Антибиотики

  • Вид работы:
    Реферат
  • Предмет:
    Медицина, физкультура, здравоохранение
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    20,64 Кб
  • Опубликовано:
    2013-04-24
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Антибиотики

Министерство сельского хозяйства Российской Федерации

Департамент научно-технологической политики и образования

ФГБОУ ВПО «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

Кафедра вирусологии, микробиологии и патологической анатомии



Реферат

На тему: «Антибиотики»

Выполнил: студентка 3 курса, 1А гр.

Козлова Лилия Евгеньевна









П. Персиановский - 2013г.

Антибиотики <#"justify">Антибиотик (греч. Anti- против + bios жизнь) - вещества микробного, животного или растительного происхождения, избирательно подавляющие жизнеспособность организмов.

Термин «антибиотики» предложен Ваксманом (S.A.Waksman) в 1942 году.

Первые попытки использовать антибиотики в лечебных целях были сделаны Н.Н.Благовещенским в 1890 году. Он показал, что синегнойная палочка подавляет развитие сибирской язвы у животных; при этом лечебное действие синегнойной палочки обуславливается определенным продуктом жизнедеятельности этого микроба, то есть веществом, которое теперь называют антибиотиком.

Первые попытки выделения антибиотика были сделаны Эммерихом (R.Emmerich, 1889), изолировавшим из культур синегнойной палочки вещество, которое он назвал пиоцианазой, обладавшим бактерицидными свойствами в отношении возбудителей сибирской язвы, брюшного тифа, дифтерии, чумы и стафилококков. Пиоцианаза использовалась некоторое время для местного лечения ран. Полученный препарат не был стандартным, и результаты его применения были очень непостоянными. Почти одновременно Н.Ф.Гамалея получил из культуры синегнойной палочки другой малотоксичный препарат, названный пиокластином, активный в отношении ряда микробов. В 1896 году Гозио (B.Gosio) выделил из плесени (Penicillinum) первый кристаллический антибиотик - микофеновцю кислоту - и показал, что это соединение задерживало развитие бактерий сибирской язвы. В 1924 году Грация и Дат (A.Gratia, S.Dath) описали новое антибиотическое вещество, образуемое Actinomyces albus, которое они назвали актиномицетином. В 1831 году был выделен антибиотик цитринин из культуры Penicillium citrinum.

Вехой в исследовании антибиотиков являются работы Дюбо (R.J.Dubos, 1939), получившего из почвенной бактерии Bacillus brevis кристаллическое вещество тиротрицин, состоящее из двух антибиотиков-полипептидов, грамицидина и тироцидина.

Грамицидин был более активен в отношении грамположительных, а тироцидин - в отношении грамотрицательных бактерий. Тиротрицин обладает сильным бактерицидным действием в пробирке в отношении многих патогенных микробов, оказывая лечебное действие в опытах на мышах, зараженных пневмококком. Это первый антибиотик, действительно внедренный в медицинскую практику; он применяется довольно широко и в настоящее время. Позднее, в 1942 году, Г.Ф.Гаузе и М.Г.Бражникова выделили из новой разновидности Bacillus brevis антибиотик, названный грамицидином С, обладающим некоторыми преимуществами по сравнению с тиротрицином Дюбо.

Переворот в учении об антибиотиках произошел в результате открытия Флемингом (A.Fleming) пенициллина. Еще в 1929 году Флеминг наблюдал, что вокруг колоний Penicillium notatum колонии стафилококка в чашке Петри лизируются, а фильтраты бульонных культур этого гриба обладают антибактериальным действием в отношении грамположительных и некоторых грамотрицательных микробов (гонококки, менингококки). Выделить чистый пенициллин из культуры Penicillium notatum Флемингу не удалось ввиду малой стабильности этого антибиотика. В 1940 году Флори и Чейн (H.W. Florey, E.B. Chain) разработали метод извлечения пенициллина из культуральной жидкости Penicillium notatum, и вскоре была выявлена высокая терапевтическая активность этого препарата.

