующих нижнюю часть ствола скважины (например при забуривании нового ствола); удерживания в подвешенном состоянии обсадной колонны и герметизации заколонного пространства; изоляции поглощающих пластов, вскрытых скважиной в процессе бурения; защиты обсадных труб от коррозии агрессивными пластовыми жидкостями и газами и др.

Цементирование включает пять основных видов работ: приготовление тампонажного раствора, закачку его в скважину, подачу тампонажного раствора в затрубное пространство, ожидание затвердения закачанного материала и проверку качества цементировочных работ. Оно проводится по заранее составленной программе, обоснованной техническим расчетом.

Тампонажные материалы - это такие материалы, которые при затворении водой образуют суспензии, способные затем превратиться в твердый непроницаемый камень.

В зависимости от вида вяжущего материала тампонажные материалы делятся на: 1) тампонажный цемент на основе портландцемента; 2) тампонажный цемент на основе доменных шлаков; 3) тампонажный цемент на основе известково-песчаных смесей; 4) прочие тампонажные цементы (белиловые и др.).

При цементировании скважин применяют только два первых вида - тампонажные цементы на основе портландцемента и доменных шлаков.

К оборудованию, необходимому для цементирования скважин, относятся: цементировочные агрегаты, цементно-смесительные машины, цементировочная головка, заливочные пробки и другое мелкое оборудование (краны высокого давления, устройства для распределения раствора, гибкие металлические шланги и т. п.).

Цементировочные агрегаты. При помощи цементировочного агрегата производят затворение цемента (если не используется цементно-смесительная машина), закачивают цементный раствор в скважину, продавливают цементный раствор в затрубное пространство. Кроме того, цементировочные агрегаты используются и для других работ (установка цементных мостов, нефтяных ванн, испытание колонн на герметичность и др.).

Цементно-смесительные машины. Цементирование осуществляется при помощи цементно-смесительных машин. Применяются различные типы цементно-смесительных машин: СМ-10, 2СМН-20, СПМ-20 др. В данном случае цифры 10, 20 и т. п. обозначают количество цемента (в т), которое возможно поместить, в бункер смесительной машины.

Цементировочные головки предназначены для промывки скважины и проведения цементирования. Спущенная обсадная колонна оборудуется специальной цементировочной головкой, к которой присоединяются нагнетательные трубопроводы (манифольды) от цементировочных агрегатов.

.15. Для добывающих скважин под освоением понимается вызов притока нефти и газа из пласта; для нагнетательных - вызов притока пластовой жидкости, очистка призабойной зоны и обеспечение других условий, при которых продуктивный пласт начинает принимать рабочий агент (воду или газ) в необходимом объеме.

Опробование и испытание продуктивных горизонтов (пластов) в процессе бурения. Под опробованием пласта понимается комплекс работ, имеющих целью вызов притока из пласта, отбор проб, пластовой жидкости, оценка характера насыщенности пласта и в отдельных случаях определение его ориентировочного дебита. Опробование целесообразнее всего осуществлять в процессе бурения при помощи испытателей пластов.


Под испытанием пласта понимается комплекс работ, обеспечивающий вызов притока, отбор проб в пластовой жидкости и газа, выявление газонефтесодержания пласта, определение основных гидродинамических параметров пласта (пластовое давление, гидропроводность, коэффициент продуктивности и дебит скважин). Испытание пластов проводится как в процессе бурения скважин, так и после окончания бурения и спуска эксплуатационной колонны. Испытание скважин проводится с целью установления промышленной нефтегазоносности пластов, оценки их продуктивной характеристики и получения необходимых данных для подсчета запаса нефти и газа в составлении проектов разработки месторождений.

В настоящее время разработаны испытатели пластов трех типов, применяемых в процессе бурения скважин: испытатели, спускаемые в скважину на колонне бурильных труб, спускаемые на кабеле в скважину и внутрь бурильной колонны. Как в России, так и за рубежом наибольшее распространение получили испытатели пластов, спускаемые в скважину на бурильных трубах, - трубные испытатели. Испытание на приток трубными пластоиспытателями производится с опорой (рис. 11.1, а) и без опоры на забой (рис. 11.1, б). Возможно также селективное (раздельное) испытание объектов как тем, так и другим способом (рис. 11.1, в. г).

Принцип работы трубного пластоиспытателя заключается в том, что при помощи пакера (при селективном испытании - двух пакеров) изолируют интервал, подлежащий испытанию, от остальной части ствола. Затем снижают давление для получения необходимой депрессии в подпакерном или междупакерном пространстве. Депрессию регулируют за счет высоты столба жидкости в колонне бурильных труб, а также ее плотности. Под влиянием депрессии пластовые флюиды поступают в скважину, а из нее-через фильтр в колонну бурильных труб. Глубинный манометр, установленный в испытателе пластов, записывает все происходящие в скважине изменения в давлении. Специальным пробоотборником отбираются пробы поступивших в колонну бурильных труб пластовых флюидов (нефть, вода) или они могут быть подняты на поверхность непосредственно в испытателе пластов. Термометр, установленный в специальном кармане пластоиспытателя, фиксирует забойную температуру.

Испытание (опробование) перспективных объектов в процессе бурения должно производиться, исходя из степени изученности разреза. При технологической необходимости (негерметичность пакеровки, неполадки с испытательным инструментом, отсутствие уверенности в оценке характера насыщенности и гидродинамических параметров пласта и др.) должны проводиться дополнительные спуски испытателя пластов для окончательной оценки перспективности данного объекта на нефть и в последнее время нашли применение многоцикловые испытатели пластов. Испытание пластов в несколько циклов позволяет получить уверенные (однозначные) результаты испытания.

При получении уверенных отрицательных результатов испытания в открытом стволе объект повторному испытанию в колонне не подлежит.

. Освоение и испытание скважин

Последнее мероприятие перед сдачей скважины в эксплуатацию - вызов притока жидкости из пласта. Приток жидкости в скважину возможен только в том случае, когда давление на забой в скважине меньше пластового. Поэтому все работы по освоению скважин заключаются в понижении давления на забой и очистке забоя от грязи, глинистого раствора и песка. Эти работы осуществляются различными способами в зависимости от характеристики пласта, пластового давления, количества газа, содержащегося в нефти, и технической оснащенности.

Для каждой скважины, подлежащей испытанию, должен составляться план с учетом технологических регламентов на эти работы. В плане должны быть указаны: количество объектов испытания, их геолого-геофизические характеристики, интервалы и плотность перфорации, тип перфоратора, порядок вызова притока в зависимости от коллекторских свойств пластов, конструкция скважин, пластовое давление и температура, допустимый предел снижения давления в эксплуатационной колонне, схемы оборудования лифта и устья, данные об объемах и методах исследования. План должен утверждаться главным инженером и главным геологом объединения, треста, управления геологии.

На газовых, газоконденсатных скважинах с АВПД план по испытанию или опробованию пластов должен согласовываться с военизированной службой по предупреждению возникновения и по ликвидации открытых газовых и нефтяных фонтанов. Испытание или опробование пластов должно проводиться при наличии акта готовности скважины к выполнению этих работ. Вызов притока и очистка забоя при освоении фонтанных скважин производятся промывкой скважины, нагнетанием в скважину сжатого воздуха (или газа), свабированием или комбинацией этих способов. При промывке глинистый раствор, находящийся в скважине, заменяется водой или нефтью. Благодаря этому давление на забой уменьшается, а также происходит очистка его от глинистой корки и грязи. Промывку осуществляют при собранной арматуре на устье скважины со спущенными в нее до фильтра насосно-компрессорными трубами. Эти трубы после промывки остаются в скважине для эксплуатационных целей.

Часто скважины осваиваются при помощи сжатого воздуха (или газа). При этом в межтрубное пространство (между эксплуатационной колонной и насосно-компрессорными трубами) компрессором нагнетается сжатый воздух (или газ), вытесняющий жидкость в насосно-компрессорные трубы. В этом случае трубы спускают не до фильтра, а только до глубины, с которой давлением, создаваемым компрессором, можно продавить жидкость. Жидкость в трубах газируется, плотность ее уменьшается, уровень смеси газа и жидкости повышается до выкида и наступает выброс. При дальнейшем нагнетании газа или воздуха в межтрубное пространство плотность жидкости в трубах еще больше уменьшается, что влечет за собой снижение давления на забой и поступление нефти из пласта в скважину.

Главный недостаток этого способа освоения скважины - большое и быстрое снижение уровня жидкости в скважине, вызывающее усиленный приток жидкости из пласта, что ведет к образованию мощных песчаных пробок, прихвату насосно-компрессорных труб и т. д.

При освоении скважин поршневанием в спущенные до фильтра насосно-компрессорные трубы спускают на стальном канате поршень или, как его иначе называют, сваб, имеющий клапан, открывающийся вверх. Поршень свободно погружается в жидкость, при подъеме же его вверх клапан закрывается и весь столб жидкости, находящейся над поршнем, выносится на поверхность.

При непрерывном поршневании уровень жидкости, заполняющей скважину, будет постепенно понижаться. В конце концов пластовое давление превысит давление столба жидкости в скважине и пласт начнет работать. Вызов притока (независимо от способа) на фонтанных скважинах должен производиться при собранной фонтанной арматуре.

Освоение скважин, вскрывших пласт с низким давлением, начинают с промывки забоя водным раствором специальных химических реагентов или нефтью. Не рекомендуется промывать забой чистой технической водой, так как в этом случае вода чрезвычайно вредно действует на коллектор и затрудняет получение притока. Затем приступают к возбуждению пласта тартанием при помощи желонки. Это длинное узкое ведро с клапаном в днище, которое спускают в скважину на стальном канате. Многократным спуском желонки скважину очищают от грязи, и столб жидкости в ней постепенно замещается нефтью, поступающей из пласта. После выполнения предприятием, ведущим бурение, плана работ по испытанию эксплуатационной скважины на приток, независимо от полученных результатов, скважина передается промыслу для эксплуатации или для проведения дополнительных работ по ее освоению. Передача оформляется соответствующим актом.