Ценный свойства пенициллина послужили толчком к развитию промышленности антибиотиков. В СССР первый пенициллин был получен З.В. Ермольевой в 1942 году. После открытия пенициллина начались активный поиски новых антибиотиков, которые продолжаются и до сих пор.

Большинство ученых подразумевает под антибиотиками не только антибактериальные вещества, образуемые микроорганизмами, но и соединения, обладающие антибактериальной активностью, выделенные из животных тканей и высших растений. Описано более 2000 антибиотиков и получено множество производных природных соединений, однако антибиотиков, пригодных для медицинского применения, существуешь лишь несколько десятков. Остальные антибиотики оказались слишком токсичными, малоактивными или лишенными химиотерапевтических свойств.

Классификация антибиотиков <#"justify">1.По спектру действия, то есть по характеру биологического объекта, в отношении которого данный антибиотик активен;

2.По химической структуре антибиотика;

Классификация антибиотиков по спектру действия.

Антибиотики <#"justify">Для медицинской практики такое подразделение является удобным, так как указывает на возможную сферу применения данного препарата. В действительности такое подразделение имеет много существенных недостатков потому, что даже близкие меж собой антибиотики могут сильно отличаться друг от друга по антибактериальному спектру действия. Примерами могут служить антибиотики из группы пенициллинов: одни подавляют развитие лишь грамположительных микробов, другие - как грамположительных, так и грамотрицательных микробов.

Антибактериальные антибиотики угнетают развитие бактерий. Некоторые из них, например бензилпенициллин, макролиды, ристомицин (ристоцетин, спонтин), новобиоцин и другие, активны в основном лишь в отношении грамположительных микробов, другие, как, например, полимиксин, подавляют развитие главным образом грамотрицательных бактерий, третьи, например тетрациклины, левомицетин (хлорамфеникол, хлоромицетин), аминоглюкозиды (стрептомицин, мономицин, канамицин, неомицин и гентамицин), так называемые антибиотики широкого спектра действия, задерживают рост как многих грамположительных, так и грамотрицательных бактерий.

Противогрибковые антибиотики оказывают специфическое угнетающее действие на рост грибков. Широкое применение в медицинской практике нашли антибиотики нистатин и леворин, используемые для лечение кандидоза и других заболеваний, вызываемые дрожжеподобными грибами. Антибиотик амфотерицин Б применяется для лечения генерализованных и глубоких микозов. Эти три препарата относятся к группе полиеновых антибиотиков. Из противогрибковых антибиотиков неполиеновой структуры весьма эффективным лечебным средством оказался гризеофульвин.

Противоопухолевые антибиотики. Установлено, что некоторые антибиотики угнетают развитие не только бактерий и грибков, но способны также задерживать размножение клеток злокачественных опухолей. Некоторые из этих препаратов нашли применение в медицинской практике.

Противоопухолевые антибиотики включают в себя шесть групп химических соединений, представители которых используются в клинике.

·Первую группу составляют актиномицины, открытые еще в 1940 году. Из-за высокой токсичности они в течение длительного времени не привлекали к себе внимания. Лишь в 1952 году в опытах на животных с перевиваемыми опухолями, было установлено, что актиномицины подавляют развитие многих перевиваемых опухолей. В клинике актиномицины применяются в основном для лечения аденокарциномы почки или опухоли Вильмса у детей.

·Вторая группа противоопухолевых антибиотиков - это антибиотики антрациклины. Важнейший представитель этой группы - рубомицин - является одним из основных лекарственных средств для лечения хорионэпителиомы матки и острых лейкозов. Рубомицин при этих тяжелых заболеваниях нередко приводит к клиническому выздоровлению.

·Третья группа противоопухолевых антибиотиков состоит из производных ауреоловой кислоты. Относящийся к этой группе антибиотик оливомицин применяется в основном для лечения опухолей яичка, включая семиномы, тератобластомы и эмбриональные раки в стадии генерализации с метастазами в легкие, органы брюшной полости и лимфатические узлы. Другим важным показанием для применения оливомицина являются тонзиллярные, быстро метастазирующие опухоли носоглотки.

·Четвертая группа противоопухолевых антибиотиков представлена в Советском Союзе антибиотиком брунеомицином. Основным показанием к применению брунеомицина в клинике является лимфогранулематоз.

Японские исследователи внедрили в медицинскую практику два противоопухолевых антибиотика. Первый из них полипептидный антибиотик блеомицин применяется для леченияэпителиальных опухолей. Второй антибиотик митомицин С является представителем новой специальной группы антибиотиков порфиринов.

До сих пор среди продуктов жизнедеятельности микроорганизмов не было обнаружено соединений, препятствующих репликации вирусов в животной клетке. Американские атнибиотики стоталон и эленин, задерживающие развитие некоторых вирусных инфекций у животных, оказались интерфероногенами (см. Интерферон).

Классификация антибиотиков по химической структуре является более рациональной. Она позволяет сопоставить структуру антибиотика с механизмом антимикробного их действия, побочными эффектами т процессами выведения из организма. Антибиотики относятся к различным группам химических соединений. К группе антибиотиков ациклического строения относятся антибиотики полиены, в том числе нистатин, амфотерицин Б, трихомицин, кандицидин и другие. К другой группе относятся антибиотики тетрациклиновой структуры - см. Тетрациклины. К антибиотикам ароматического строения принадлежат гигромицин, применяемый в ветеринарии в качестве противогельминтного средства. К группе кислородсодержащих гетероциклических антибиотиков принадлежит противогрибковый антибиотик гризеофульвин, широко используемый в дерматологии, а также антибактериальный антибиотик новобиоцин, активный в отношении грамположительных кокков. В отдельную группу выделены антибиотики макролиды, имеющие в своей молекуле макроциклическое лактонное кольцо, связанное с одним или несколькими углеводными остатками (см. Макролиды). К этой группе относится ряд важных в медицинском отношении антибиотиков: эритромицин, олеандомицин и другие. Близок к макролидам и антибактериальный антибиотик линкомицин. К антибиотикам антрациклинам относится противоопухолевый антибиотик рубомицин. В группу аминогликозидных антибиотиков, построенных из остатков аминоциклитов и углеводов, входят стрептомицин и его производные (см. Стрептомицины), неомицины, канамицин, мономицин и гентамицин. В отдельную группу отнесены пенициллины, наиболее широко применяемые в медицинской практике. К антибиотикам полипептидам или белкам относятся грамицидины, тиротрицины, бацитрацин, полимиксины, лизоцимы, виомицин (флоримицин), колицины и другие. К полипетидам, содержащим железо. Относится антибиотик альбомицин. Довольно однородную группу составляют антибиотики актиномицины, обладающие противоопухолевой активностью. Наконец, к последней группе отнесены многочисленные антибиотики стрептомицины, которые ввиду высокой токсичности не нашли применения в медицинской практике. Делаются попытки использовать некоторые антибиотики из этой группы в сельском хозяйстве.

Классификация антибиотиков по молекулярному механизму действия.

Наиболее важные для медицинской практики антибиотики можно подразделить на несколько групп:

1.Поражающие синтез бактериальной клеточной оболочки (пенициллины, ристомицин, ванкомицин, новобиоцин, D-циклосерин и другие);

2.Нарушающие синтез белков в бактериальной клетке (антибиотики тетрациклиновой структуры, макролиды, левомицетин и другие);

.Подавляющие синтез белков в бактериальной клетке и одновременно нарушающие считывание генетического кода в процессе трансляции (аминогликозиды);

.Угнетающие синтез нуклеиновых кислот в клетках (рифамицины, противоопухолевые антибиотики);

.Нарушающие целостность цитоплазматической мембраны в клетках грибков (противогрибковые антибиотики полиены).

Вначале антибиотики <#"center">бактерия антибиотик левомицетин тетрациклин

Механизм действия антибиотиков <#"justify">Продуцент выращивают в 10-50-тонных ферментерах в условиях, оптимальных для образования антибиотиков. Для лучшей аэрации среда постоянно перемешивается, и через нее пропускают стерильный воздух, так как плесени и лучистые грибки, основные продуценты антибиотических веществ, являются аэробами. Успешное производство антибиотиков основано на глубоком изучении физиологии продуцентов: определение оптимальных источников азота и углерода для образования антибиотиков является необходимым.