Несколько иначе обстоит дело при бурении разведочных скважин. В этом случае предприятие, ведущее бурение, производит испытание всех пластов (горизонтов), вскрытых скважиной и представляющих интерес с точки зрения нефтегазоносности. Испытание осуществляется снизу вверх. В случае ограниченности притока окончательная оценка промышленной нефтегазоносности производится по результатам испытания после применения известных методов обработки призабойной зоны или сочетания их. При этом рекомендуются следующие методы воздействия на призабойную зону пласта:

а) гидроструйная перфорация;

б) метод переменных давлений для устойчивых коллекторов всех типов;

в) кислотная обработка для коллекторов, представленных карбонатными породами, а также песчаниками с большим содержанием карбонатного цемента;

г) термокислотная обработка для коллекторов, представленных доломитами, доломитизированными известняками или песчаниками с карбонатным цементом, когда обычная кислотная обработка недостаточно эффективна;

д) гидравлический разрыв для устойчивых коллекторов всех типов или гидрокислотный разрыв для коллекторов, представленных карбонатными и карбонизированными породами.

После испытания каждого объекта производится исследование скважины для определения параметров пласта и его гидродинамической характеристики. По окончании исследований ставят цементный мост и переходят к следующему объекту. Наиболее совершенный метод изоляционных работ в скважине - использование различных пакерующих устройств, когда разобщающий мост устанавливают за один спуск в скважину и не требуется дополнительной заливки цементным, раствором. Широко используется взрывной пакер устройство, действующее за счет энергии взрыва порохового заряда. Взрывной пакер создает в стволе герметичную пробку, выдерживающую перепад давлений до 30 МПа. Наиболее распространенный взрывной пакер - полый цилиндр из алюминиевых сплавов, который при срабатывании порохового заряда деформируется и запрессовывается в обсадную колонну. В случае отсутствия пакерующих устройств цементные мосты в обсадных колоннах устанавливают путем закачки цементного раствора через насосно-компрессорные трубы.

Если из разведочной скважины после проведенных работ получен промышленный приток нефти или газа, скважину передают для дальнейшей эксплуатации. В том же случае, если после всех проведенных работ все испытываемые объекты окажутся "сухими", т. е. из них не будут получены промышленные притоки нефти или газа, скважина ликвидируется по геологическим причинам. Факт ликвидации разведочной скважины после спуска в нее эксплуатационной колонны свидетельствует о некачественном испытании скважины в процессе бурения с помощью испытателей пластов.

При передаче скважины из бурения в испытание должен составляться акт, подписываемый руководством буровой организации, буровым мастером и представителями организации по испытанию скважины.

Не подлежат передаче в испытание скважины: с негерметичной колонной; с цементным стаканом в колонне больше, чем предусмотрено проектом; с негерметичной обвязкой устья; с отсутствием цемента за колонной против испытываемых пластов; в аварийном состоянии.

Работы по испытанию первого объекта в законченных бурением разведочных скважинах должны производиться с помощью буровой установки силами буровой бригады; испытание всех остальных объектов - специализированными подразделениями. При длительном простое или консервации газовых скважин, находящихся в испытании, во избежание возникновения давления на устье над зоной перфорации необходимо установить цементный мост.

. Осложнения и аварии при бурении скважин

Произведенные за последнее время исследования, а также накопленный опыт бурения позволяют выделить основные виды нарушений целостности стенок скважины. На рис. 100 приведена классификация видов нарушения целостности стенок скважин.

Обвалы, (осыпи) происходят при прохождении уплотненных глин, аргиллитов или глинистых сланцев. В результате увлажнения буровым раствором или ее фильтратом снижается предел прочности уплотненной глины, аргиллита или глинистого сланца, что ведет к их обрушению (осыпям). Обвалам (осыпям) может способствовать набухание. Проникновение свободной воды, которая содержится в больших количествах в растворах, в пласты, сложенные уплотненными глинами, аргиллитами или глинистыми сланцами, приводит к их набуханию, выпучиванию в ствол скважины и в конечном счете к обрушению (осыпанию). Небольшие осыпи могут происходить из-за механического воздействия бурильного инструмента на стенки скважины. Обвалы (осыпи) могут произойти также в результате действия тектонических сил, обусловливающих сжатие пород. Горное давление при этом значительно превышает давление со стороны столба бурового раствора. Характерные признаки обвалов (осыпей) - резкое повышение давления на выкиде буровых насосов, обильный вынос кусков породы, интенсивное кавернооб-разование и недохождение бурильной колонны до забоя без промывки и проработки, затяжки и прихват бурильной колонны; иногда - выделение газа. Интенсивное кавернооб-разование существенно затрудняет вынос выбуренной породы на дневную поверхность, так как уменьшается скорость восходящего потока и его подъемная сила, возрастает аварийность с бурильными трубами, особенно при роторном бурении. Из-за опасности поломки бурильных труб приходится уменьшать нагрузку на долото, а это ведет к снижению механики скорости прохода.

Основными мерами предупреждения и ликвидации обвалов (осыпей) являются:

) бурение в зоне возможных обвалов (осыпей) с промывкой буровым раствором, имеющим минимальный показатель фильтрации и максимально возможно высокую плотность;

) правильная организация работ, обеспечивающая высокие механические скорости проходки;

) выполнение следующих рекомендаций:

а) бурить скважины по возможности меньшего диаметра;

б) бурить от башмака (нижней части) предыдущей колонны до башмака последующей колонны долотами одного размера;

в) поддерживать скорость восходящего потока в затрубном пространстве не менее 1, 5 м/с;

г) подавать бурильную колонну на забой плавно;

д) избегать значительных колебаний плотности бурового раствора;

е) перед подъемом бурильной колонны утяжелять раствор, доводя его плотность до необходимой, если в процессе бурения произошло ее снижение;

ж) не допускать длительного пребывания бурильной колонны без движения.

Набухание происходит при прохождении глин, уплотненных глин, в отдельных случаях аргиллитов (при значительном содержании минералов типа монтмориллонита). В результате действия бурового раствора и его фильтрата глина, уплотненная глина и аргиллиты набухают, сужая ствол скважины. Это приводит к затяжкам, посадкам, недохождениям до забоя и часто к прихватам бурильного инструмента.

Основными мерами предупреждения и ликвидации набухания являются:

) бурение в зоне возможных сужений с промывкой утяжеленными буровыми растворами, в фильтрате которых содержатся химические вещества, способствующие увеличению предельного напряжения сдвига, а также степени и давления набухания;

) правильная организация работ, обеспечивающая высокие механические скорости проходки;

) после приготовления глинистого раствора, отвечающего требованиям, указанным в п. 1, следует заполнить им скважину и выждать некоторое время, необходимое для протекания физико-химических процессов. Это нужно делать потому, что процесс бурения связан с резкими колебаниями давления при спуско-подъемных операциях;

) выполнение рекомендаций б), в), г), д), е) и ж), перечисленных выше, как мер предупреждения и ликвидации обвалов (осыпей).

Ползучесть происходит при прохождении высокопластичных пород (глин, глинистых сланцев, песчанистых глин, аргиллитов, ангидрита или соляных пород), склонных под действием возникающих напряжений деформироваться со временем, т. е. ползти и выпучиваться в ствол скважины. В результате недостаточного противодействия на пласт глина, песчаные глины, ангидриты, глинистые сланцы или соляные породы ползут, заполняя ствол скважины. При этом кровля и подошва пласта (горизонта) глины, глинистых сланцев или соляных пород сложены устойчивыми породами, не склонными к ползучести. Осложнение может происходить и вследствие того, что кровля и подошва пласта (горизонта) глины или аргиллита ползет, выдавливая последние в скважину. При этом кровля и подошва пласта (горизонта) глины, глинистых сланцев или аргиллита сложены породами (например соляными), склонными к ползучести. Явление ползучести особенно проявляется с ростом глубины бурения и увеличения температуры пород. Характерные признаки ползучести - затяжки, посадки бурильной колонны, недохождение бурильной колонны до забоя; иногда прихват и смятие бурильной или обсадной колонны.

Основными мерами предупреждения и ликвидации ползучести являются:

) разбуривание отложений, представленных породами, склонными к ползучести, с промывкой утяжеленными глинистыми растворами;

) правильная организация работ, обеспечивающая высокие механические скорости проходки;

) использование при бурении вертикальных скважин такой компоновки бурильной, колонны, при которой искривление скважин сводится к нулю;

) подъем при цементировании обсадных колонн цементного раствора в затрубном пространстве на 50-100 м и выше отложений, которые представлены породами, склонными к ползучести (вытеканию);

) при креплении скважины обсадной колонной в интервале пород, склонных к ползучести, установка трубы с повышенной толщиной стенки для предотвращения смятия обсадной колонны.

Желобообразование может происходить при прохождении любых пород, кроме очень крепких. Основные причины желобообразования - большие углы перегиба ствола скважины, большой вес единицы длины бурильной колонны, большая площадь контакта бурильных труб с горной породой. Особенно часто желоба вырабатываются при проводке искривленных и наклонно-направленных скважин. Характерные признаки образования в скважине желоба-проработки, посадки, затяжки, прихваты, а также заклинивание бурильных и обсадных труб. Опыт бурения показал, что желобообразование происходит не сразу, а постепенно с ростом числа рейсов бурильного инструмента. В условиях желобообразования опасность заклинивания возрастает, если диаметр бурильных труб превышает ширину желоба в 1, 14-1, 2 раза.

Основными мерами предупреждения и ликвидации желобообразования являются:

) использование при бурении вертикальных скважин такой компоновки бурильной колонны, при которой искривление скважин сводится к минимуму. Недопущение различных азимутальных изменений;

) стремление к максимальной проходке на долото;

) использование предохранительных резиновых колец;

) при прохождении уплотненных глин, аргиллитов, глинистых сланцев в целях предупреждения желобообразования, которое может предшествовать обвалам (осыпям), соблюдение всех рекомендаций, перечисленных как меры предупреждения обвалов (осыпей);

) при бурении наклонно-направленных скважин для предупреждения заклинивания труб в желобах соблюдение отношения наружного диаметра спускаемых труб к диаметру желоба не менее 1, 35-1, 40;

) колонну бурильных труб следует поднимать на пониженной скорости, чтобы не допустить сильного заклинивания;

) при заклинивании трубы надо сбивать вниз.

Желоба ликвидируют проработками ствола скважины в интервале их расположения. Одной из распространенных мер ликвидации образовавшихся желобов является взрыв шнуровых торпед (ТДШ).

Растворение происходит при прохождении соляных пород. Соляные породы, слагающие стенки скважины, растворяются под действием потока жидкости. Характерный признак растворения соляных пород-интенсивное кавернообразование, а в особо тяжелых случаях-потеря ствола скважины.

Устойчивость (по отношению к растворению) стенок скважины, сложенных однородными породами, независимо от скорости восходящего потока, может быть достигнута лишь при условии полного насыщения бурового раствора солью (соль, содержащаяся в растворе, должна быть такой же, как соль, из которой сложены стенки скважины). При небольшой мощности неоднородных солей основной мерой предупреждения их растворения является максимальное форсирование режима бурения с последующим спуском колонны и ее цементирование. При большой мощности неоднородных солей наиболее надежное средство предотвращения их интенсивного растворения - бурение с применением безводных буровых растворов. Хорошие результаты дает использование солестойких буровых растворов и растворов, приготовленных из палыгорскита.

Использование многократной кавернометрии для оценки устойчивости горных пород. Многократная кавернометрия для оценки устойчивости горных пород широко применяется в практике бурения скважин на нефть и газ. Многократная кавернометрия позволяет судить о состоянии ствола скважины в процессе бурения, определять эффективность применяемых методов для предотвращения осложнений, разрабатывать мероприятия по предотвращению осложнений, связанных с нарушением целостности стенок скважин.

Поглощение бурового раствора - это осложнение в скважине, характеризующееся полной или частичной потерей циркуляции бурового раствора в процессе бурения.

Основные причины поглощения бурового раствора. Поглощение промывочной жидкости объясняется, во-первых, превышением давления столба жидкости в скважине над пластовым давлением (чем больше эта разность, тем интенсивнее поглощение) и, во-вторых, характером объекта поглощения.

Факторы, влияющие на возникновение поглощений бурового раствора, можно разделить на две группы:

. Геологические факторы - тип поглощающего пласта, его мощность и глубина залегания, недостаточность сопротивления пород гидравлическому разрыву, пластовое давление и характеристика пластовой жидкости, а также наличие других сопутствующих осложнений (обвалы, нефтегазоводопроявления, перетоки пластовых вод и др.).

. Технологические факторы - количество и качество подаваемого в скважину бурового раствора, способ бурения, скорость проведения спуско-подъемных операций и др. К этой группе относятся такие факторы, как техническая оснащенность и организация процесса бурения.

Исследования зон поглощений. Данные о строении поглощающего пласта, его мощности и местоположении, интенсивности поглощения (водопроявления), величине и направлении перетоков могут быть получены различными методами исследований: гидродинамическими, геофизическими и с помощью отбора керна или шлама.

Методы предупреждения и ликвидации поглощений. В существующих методах предупреждения и ликвидации осложнений в скважине при различной интенсивности поглощений или полном прекращении циркуляции бурового раствора выделяются следующие основные направления: предупреждение осложнения снижением гидростатического и гидродинамического давлений на стенки скважины; изоляция поглощающего пласта от скважины закупоркой каналов поглощений специальными цементными растворами и пастами; бурение без выхода бурового раствора с последующим спуском обсадной колонны.

Различают три категории интенсивности поглощений: малой интенсивности (до 10-15 м3/ч), средней интенсивности (до 40-60 м3/ч) и высокоинтенсивные (более 60 м3/ч).

Для борьбы с поглощениями бурового раствора широко применяют пакеры различных конструкций, которые герметизируют и разобщают затрубное пространство с целью:

а) предотвращения разбавления тампонирующих смесей;

б) возможности применения БСС с небольшими сроками схватывания;

в) задавливания тампонирующих смесей в поглощающие каналы;

г) определения места расположения пласта, поглощающего жидкость, методом последовательных опрессовок ствола скважины;

д) определения возможности замены воды глинистым раствором (особенно при бурении на площадях с повышенным пластовым давлением) при создании различных перепадов давления на пласты, поглощающие жидкость.

Кроме того, если вскрыто несколько поглощающих пластов на различных глубинах, применение пакера позволяет последовательно заливать цементный раствор снизу вверх без затраты времени на ОЗЦ (ожидание затвердения цемента), при этом предотвращается влияние поглощающих пластов друг на друга. Пакеры, применяющиеся при изоляции зон поглощений бурового раствора, подразделяются на две группы: многократного и разового действия (разбуриваемые). Пакеры разового действия оставляются в скважине на время твердения цемента или его смеси и затем разбуриваются вместе с цементным мостом.

По принципу действия пакеры многократного действия делятся на гидравлико-механические, гидравлические и механические.

Весьма распространенными являются пакеры гидравлико-механического действия. В манжетном разбуриваемом пакере ТатНИИ разобщение осуществляется при помощи четырех манжет, укрепленных на одном полом дюралюминиевом стволе. Манжеты расположены так, что две средние из них образуют дополнительную камеру самоуплотнения. Жидкость под давлением, попадая в камеру самоуплотнения, прижимает ее манжеты к стенкам скважины, что обеспечивает надежное разобщение ствола скважины при возникновении перепада давления в любом направлении.

В случае высокоинтенсивного поглощения возможно бурение без выхода бурового раствора на поверхность. Оно целесообразно в твердых породах (известняках, доломитах, песчаниках и т. п.). После вскрытия всей зоны поглощения бурение немедленно прекращают. Далее проводят заливки ГЦП или БСС до полной ликвидации поглощения. При бурении без выхода бурового раствора разбуриваемый шлам поднимается с забоя и уходит в каналы поглощения вместе с буровым раствором. Во избежание прихвата бурильной колонны необходимо тщательно следить за стрелкой индикатора веса. Экономически целесообразно бурить без выхода циркуляции только при использовании воды в качестве бурового раствора. Для ликвидации интенсивных поглощений (более 200 м3/ч) прежде всего снижают их интенсивность путем намыва в зону поглощения песка или шлама выбуренной породы или забрасывания и продавки инертных материалов (глины, торфа, соломы и т. п.). После намыва песка или забрасывания зоны поглощения инертными материалами ее заливают цементным раствором. После затвердения цемента скважину прорабатывают и затем начинают дальнейшее углубление.

Для ликвидации высокоинтенсивных поглощений бурового раствора, приуроченных к большим трещинам и кавернам, во ВНИИБТ были разработаны перекрывающие устройства. Перекрывающее устройство представляет собой эластичную сетчатую оболочку (капроновая, нейлоновая, капроновый эластик, металлическая специального плетения и др.). Установленная в интервале поглощения сетчатая оболочка под действием закачиваемой тампонажной смеси с наполнителем расширяется и заполняет трещины и каверны. Сетчатая оболочка расширяется вследствие закупорки ее ячеек наполнителем, находящимся в тампонажной смеси. При твердении тампонажная смесь связывает оболочку с породой.

Известны и другие способы ликвидации высокоинтенсивных поглощений: спуск "летучки" (кассеты), замораживание зоны поглощения, изоляция зон поглощения с помощью взрыва и др. Но все они весьма трудоемки, не всегда дают положительный результат и поэтому применяются в буровой практике редко.

Крайняя мера борьбы с поглощением бурового раствора - спуск промежуточной обсадной колонны.

Газо-, нефте- и водопро явления. В разбуриваемых пластах могут находиться газ, вода и нефть. Газ через трещины и поры проникает в скважину. Если пластовое давление выше давления бурового раствора, заполняющего скважину, газ с огромной силой выбрасывает жидкость из скважины-возникает газовый, а иногда и нефтяной фонтан. Это явление нарушает нормальный процесс бурения, влечет за собой порчу оборудования, а иногда и пожар. Вода или нефть под очень большим пластовым давлением также может прорваться в скважину. В результате происходит выброс бурового раствора, а потом воды или нефти. Получается водяной или нефтяной фонтан.

Выбросы бывают не только в результате проникновения газа в скважину под превышающим пластовым давлением. Газ может постепенно проникать в раствор в виде мельчайших пузырьков через плохо заглинизированные стенки скважины или вместе с выбуренной породой. Особенно сильно раствор насыщается газом во время длительных перерывов в бурении. Пузырьки газа на забое скважины находятся под сильным давлением, отчего газ сильно сжат, а размеры пузырьков чрезвычайно малы. При циркуляции глинистый раствор поднимается вверх и выносит с собой пузырьки газа, при этом, чем выше они поднимаются, тем меньше становится давление на них и тем больше они увеличиваются в размерах. Наконец, пузырьки становятся настолько крупными, что занимают большую часть объема раствора, и плотность его значительно уменьшается. Вес столба уже не может противостоять давлению газа, и происходит выброс. Постепенно просачиваясь в скважину, вода и нефть также уменьшают плотность раствора, в результате чего возможны выбросы. Выбросы могут возникать и при понижении уровня бурового раствора в скважине, которое происходит или вследствие потери циркуляции, или же во время подъема труб в случае недолива скважины.