Одним из важнейших условий успешного производства антибиотиков является продуктивность штамма продуцента. Штаммы продуцентов, выделенные из окружающей среды, обычно из почвы, обычно, как правило, малопродуктивны. Путем их селекции удается получить штаммы продуцентов в десятки и сотни раз более продуктивные, чем исходный «дикий» штамм. Продолжительность выращивания продуцента колеблется от 48 часов до нескольких дней. Большинство антибиотиков, представляющих интерес для медицины, накапливается в культуральной жидкости. По окончании выращивания продуцента культуральную жидкость отделяют от мицелия фильтрованием, и антибиотик, содержащийся в жидкости, выделяют различными методами в зависимости от его природы.

Существуют два основных метода выделения антибиотиков. Первый метод заключается в экстракции антибиотика из культуральной жидкости органическими растворителями, второй - основан на способности антибиотиков адсорбироваться на ионообменных смолах. Для очистки препарата используют, в зависимости от природы антибиотика, различные физико-химические методы.

Очищенные препараты антибиотиков для парентерального применения обычно выпускают в виде стерильно расфасованного во флаконы сухого порошка, хорошо растворимого в воде, изотоническом растворе хлорида натрия или растворах новокаина. За последние годы стойкие антибиотики <#"justify">Технологический процесс получения антибиотиков состоит из нескольких стадий, осуществляемых в определенной последовательности и на соответствующем оборудовании:

а) выращивание посевного материала и биосинтез антибиотиков (ферментация);

б) предварительная обработка культуралъной жидкости;

в) фильтрация;

г) выделение и химическая очистка (метод экстракции, ионообменный метод, метод осаждения);

д) изготовление готовых лекарственных форм;

е) фасовка и упаковка.

В основе начальных технологических процессов лежит выращивание в колбах и ферментерах посевного материала (продуцента). Выращенный производственный штамм продуцента с целью дальнейшего его обогащения переносят в специальные аппараты - инокуляторы. Процесс выращивания грибов, бактерий в инокуляторах осуществляется в строго определенных условиях, которые обеспечиваются системами обогрева и охлаждения, подачи воздуха, приспособлениями для перемешивания производственной массы. Затем продуцент поступает на ферментацию. Под ферментацией понимают культивирование (выращивание) продуцента и образование максимального количества антибиотика.

Антибиотики синтезируются в клетках микроорганизмов или выделяются в процессе биосинтеза в культуральную жидкость. Грибов. Основная технологическая схема вьщеления и очистки ан Основным оборудованием для процесса ферментации являются ферментеры, представляющие собой огромные емкости до 100 000 л. Они снабжены системами обогрева и охлаждения, подачи стерильной воздушной смеси, мешалками, а также приспособлениями для загрузки и выгрузки питательной среды, культуральной жидкости. Данная стадия технологического процесса характеризуется герметичностью применяемого оборудования, в связи с чем практически исключается возможность загрязнения воздуха веществами, применяемыми для биосинтеза антибиотиков, а также самой биомассой, которая образуется по окончании процесса ферментации. В связи с тем что антибиотики образуют со многими веществами, присутствующими в культуральной жидкости, нерастворимые соединения, для увеличения концентрации, а также более полного осаждения примесей культуральную жидкость подкисляют до рН 1,5-2,0 щавелевой или смесью щавелевой и хлористоводородной кислот. Обработанную культуральную жидкость фильтруют от мицелия и осажденных балластных веществ до получения прозрачного фильтрата, называемого нативным раствором.

Фильтрацию обработанной культуральной жидкости осуществляют на рамных фильтр-прессах открытого типа, в результате чего может происходить разбрызгивание нативного раствора. Ручная разгрузка фильтр-прессов приводит к контакту рабочих с культуральной жидкостью, содержащей антибиотик.