Признаки начала газопроявлений следующие: а) выход на поверхность при восстановлении циркуляции пачек глинистого раствора, насыщенного газом; б) кипение в скважине при ограниченном поступлении из пластов газа, что может наблюдаться в случае незначительных величин вязкости и статического напряжения сдвига глинистого раствора; в) слабый перелив раствора из скважины; г) повышение уровня жидкости в приемных емкостях буровых насосов (без добавления жидкости в циркуляционную систему); д) появление газа по показаниям газокаротажной станции.

В случаях, указанных выше, следует усилить промывку скважины, приостановить бурение или спуско-подъем до особого распоряжения и одновременно принять меры к дегазации раствора.

Чтобы предотвратить выброс, гидростатическое давление столба жидкости в скважине должно быть на 5-15 % выше пластового, в зависимости от глубины скважины. Избыточное давление на пласт достигается применением утяжеленных глинистых растворов. При утяжелении глинистого раствора обращают внимание на вязкость, сохраняя ее по возможности минимальной.

Однако нельзя ограничиваться только утяжелением глинистого раствора как мерой борьбы с выбросами газа, нефти или интенсивным переливом воды, так как выброс может быть неожиданным или начаться довольно бурно в чрезвычайно короткий отрезок времени, а утяжеление растворов - операция длительная.

Для предотвращения уже начавшегося выброса необходимо немедленно закрыть скважину, что легко осуществить, если ее устье герметизировано специальным противовыбросовым оборудованием.

Противовыбросовое оборудование для герметизации устья скважин устанавливается на колонном фланце кондуктора и состоит из превенторов, переходных фланцевых катушек, задвижек, колонных головок и другой специальной арматуры.

Превенторы изготовляются нескольких типов. При использовании плашечных превенторов скважины перекрываются сдвигающимися к центру плашками, выполненными из специальной резины с металлической арматурой. Как правило, на устье скважины устанавливается два превентора, оснащенных плашками, соответствующими наружному диаметру труб, которые находятся в скважине. Глухие плашки устанавливаются по мере необходимости перекрытия всего сечения скважины. Закрывать плашки можно как ручным способом при помощи штурвала, так и с помощью гидравлического или электрического приводов. Конструкция плашек выполнена таким образом, что за счет давления, возникающего внутри скважины, образуется дополнительное усилие, способствующее еще большему уплотнению.

В универсальных превенторах ствол скважины перекрывается специальным резиновым уплотнением, смонтированным в корпусе. В открытом состоянии уплотнение обеспечивает прохождение долота. Универсальные превенторы можно закрывать на трубах различного размера и вида (бурильных, УБТ и т. д.).

Вращающиеся автоматические превенторы предназначаются для автоматической герметизации устья скважины в процессе бурения. Они позволяют вращать и расхаживать бурильную колонну при закрытом превенторе; выпускаются на рабочее давление 7, 5 и 20 МПа.

Для предупреждения газо-, нефте- и водопроявлений в процессе бурения, кроме утяжеления глинистого раствора и герметизации устья скважины, необходимо выполнить следующие основные мероприятия.

. Не вскрывать пласты, которые могут вызвать проявления, без предварительного спуска колонны обсадных труб, предусмотренных ГТН.

. Долив скважины при подъеме бурильной колонны должен носить не периодический, а непрерывный характер, для чего на нагнетательной линии следует иметь отвод для присоединения гибкого шланга или специальную емкость для произвольного стока бурового раствора или использовать дозаторы.

. Цемент за кондуктором поднимать до устья скважины, чтобы обеспечить надежную герметизацию устья при борьбе с газо-, нефте- и водопроявлениями.

. При снижении плотности глинистого раствора более чем на 20 кг/м3 (0, 02 г/см3) необходимо принимать немедленные меры по его восстановлению.

. Необходимо иметь запас раствора. На скважинах, в которых предполагается вскрывать зоны с возможными газонефте-проявлениями, а также продуктивные горизонты на вновь разведуемых площадях и объектах; на газовых и газоконденсатных месторождениях; на месторождениях с аномально высокими давлениями буровая установка до начала бурения должна быть обеспечена емкостями с запасным буровым раствором.

. Так как колебания давления при спуско-подъемных операциях зависят от зазора между бурильной колонной и стенками.скважины, следует избегать применения компоновок нижней части бурильной колонны с малыми зазорами.

. Колонну бурильных труб необходимо поднимать только после тщательной промывки скважины при параметрах глинистого раствора, соответствующих установленным ГТН. Промывать скважину следует при условии создания максимально возможной подачи насосов и при вращении бурильной колонны.

. Если при подъеме бурильных труб уровень глинистого раствора в затрубном пространстве не снижается, то это указывает на возникновение эффекта поршневания. В подобном случае бурильную колонну необходимо спустить ниже интервала проявления, промыть скважину и только после этого приступить к подъему инструмента.

. Перед вскрытием объектов с высоким пластовым давлением, где возможно проявление, под ведущей бурильной трубой устанавливают обратный клапан.

При угрозе выбросов буровая бригада должна немедленно принять надлежащие меры:

. В процессе бурения или промывки скважины:

а) не прекращая промывки, бурильщик поднимает колонну до выхода ведущей трубы и муфты верхней бурильной трубы из ротора и составляет ее на весу, надежно закрепив тормоз лебедки, после чего руководит работой остальных членов буровой вахты по закрытию верхнего плашечного превентора и наблюдает (после его закрытия) за давлением на его выкиде: при росте давления до максимальных пределов бурильщик переключает выходящий из скважины поток жидкости на отвод со штуцером большого размера;

б) после подъема колонны труб помощники бурильщика при помощи превентора перекрывают устье скважины; после герметизации устья жидкость из скважины через выкидные линии противовыбросового оборудования направляется в циркуляционную систему (амбар);

в) после закрытия превентора непрерывно измеряется плотность бурового раствора и ведется наблюдение за измерением уровня жидкости в приемных емкостях буровых насосов, при необходимости производится утяжеление раствора;

г) при промывке с противодавлением в случае повышения уровня жидкости в приемной емкости буровых насосов следует уменьшить диаметр штуцера для увеличения противодавления на вскрытые пласты, с тем чтобы прекратить повышение уровня жидкости в приемной емкости. При этом давление в кольцевом пространстве не должно превышать допустимых величин;

д) при возрастании давления на устье до сверхдопустимых величин закачка жидкости прекращается, выкидные задвижки закрываются и ведется наблюдение за давлением в скважине, при дальнейшем повышении давления необходимо снижать его, приоткрывая задвижку и одновременно подкачивая раствор в бурильные трубы;

е) если вынужденное снижение давления вызывает необходимость полностью открыть задвижки для фонтанирования скважины через отводы превентора, поток газа следует направить по выкидным линиям в сторону от буровой и принять меры к предупреждению загорания газа или нефти;

ж) дальнейшие работы по ликвидации фонтанирования проводят по специальному плану.

. При полностью извлеченной из скважины колонне буровая вахта закрывает превентор с глухими плашками и устанавливает герметизирующее устройство для спуска труб под давлением. Одновременно ведется контроль за давлением на устье скважины. Газонефтепроявления ликвидируются по специальному плану.

. При подъеме или спуске бурильной колонны, а если проявления незначительны;

а) бурильщик устанавливает бурильную колонну на ротор и вместе с помощником присоединяет ведущую трубу с обратным или шаровым клапаном, после чего колонну приподнимают и закрепляют тормоз лебедки;

б) верховой рабочий немедленно спускается с вышки;

в) закончив присоединение ведущей трубы, буровая бригада герметизирует устье скважины так, как это было сказано в пункте 1.

Б. Если газопроявления возникают внезапно, сопровождаясь выбросами, не позволяющими присоединить ведущую трубу:

а) верховой рабочий немедленно спускается с вышки;

б) бурильщик спускает бурильную колонну так, чтобы элеватор доходил до ротора, и оставляет ее на весу;

в) буровая бригада герметизирует устье скважины превентором в соответствии с п. 1, после чего в верхнюю замковую муфту ввинчивают шаровой или обратный клапан (в открытом положении), применяя приспособление для его открытия, а затем закрывают клапан и задвижки на выходе превентора;

г) буровая бригада присоединяет ведущую трубу к бурильной колонне;

д) запускают буровые насосы и направляют поток жидкости в колонну, одновременно бурильщик с помощниками приоткрывает задвижку на линии превентора в циркуляционную систему (через штуцер); эта операция проводится с постепенным увеличением подачи насосов до максимума с таким расчетом, чтобы количество жидкости, выпускаемой из скважины, соответствовало подаче ее насосами, контроль осуществляется по изменению уровня жидкости в приемных емкостях насосов, при этом давление под превентором не должно превышать допустимых величин (давления опрессовки колонны).

Между членами каждой вахты должны быть распределены обязанности на случай возникновения газонефтеводопроявления, которые должны быть указаны в аварийном расписании, вывешенном в культбудке. Буровой мастер должен устраивать учебные тревоги с каждой вахтой по плану ликвидации возможных аварий с регистрацией их проведения в специальном журнале. Контрольные учебные тревоги с буровыми вахтами должны проводить ИТР буровой организации и представители военизированной службы по предупреждению возникновения и ликвидации открытых нефтяных и газовых фонтанов и анализировать результаты этих тренировок.

Иногда приходится прибегать к бурению под давлением. При этом помимо герметизации устья скважины требуется дополнительное оборудование - механизм для проталкивания бурильных или обсадных труб, замкнутая схема циркуляции (состоящая из герметизированных желобов, приемной и запасной емкостей), а также обязательно наличие штуцерной батареи. Противодавление на пласт при бурении под давлением создается столбом глинистого раствора и сопротивлением в штуцере, устанавливаемом на конце выкидной линии, идущей от противовыбросового оборудования.

Иногда, в силу целого ряда обстоятельств, несмотря на принимаемые меры, при открытом фонтанировании нефти или газа возникают пожары. При начавшемся пожаре устье скважины необходимо освободить от оборудования и принять меры к тушению пожара с помощью водяных струй, создаваемых брандспойтами или струями отработанных газов реактивных двигателей, взрывами и т. п. Если заглушить фонтан перечисленными способами нельзя, то бурят наклонные скважины в зону притока газа, нефти, воды в ствол фонтанирующей скважины и под давлением через наклонные стволы закачивают утяжеленный глинистый раствор. В особенно тяжелых случаях при ликвидации открытых фонтанов нефти или газа прибегают к ядерным взрывам.

Грифоны и межколонные проявления. Под грифонами, происходящими в процессе бурения, освоения и эксплуатации скважин, следует понимать фонтанные газо-, нефте- и водопроявления вскрытых пластов, выходящие на земную поверхность по трещинам, высокопроницаемым пластам или по контакту цемент-порода, за пределами устья скважины. Фонтанные нефте-, газо- и водопроявления в кольцевом пространстве, между эксплуатационной и технической колонной, а также между технической колонной и кондуктором обычно называют межколонными проявлениями. Грифоны и межколонные проявления обычно взаимно связаны и обусловливают друг Друга.

По причинам возникновения все случаи грифонообразования, а также межколонных проявлений связаны с некачественной изоляцией высоконапорных пластов, необоснованно выбранной глубиной спуска кондуктора и низким качеством его цементирования. Эти причины, а также негерметичность обсадных колонн могут привести к прорыву пластовой жидкости и газа на поверхность и образованию грифонов у устья скважины.

Для предотвращения грифонов и межколонных проявлений необходимо: спустить кондуктор с учетом перекрытия пластов, по которым может произойти прорыв пластовой жидкости (газа) на поверхность, и обеспечить качественное его цементирование с подъемом цементного раствора до устья; обеспечить качественное крепление скважины промежуточными и эксплуатационной колоннами с обязательным подъемом цемента до башмака предыдущих колонн.

Возникновение грифонов и межколонных проявлений вызывает тяжелые последствия. На ликвидацию грифонов затрачивается много времени и средств. В ряде случаев работы по ликвидации грифонов заканчиваются гибелью скважин.

Вместе с тем, при соблюдении всех необходимых требований в процессе бурения и опробования скважин можно избежать этого осложнения.

Для борьбы с действующими грифонами, образовавшимися при проводке скважин, следует осуществлять форсированный отбор жидкости и газа на соседних скважинах, приостановив при этом законтурное заводнение (если оно проводится). В случае когда в результате действия грифона доступ к устью бурящейся скважины закрыт, для ликвидации фонтана (грифонов) бурят наклонно-направленные скважины.

. Противовыбросовое оборудование, назначение, конструкция и схемы обвязок

Противовыбросовое оборудование предназначено для герметизации устья скважин в следующих случаях:

1.      при бурении;

2.      при спуске и подъеме НКТ;

.        в процессе строительства и ремонта скважин.

Основная цель установки противовыбросового оборудования:

·              обеспечение безопасных условий труда персонала;

·              предупреждение выбросов и открытых фонтанов;

·              охрана окружающей среды.

В состав противовыбросового оборудования входят:

·              Стволовая часть - совокупность составных частей противовыбросового оборудования, оси стволовых проходов которых совпадают с осью ствола скважины, последовательно установленных на верхнем фланце колонной обвязки. Включает превенторы, устьевые крестовины, надпревенторную и другие дополнительно устанавливаемые катушки, разъемный желоб и герметизатор.

·              Превенторный блок - Часть стволовой части противовыбросового оборудования, включающая превенторы и устьевые крестовины противовыбросового оборудования.

·              Манифольд - cистема трубопроводов, соединенных по определенной схеме и снабженных необходимой арматурой. Dключает линии дросселирования и глушения, конструктивно выполненных в виде блоков, соединенных с превенторным блоком противовыбросового оборудования магистральными линиями. Превентор относится к противовыбросовому оборудованию. Устанавливается на устье скважины при бурении. Превентор предотвращает возникновение фонтана нефти, пожара, и, как следствие, предотвращает загрязнение окружающей среды. В настоящее время его установка является обязательным требованием при буровых работах. В соответствии с указанным ГОСТом предусмотрено 10 типовых схем обвязки ОП:

·              схемы 1 и 2 - с механическим (ручным) приводом превенторов;

·              схемы 3-10 - с гидравлическим приводом превенторов.

На рисунке приведены схемы 1, 3, 7 и 10. Схема включает блок превенторов (плашечные с ручным или гидравлическим управлением, кольцевой, соединительные катушки и крестовина), станцию гидроуправления превенторами и гидроуправляемыми задвижками и манифольд противовыбросового оборудования, состоящий из блока глушения, блока дросселирования с запорной и регулирующей арматурой, напорных трубопроводов и блока сепаратора бурового раствора.


Типовые схемы обвязки противовыбросового оборудования по ГОСТ 13862-90: а - схема 1; б - схема 3; в - схема 7; г - схема 10; 1 - превентор плашечный; 2 - задвижка с ручным управлением; 3 - крестовина; 4 - манометр с запорным и разрядным устройствами; 5 - регулируемый дроссель с ручным управлением; 6 - гаситель потока; 7 - блок дросселирования; 8 - линия дросселирования; 9 - устье скважины; 10 - линия глушения; 11 - прямой сброс; 12 - вспомогательный пульт; 13 - гидроуправление превенторами с основным пультом; 14 - кольцевой превентор; 15 - отвод к сепаратору; 16 - задвижка с гидроуправлением; 17 - обратный клапан; 18 - отвод к буровым насосам; 19 - блок глушения; 20 - регулируемый дроссель с гидроуправлением; 21 - пульт управления дросселем; 22 - к системе опробывания скважины

Типовые схемы обвязки ОП по ГОСТ 13862-90 устанавливают минимальное количество необходимых составных частей блока превенторов и манифольда, которые могут дополняться в зависимости от конкретных условий строящейся или ремонтируемой скважины. В ОП для бурения допускается уменьшение условного диаметра прохода линий, соединяемых с дросселем, и линий глушения до 50 мм, увеличение условного диаметра прохода линий дросселирования до 100 мм. При этом условный диаметр прохода боковых отводов устьевой крестовины должен быть не более условного диаметра прохода подсоединяемой линии манифольда. Допускается также применять станции гидропривода с номинальным давлением из следующего ряда: 16; 25; 32; 40 МПа.

. Ловительные работы и инструмент

Ловильные работы - это нежелательные, но часто встречающиеся операции как при бурении, так и при капитальном ремонте скважин.

Ловильный инструмент применяется при бурении, эксплуатации и капитальном ремонте скважин.

Особое место в капитальном ремонте скважин занимают работы по ликвидации аварий с подземным оборудованием (КР-3). Для выполнения этих задач используется следующий ловильный инструмент:

колокола ловильные

Относятся к ловильному инструменту врезного типа. Предназначены для извлечения оставшейся в скважине колонны бурильных или насосно-компрессорных труб путем захвата их за наружную поверхность. По конструкции они подразделяются на сквозные и несквозные. Сквозные колокола обеспечивают возможность пропуска сквозь корпус колокола сломанного или безмуфтового конца трубы с последующим захватом путем нарезания резьбы на наружной поверхности замков и муфты;

метчики

Относятся к ловильным инструментам нарезного типа. Предназначены для извлечения из скважины оборвавшихся или отвернувшихся бурильных, насосно-компрессорных и обсадных труб. Метчики, вводимые в трубу и врезающиеся в ее тело, называются универсальными. К ним относятся метчики типов МЭУ, МБУ. Метчики, ввинчиваемые в имеющуюся

резьбу муфты трубы или трубного замка, называются специальными. К ним относятся метчики МЭС, МСЗ;

труболовки

Труболовками называют ловильный инструмент для извлечения из скважины труб и других объектов цилиндрической формы, имеющий захватные устройства клинового типа. Они подразделяются по виду захвата на внутренние и наружные, по возможности освобождения от захваченного объекта на освобождающиеся и неосвобождающиеся, по конструкции захватного устройства на цанговые, втулочные, плашечные, комбинированные;

фрезеры

Фрезеры являются инструментами для разрушения труб и различных предметов в скважине, придания им формы, удобной для захвата ловильным инструментом, выпрямления смятых обсадных труб и зарезки второго ствола. По конструкции фрезеры можно подразделить на кольцевые, цилиндрические, ступенчатые, конусные, с направляющим устройством, с захватным устройством, с выдвижными режущими органами и др. По материалу армирования режущих элементов фрезеры бывают армированные твердосплавными пластинами и армированные композиционными сплавами;

механические, гидравлические яссы

Яссы - это инструменты, предназначенные для создания ударов и вибраций, используются в основном для освобождения прихваченных в скважине труб и заклиненного оборудования.

Механические яссы предназначены для ликвидации заклинившего оборудования и инструмента небольшой длины ударами вверх. Гидравлические яссы предназначены для создания ударных нагрузок, направленных вверх и вниз с целью освобождения прихваченных труб или заклиненных инструментов и оборудования.

. Основные виды работ по капитальному ремонту скважин

Капитальный ремонт скважин включает в себя операции, связанные с ремонтом собственно скважины и воздействием на призабойную зону и пласт. Кроме того, обычно к ним относятся сложные вынужденные операции текущего ремонта, например извлечение оборванных штанг и труб. Для начала работ по капитальному ремонту скважины необходимо обследовать ее устье и в случае неисправности - отремонтировать. Помимо обследования скважин и уточнения номенклатуры предстоящих к выполнению операций, капитальный ремонт включает:

. ремонтно-исправительные работы (герметизация устья, исправления и замена поврежденной части колонны, перекрытие дефектов в колонне, установка и разбуривание цементных пробок),

. изоляционные работы,

. крепление пород призабойной зоны,

. очистку фильтра,

. переход на другой продуктивный горизонт,

. зарезка и бурение второго ствола,

. ловильные работы.

К капитальному ремонту также относят и работы, связанные с воздействием на призабойную зону пласта.

. кислотные обработки скважины,

. гидравлический разрыв пласта,

. тепловое воздействие на призабойную зону,

. виброобработка призабойной зоны скважины,

. обработка призабойной зоны ПАВ.

20. Глушение скважин, жидкости глушения

Глушение скважины заключается в создании в стволе скважины определенного противодавления на продуктивный пласт, с целью предотвращения притока флюида к забою скважины. Традиционно глушение скважины производят, заполняя скважину задавочной жидкостью, плотность которой определяется значением пластового давления.

Основные требования к жидкостям глушения состоят в том, чтобы они имели плотность, достаточную для обеспечения необходимого противодавления на пласт, обеспечивали максимальное сохранение коллекторских свойств пласта, регулируемость технологических свойств и успешное проведение различных операций, а также были технологичными в приготовлении и использовании. Для выбора жидкости глушения учитывают ряд факторов: снижение набухания глин, температура замерзания, коррозийная стойкость, совместимость с пластовыми жидкостями, плотность, возможная опасность для персонала и окружающей среды.

В качестве жидкостей глушения используются: раствор поваренной соли, пены, метанол, дизтопливо, сырая нефть, минерализованная различными добавками вода.

. Исследование и обследование скважин

Перед проведением ремонта скважины необходимо провести исследования для определения создания плана работ по ликвидации аварии. После тщательного обследования состояния эксплуатационной колонны и положения упавших в скважину труб или других предметов, приступают к спуску ловильного инструмента

Геофизические исследования

Геофизические исследования выполняются геофизическими или другими специализированными организациями по договорам, заключаемым с нефтегазодобывающими предприятиями, и проводятся в присутствии заказчика.

Комплекс геофизических исследований в зависимости от категории скважин, условий проведения измерений и решаемых задач, а также оформление заявок на проведение работ, актов о готовности скважин, заключения по комплексу исследований.

Порядок приема и выполнения заявок определяется в соответствии с.

Комплекс исследований должен включать все основные методы. Целесообразность применения дополнительных методов должна быть обоснована промыслово-геофизическим предприятием. Комплексы методов исследований уточняют в зависимости от конкретных геолого-технических условий по взаимно согласованному плану между геофизической и промыслово-геологической службами.

Гидродинамические исследования

Работы проводятся в соответствии с планом, утвержденным главным инженером и главным геологом предприятия и согласованным с противофонтанной службой.

Работы по КРС должны начинаться с гидродинамических исследований в скважинах.

Выявление обводнившихся интервалов пласта или пропластков производят гидродинамическими методами в комплексе с геофизическими исследованиями при селективном испытании этих интервалов на приток с использованием двух пакеров (сверху и снизу)

Обследование технического состояния эксплуатационной колонны

Спускают до забоя скважины свинцовую полномерную конусную печать диаметром на 6-7 мм меньше внутреннего диаметра колонны.

При остановке печати до забоя фиксируют в вахтовом журнале глубину остановки и поднимают ее.

Размер последующих спускаемых печатей (по сравнению с предыдущими) должен быть уменьшен на 6-12 мм для получения четкого отпечатка конфигурации нарушения.

Для определения наличия на забое скважины постороннего предмета на НКТ спускают плоскую свинцовую печать.

Для определения формы и размеров поврежденного участка обсадной колонны используют боковые гидравлические печати.

Работы по ремонту и исследованию скважин, в продукции которых содержится сероводород, проводятся по плану работ, утвержденному главным инженером, главным геологом предприятия и согласованному с противофонтанной службой после завершения исследований непосредственно на скважине выдаются заключения об:

· интервалах негерметичности обсадной колонны,

· глубине установки оборудования, НКТ,

· положения забоя,

· динамического и статического уровней,

· интервале прихвата труб

· привязке замеряемых параметров к разрезу,

· герметичности забоя

· глубине находящихся в скважине прдметов

. Ремонтно-исправительные работы

К ремонтно-исправительным работам относятся исправления смятий, сломов, трещин и замена повреждённой части эксплуатационных колонн, герметизация устья скважины, разбуривание цементных пробок. Смятые участки колонны выправляют справочными долотами и фрезерами, повреждённые места укрепляют цементным кольцом, установкой пластырей, спуском промежуточной колонны. Замена повреждённой части производится в случае, если место дефекта расположено выше башмака технической колонны и уровня цементного камня в заколонном пространстве. В том случае, когда устранение дефекта затруднено, осуществляют зарезку и бурение второго ствола скважины. Для этого в колонне, выше места дефекта, вскрывают "окно", из которого проводят наклонно направленное бурение второго ствола скважины, а также спуск и крепление второй колонны.

. Изоляционные работы

Изоляционные работы по П.4.2.1 проводят методом тампонирования под давлением без установки па-кера через общий фильтр или с установкой съемного или разбуриваемого пакера через фильтр отключаемого пласта:

) производят глушение скважины:

) спускают НКТ с "пером" или паксром (съемным или разбуриваемым):

) при отключении верхних или промежуточных пластов выполняют операции по предохранению нижних продуктивных пластов (заполняют ствол скважины в интервале от искусственного забоя до отметки на 1, 5-2, 0 м ниже подошвы отключаемого пласта песком, глиной или вязкоупругим составом, устанавливают цементный мост или взрыв-пакср):

) производят гидроиспытание НКТ пли НКТ с пакером;

) определяют приемистость вскрытого интервала пласта. Если она окажется менее 0, 6 мУ(ч • МПа), проводят работы по увеличению приемистости изолируемого интервала (например, обработку соляной кислотой);

) выбирают тип и объем тампонажного раствора,

) приготавливают и закачивают под давлением в заданный интервал тампонажный раствор и оставляют скважину на ОЗЦ. Срок ОЗЦ устанавливают в зависимости от типа тампонажного раствора. По истечении срока ОЗЦ производят проверку моста и гидроиспытанис эксплуатационной колонны;

при необходимости производят дополнительную перфорацию эксплуатационной колонны в интервале продуктивного пласта;

) при отключении верхних и промежуточных пластов, эксплуатация которых осуществляется при депрессии на пласт более 2 МПа, после проведения тампонирования под давлением интервал перфорации перекрывают дополнительно металлическим пластырем.

При проведении работ по ограничению водопритоков и использовании тампонажных составов, селективно Бездействующих на участки пласта с различными насыщающими жидкостями и селективно отверждаюшихся в них, закачку составов осуществляют через существующий фильтр без предварительного отключения нефтенасыщенных интервалов или же при необходимости используют пакеры. Работы проводятся в соответствии с РД, регламентирующим применение конкретных изоляционных составов.

Ремонтные работы методом тампонирования в скважинах, содержащих в продукции сероводород, выполняются с применением сероводородостойких тампонажных материалов на минеральной или полимерной основе.

. Возвратные работы

Возврат скважин на выше- или нижележащий горизонт - мероприятие, применяемое на многоплановых нефтегазовых месторождениях с целью более полного использования эксплуатационных скважин. Принятая разработка нефтяных месторождений по системе "снизу-вверх" предусматривает возможность использования скважин для поочередной эксплуатации ряда горизонтов и пластов по мере их истощения или по другим техническим причинам. Скважины, после того, как они выполнили свое назначение на каком-либо объекте эксплуатации, переводят па эксплуатацию другого объекта. Решение о переводе скважин (возврата) на другие горизонты принимают, если нет возможности использования их в качестве пьезометрических, наблюдательных, нагнетательных па данном горизонте. Одной из основных причин перевода нефтяной скважины на другие горизонты является истощение в ней эксплуатируемого горизонта, когда ее суточный дебит оказывается меньше предельно рентабельного. Предел рентабельности эксплуатации определяется таким уровнем себестоимости добычи нефти, который позволяет возместить все издержки производства при действующих оптовых ценах на нефть и продукты ее переработки. При определении этого предела учитывают издержки по добыче, транспортировке и переработке нефти. Переводу на другие горизонты подлежат также скважины, у которых величина газового фактора выше нормы, установленной для данной залежи при оптимальном режиме эксплуатации скважины. При обводнении продуктивного горизонта контурной водой допускается возврат скважины на другие горизонты, если она (нефтяная или газовая) обводнилась до такой степени, что дальнейшая эксплуатация нерентабельна. Предел рентабельности для каждой скважины определяют с учетом геологических и технико-экономических условий разработки месторождения. Возврат скважины на другие горизонты ли техническим причинам допускается: 1) если нет возможности проведения изоляционных работ в скважинах для прекращения притока посторонних вод; 2) когда эксплуатация скважины невозможна из-за дефектов обсадных колонн (при отсутствии технических условий для их исправления); 3) если произошли сложные аварии в скважинах, ликвидация которых невозможна. Таким образом, возврат скважин па выше- или нижележащие горизонты производят в случаях: 1) истощения эксплуатационного объекта; 2) обводнения эксплуатационного объекта контурной водой; 3) необходимости прекращения эксплуатации объекта, как де газирующего нефтеносный горизонт; 4) невозможности ликвидации аварий, исправления дефектов эксплуатационной колонны и т. д. (технические причины). Возврат скважины на вышележащий горизонт производят после разобщения оставляемого горизонта от нового нутом создания в стволе монолитного цементного моста (стакана) над оставляемым горизонтом. При этом главное внимание должно быть уделено изоляции от проникновения воды, в особенности, если эта вода высоконапористая, а возвратный горизонт по разрезу расположен на небольшом расстоянии от оставляемого объекта. В таких случаях применяют метод заливки цементного раствора под давлением через существующие отверстия фильтра. Если возвратный горизонт находится на значительном расстоянии от оставляемого объекта, то используют метод заливки без давления. На старых площадях, где длительно разрабатываемые пласты сильно дренированы, при цементаже происходит интенсивное поглощение цементного раствора пластом. Приходится производить повторные цементирования, на что тратится много времени и средств. Поэтому, когда нет опасности проникновения посторонних вод в возвратный объект, рекомендуется затрамбовать забой скважины песком или глиной, а затем уже создавать цементный стакан необходимой высоты. При опасности прорыва нижних вод к возвратному объекту в скважинах, сильно поглощающих жидкость, в пласт вводят песок до частичного восстановления циркуляции, после чего производят цементирование под давлением. Для снижения интенсивности поглощения жидкости пластом практикуется применение одной-двух заливок гельцементом, добавкой в цементный раствор алюминиевого порошка или предварительная глинизация пласта. При двухколонной конструкции скважины иногда за колонной в интервале, куда производится возврат, или выше него, отсутствует цементное кольцо, что создает угрозу проникновения посторонних вод к возвратному объекту через межтрубное пространство. В подобных случаях вырезают и извлекают внутреннюю колонну на 10 - 20 м ниже возвратного объекта, а затем производят цементирование под давлением с таким расчетом, чтобы новый искусственный забой был на 8-10 м выше обреза извлеченной колонны. Если по ряду технических причин колонну извлечь невозможно, се простреливают ниже возвратного объекта на 10 -15 м и затем производят цементирование под давлением с расчетом продавки цементного раствора в межтрубное пространство и оставления в колонне цементного стакана соответствующей высоты. До начала цементирования скважина должна быть обследована печатью. Рекомендуется при возвратных работах испытывать колонну на герметичность до места предполагаемого нового цементного забоя. Эта необходимость вызвана тем, что в старых скважинах могут быть дефекты в виде сломов колонны и трещин, через которые происходит поглощение. При наличии таких дефектов в процессе цементирования под давлением через отверстия фильтра возможны осложнения. Во всех случаях при возвратных работах после установления надежного цементного стакана на заданной глубине скважину испытывают на герметичность онрессовкой или снижением уровня. Возврат на нижележащий горизонт производится сравнительно редко, обычно в тех случаях, когда соседние скважины, которые должны были извлечь нефть из намечаемого к возврату объекта, выбыли из эксплуатации по тем или иным геолого-техническим причинам. Сущность работ по возврату на нижележащий горизонт заключается в следующем. Ствол скважины и забой обследуют печатью забоя. После этого цементируют оставляемый горизонт под давлением через отверстия фильтра. Цементную пробку по окончании срока твердения раствора в колотите разбуривают до необходимой глубины, после чего испытывают колонну на герметичность.

. Борьба с пробкообразованием

В процессе эксплуатации пластов, сложенных рыхлыми, слабосцементированными породами (особенно песчаники), в скважину из пласта вместе с жидкостью выносится песок. Если скорость недостаточна для подъема песчинок, то они осаждаются на забое, скапливаются, образуя пробку, частично или полностью перекрывающую отверстия фильтра, прекращая доступ жидкости из пласта. Иногда высота песчаной пробки достигает нескольких метров.

Ликвидацию песчаных пробок проводят промывкой скважин водой, различными жидкостями, газожидкостными смесями, пенами, продувкой воздухом, очисткой скважины с помощью струйного насоса, желонки или гидробура.

Прямая промывка скважины от песчаной пробки - процесс удаления из нее песка путем нагнетания промывочной жидкости внутрь спущенных труб и выноса размытой породы жидкостью через затрубное пространство.

Различают прямую промывку обычную и скоростную. Скоростная прямая промывка отличается от обычной тем, что в период наращивания промывочных труб процесс промывки не прекращается; это исключает оседания размытого песка и прихват промывочных труб.

Обратная промывка скважин от песчаных пробок - процесс удаления песка из скважин с нагнетанием промывочной жидкости в затрубное (кольцевое) пространство и направлением восходящего потока жидкости через промывочные трубы. Благодаря меньшему сечению в них создаются большие скорости восходящего потока, что обеспечивает лучший вынос песка.

Промывка скважин струйными аппаратами применяется в тех случаях, когда эксплуатационная колонна имеет дефекты либо разрабатываемый пласт сильно дренирован. Установка для промывки скважин состоит из струйного насоса, концентрично расположенных труб и поверхностного оборудования.

Очистка скважин от песчаных пробок аэрированной жидкостью, пенами и сжатым воздухом применяется в скважинах с небольшим столбом жидкости и при наличии на забоях рыхлых (неуплотненных) пробок. Для герметизации устья используют сальник.

26. Зарезка и бурение второго ствола

Зарезка и бурение второго ствола - метод восстановления скважин, которые известными способами отремонтировать технически невозможно или экономически нецелесообразно. Этот метод позволяет пополнять действующий фонд скважин, улучшать состояние разработки залежей за счет выполнения сетки разработки путем перевода скважин из верхних горизонтов, повышать текущую нефтеотдачу, сокращать сроки извлечения остаточных запасов нефти и восстанавливать скважины на тех участках, где по условиям и состоянию разработки пласта бурение новых скважин сложно или нерентабельно.

Основные этапы работ по зарезке и бурению второго ствола:

) обследование и выбор места в колонне для вскрытия "окна";

) установка цементного моста на соответствующей глубине и установка отклонителя;

) вскрытие "окна" в колонне;

) бурение второго ствола до требуемой глубины;

) осуществление комплекса электрометрических работ;

) спуск обсадной колонны с последующим цементированием и испытанием на герметичность;

) перфорация колонны против продуктивного горизонта и вызов притока нефти.

Отклонитель представляет собой плоский или желобообразный клин, который спускают на бурильных трубах. Спуск ведут с небольшой скоростью с контролем по гидравлическому индикатору веса (ГИВ). При достижении кровли цементного моста срабатывает телескопическое устройство, шпильки срезаются и отклонитель, перемещаясь вниз, зацепляется плашками в колонне. После этого резкой посадкой инструмента срезают болты, которые соединяют отклонитель с клином и поднимают бурильные трубы с клином, оставив таким образом отклонитель на заданной глубине.

Для вскрытия "окна" применяют фрезеры-райберы. Зарезку "окна" начинают райбером с наименьшим диаметром при нагрузке 20-30 кН и частоте вращения ротора 40-60 об/мин. С углублением частоту вращения ротора увеличивают до 50-70 об/мин при той же нагрузке. После вскрытия "окна" длиной 1, 4-1, 6 м от конца отклонителя частоту вращения ротора увеличивают до 90 об/мин, а нагрузку снижают до 10-15 кН. Вторым райбером расширяют интервал, пройденный первым райбером по всей длине отлонителя. Третьим райбером обрабатывают стенки "окна" и обеспечивают выход в породу при осевой нагрузке до 10 кН и частоте вращения ротора 80-90 об/мин. Значительные осевые нагрузки на райбер приводят к преждевременному выходу его за колонну и укорачиванию длины "окна", что может привести к поломке бурильных труб.

После прорезки окна в эксплуатационной колонне приступают к бурению второго ствола.

Перед началом бурения в глинистый раствор нормального качества необходимо добавить нефть (8-10 % от объема раствора в скважине и циркуляционной системе) для предотвращения прихвата инструмента в скважине.

Бурить второй ствол начинают при помощи пикообразного долота, диаметр которого равен диаметру райбера, расширявшего окно. Пикообразным долотом пробуривают примерно 45 м и на этой глубине работают до тех пор, пока все металлические частицы на забое не будут забиты в стенки ствола. Затем бурят при помощи шарошечных долот.

27. Методы повышения нефтеотдачи пластов

В настоящее время выделяют несколько групп методов повышения нефтеотдачи пласта:

гидродинамические методы;

физико-химические методы;

тепловые, микробиологические и другие методы.

Гидродинамическиеметоды К ним относятся:

нестационарное заводнение;

форсированный отбор жидкости;

вовлечение в разработку недренируемых запасов;

барьерное и очаговое заводнение.

К первой группе относятся методы, которые осуществляются через изменение режимов

эксплуатации скважин и, как следствие, через изменение режимов работы пласта. Эти методы объединяются общим понятием "нестационарное заводнение" и включают в себя:

циклическое заводнение;

изменение направления фильтрационных потоков.

Они сравнительно просты в реализации, не требуют больших экономических затрат и получили широкое развитие.

Методы основаны на периодическом изменении режима работы залежи путем прекращения и возобновления закачки воды и отбора, за счет чего более полно используются капиллярные и гидродинамические силы. Это способствует внедрению воды в зоны пласта, ранее не охваченные воздействием.

Эксплуатация газонефтяных месторождений осложняется возможными прорывами газа к забоям добывающих скважин, что значительно усложняет, вследствие высокого газового фактора, их эксплуатацию. Суть барьерного заводнения состоит в том, что нагнетательные скважины располагают в зоне газонефтяного контакта. Закачку воды и отборы газа и нефти регулируют таким образом, чтобы исключить взаимные перетоки нефти в газовую часть залежи, а газа - в нефтяную часть.

Очаговое заводнение - это дополнение к уже осуществленной системе законтурного заводнения или внутриконтурного. При этом группы нагнетательных скважин размещаются на участках пласта, отстающих по интенсивности использования запасов нефти.

Физико-химические методы

Использование физико-химических методов повышения нефтеотдачи пластов - одно из наиболее перспективных направлений в процессах разработки нефтяных месторождений. Научными организациями отрасли разработано, испытано и сдано более 60 технологий с использованием физико-химического воздействия.

Одним из методов воздействия на продуктивные пласты, особенно низкопроницаемые, является гидравлический разрыв пласта (ГРП). Он оказывает воздействие не только на при-забойную зону пласта, но и способствует повышению нефтеотдачи. При ГРП создается система глубокопроникающих трещин, в результате чего значительно увеличивается дренируемая скважиной зона и повышается производительность скважин. Продолжительность эффекта от ГРП достигает 3-5 лет, коэффициент успешности - 85%.

Ведущее место в физико-химических методах воздействия на пласт занимает полимерное заводнение. Получение композиций полимеров в сочетании с различными реагентами существенно расширяет диапазон применения полимеров. Основное назначение полимеров в процессах увеличения нефтеотдачи пластов - выравнивание неоднородности продуктивных пластов и повышение охвата при заводнении.

Существуют следующие технологии с использованием полимеров:

полимерное заводнение (закачка оторочки} на неоднородных по проницаемости объек тах с высоковязкой нефтью, находящихся в начальной стадии разработки;

комплексное воздействие на продуктивные пласты полимерными гелеобразующими системами в сочетании с интенсифицирующими реагентами (ПАВы, щелочи, кислота) применяется на поздней стадии разработки;

воздействие на пласт вязкоупругими составами (ВУС) для выравнивания профиля при емистости и интенсификации добычи нефти;

циклическое полимерное заводнение с использованием раствора сшитого полиакри- ламида, содержащего неионогенное ПАВ;

циклическое воздействие на продуктивный пласт лолимерсодержащими поверхност но-активными системами;

щелочно-полимерное заводнение;

полимерное воздействие при закачке в пласт углекислоты.

Особенно эффективен метод ВУС для пластов, характеризующихся резкой неоднородностью и слабой гидродинамической связью. Данный метод выравнивает проницаемость и тем самым позволяет повысить охват пласта полимерным воздействием и снизить темпы обводнения добываемой нефти.

К модифицированным технологиям относится воздействие на обводненные продуктивные пласты полимер-дисперсной системой (ПДС) на основе ПАА суспензий глин. Их применение заключается во внутрипластовом регулируемом образовании дисперсных вязкоупругих систем между химическими реагентами и водонефтенасыщенной породой. Это позволяет увеличить нефтеотдачу на поздней стадии разработки, когда традиционные методы малоэффективны.

Одним из эффективных методов физико-химического воздействия на пласт является щелочное заводнение. Метод основан на снижении поверхностного натяжения на границе нефти с раствором щелочи. При этом образуются стойкие водонефтяные эмульсии с высокой вязкостью, способные выравнивать подвижность вытесняемого и вытесняющего агентов. Щелочное заводнение эффективно для нефти высокой вязкости и неоднородных пластов.

Для доотмыва остаточной нефти применяется метод закачки большеобъемных оторочек поверхностно-активными веществами (ПАВ).

На завершающих стадиях разработки большое значение имеет ограничение притоков пластовой и закачиваемой воды. Для этой цели применяются различные методы ремонтно-изоляционных работ, в результате которых не только уменьшается обводненность продукции, но и повышается охват пласта процессом выработки запасов. Наиболее часто применяется изоляция цементом обводненных пропластков или ликвидация заколонной циркуляции. В том случае, когда происходит прорыв воды по отдельным высокопроницаемым пропласткам, практически не отделенными глинистыми перемычками от необводненных интервалов, используется метод селективной (избирательной) изоляции. Вариантами этого метода являются: применение кремнийорганических соединений (продукт 119-204, Акор), закачка силиката натрия (жидкое стекло), волокнисто- и полимернаполненных дисперсных систем (ВДС и ПНДС).

На современном этапе задачу повышения нефтеотдачи пластов экологически чистыми технологиями может решить метод микробиологического воздействия на пласт. В отличие от химических реагентов, теряющих активность в результате разбавления их пластовыми водами, микроорганизмы способны к саморазвитию, т.е. размножению и усилению биохимической активности в зависимости от физико-химических условий среды.

Одними из приоритетных методов повышения нефтеотдачи пластов, наиболее подготовленными технологически и технически, являются тепловые, когда в продуктивный пласт вводится тепло. При этом вязкость нефти снижается, а нефтеотдача увеличивается. Среди тепловых методов воздействия на нефтяные пласты выделяют два направления:

закачка в пласты пара и нагретой воды;

внутрипластовое горение.

Тепловые методы целесообразно применять в пластах с вязкостью нефти более 50 мПа-с. На месторождениях ОАО "СНГ" вязкость нефти не превышает 5 мПа-с, поэтому тепловые методы не применяются.

. Подземный ремонт с применением гибких труб

Области применения колонн гибких труб достаточно разнообразны. Это и проведение подземного ремонта, и эксплуатация скважин, и решение вопросов, связанных с транспортированием углеводородной продукции. В настоящее время КГТ применяют при эксплуатации скважин в качестве стандартных лифтовых колонн при подъеме жидкости и сифонных при добыче газа. При подземном ремонте скважин номенклатура операций, выполняемых с их помощью, достаточно разнообразна - велика при освоении скважин, текущем и капитальном подземном ремонте, воздействии на пласт и призабойную зону, забуривании вторых стволов и т.д. С помощью КГТ можно проводить работы по растеплению замерзших промысловых трубопроводов, транспортирующих жидкость или воду. Кроме того, КГТ используют в качестве обсадных колонн (преимущественно в горизонтальных скважинах), хвостовиков, рабочих колонн для намыва гравийных фильтров, внутри промысловых трубопроводов.

Использование оригинальных либо изготавливаемых малыми сериями шасси приводит к существенному удорожанию агрегата и оправдано лишь в тех случаях, когда стандартное серийное шасси не обеспечивает заданных требований по грузоподъемности или габаритам. В то же время применение серийных образцов, хотя и приводит к удешевлению транспортной базы в 5 - 7 раз по сравнению с оригинальными конструкциями, создает ряд трудностей при проектировании агрегата. В первую очередь к ним относится обеспечение необходимых транспортных габаритов установки и распределения нагрузки на колеса. Кроме того, приходится планировать мощности, потребляемые отдельными узлами, и режимы их работы в соответствии с мощностью, которую можно отбирать от ходового двигателя.

Как правило, для описываемых агрегатов используют автомобильные шасси "КамАЗ" и "УралАЗ", обладающие грузоподъемностью не менее 12 т и имеющие достаточно длинную раму. Достаточно широко для монтажа нефтепромыслового оборудования применяются автошасси "КрАЗ". Однако к их отдельным недостаткам в настоящее время прибавилась и сложность поставки машин и запасных частей к ним, поскольку завод-изготовитель находится в ближнем зарубежье.

Наиболее характерными конструкциями с использованием различных решений являются следующие агрегаты: КПРС, изготавливаемый заводом "Рудгормаш" (рис. 2.4), и "Скорпион", выпускаемый заводом "Брянский Арсенал"

Агрегат КПРС, изготавливаемый заводом "Рудгормаш", в транспортном положении: 1 - кабина оператора; 2 - укладчик гибкой трубы; 3 - барабан с КГТ; 4 - механизм установки транспортера в рабочее положение; 5 - направляющая дуга; 6 - транспортер; 7 - автомобильное шасси; 8 - рама агрегата

При ремонте проводят:

)        ОЧИСТКУ ЗАБОЯ СКВАЖИНЫ ОТ ПЕСКА

Очистку эксплуатационной колонны (или забоя) от песка осуществляют с помощью внутрискважинного оборудования, схема которого для выполнения данной операции показана на рисунке. У устья скважины располагают агрегат с колонной гибких труб, насосный агрегат, буферную емкость для приема поднимающейся из скважины промывочной жидкости.

Основным требованием к последней является способность ее выносить твердые частицы из скважины, что необходимо и при бурении, и при подземном ремонте скважин. Во время работы с колоннами гибких труб выполнение этого требования приобретает особую важность, поскольку их использование накладывает определенные ограничения на эффективность данного процесса.

Схема внутрискважинного оборудования при промывке забоя скважины: 1 - жидкость с частицами песка, поднимающаяся на поверхность; 2 - полимерный гель, закачиваемый в скважину; 3 - песок

2)      Удаление песчаных и парафиновых пробок

) Удаление гидратных пробок и растепление скважин

4) УСТАНОВКА ЦЕМЕНТНОЙ ПРОБКИ

) Удаление жидкости из газовых скВАЖИН

6) Селективное воздействие на пласт

7) Разбуривание в полости скважины 8) Ловильные работы

Список использованной литературы

1. Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Бурение нефтяных и газовых скважин: Учебное пособие. - М.: ООО "Недра-Бизнесцентр", 2002.

2. Вадецкий Ю.В. Бурение нефтяных и газовых скважин: Учебник. - М.: Академия, 2003.

3. Кудинов В.И. Основы нефтегазопромыслового дела: Учебник. - Москва - Ижевск: Институт компьютерных исследований; Удмуртский госуниверситет, 2004

4. Булатов А.И., Проселков Ю.М., Шаманов С.А. Техника и технология бурения нефтяных и газовых скважин: Учебник для вузов. - М.: ООО "Недра-Бизнесцентр", 2003.

5. Нефтегазовое строительство: Учебное пособие./ Под общ. ред. проф. И.И. Мазура и проф. В.Д. Шапиро. - М.: ОМЕГА-Л, 2005.

6. Амиров "Капитальный ремонт нефтяных и газовых скважин "

7. Сайт http://ru.wikipedia.org

8. Сайт http://fomen.ru


Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!