Применение антибиотиков <#"justify">·чувствительности возбудителя заболевания к используемому препарату,

·формы патологического процесса,

·фазы заболевания и

·состояния защитных механизмов организма.

При назначении антимикробных антибиотиков необходимо, учитывая чувствительность возбудителя к антибиотику, назначать по возможности наиболее активные из них. При хронических заболеваниях целесообразно определять чувствительность возбудителя к антибиотику in vitro через каждые 10-15 дней лечения. В случае тяжелых заболеваний, когда лечение необходимо начать возможно быстрее, обычно назначают антибиотики <#"justify">·устойчивые к одному антибиотику

·устойчивые одновременно к нескольким антибиотикам (множественная резистентность)

Генетический контроль уровня чувствительности к антибиотикам определяется генами, локализованных в бактериальных хромосомах или в трансмиссибельных плазмидах. Последние обеспечивают множественную резистентность клетки к нескольким антибиотикам (см. R-фактор).

Бактерия, резистентная к данному антибиотику, представляет собой мутант по соответствующему хромосомному гену, который контролирует структуру компонентов клетки, являющихся объектом действия антибиотиков.

Мутации по хромосомным генам, приводящие к антибиотикорезистентности, возникают с низкой частотой, колеблясь от 10 в -6 степени до 10 в -12 степени. Поэтому возникновение одновременно хромосомных мутаций к двум или более антибиотикам практически невозможно. Бактерии, несущие хромосомные мутации к двум или более антибиотикам, возникают в результате независимой мутации в штамме, первично резистентном к одному из антибиотиков.

Молекулярный механизм, лежащий в основе резистентности мутантной бактерии, для разных антибиотиков различен и определяется повреждением структур клетки, взаимодействующих с данным антибиотиком. Исследования Горини, Катайи, Трауба и Номуры (L.Gorini, E.Kataja, 1964; P.Traub, M.Nomura, 1968) показали, что стрептомицин инактивирует 30 S-субъединицу рибосомы за счет взаимодействия с 10-ым белком, входящим в ее структуру, в результате чего нарушается трансляция генетической информации и искажается синтез полипептидной цепи. Мутация по гену str A приводит к изменению структуры 10-го белка, в результате чего последний теряет способность взаимодействовать с антибиотиком. Из работ Хайля и Циллига (A.Heil, W.Zillig,1970) известен другой пример антибиотикорезистентности, который также связан с мутационным изменением клеточного субстрата, являющегося объектом действия антибиотика. Бактерии, резистентные к рифамицину - антибиотику, инактивирующему РНК-полимеразу, содержат фермент, нечувствительный к этому антибиотику за счет измененной субъединицы фермента, в результате чего не образуется комплекс молекулы РНК-полимеразы с рифамицином.

Другим механизмом, обеспечивающим резистентность бактерий к антибиотику, является нарушение процесса проникновения его в клетку и накопления в ней. Грамнегативные бактерии резистентны к действию актиномицина из-за его неспособности проникать через клеточную стенку. Обработка этих бактерий этилендиаминтетрауксусной кислотой (ЭДТА) повышает их чувствительность к антибиотику. Получены бактериальные мутанты, устойчивые к ЭДТА и одновременно ставшие резистентными к актиномицину. Исследования Рива и Бишопа (C.Reewe, E.Bishop, 1965) показали, что резистентность бактерий к хлорамфениколу (левомицетину), возникшая в результате мутаций в хромосоме, также связана с нарушением проницаемости бактериальной мембраны для данного антибиотика.

Широко распространенным в мире бактерий является ферментативный механизм резистентности к антибиотикам. Он заключается в превращении активного антибиотика в неактивную форму в результате действия на него модифицирующих ферментов клетки. Этот механизм резистентности контролируется главным образом R-плазмидами, несущими различные комбинации генов резистентности к следующим антибиотикам: ампициллину, хлорамфениколу, канамицину, стрептомицину, спектиномицину, гентомицину и тетрациклину. Вероятно, резистентность бактерий, контролируемая плазмидами, не ограничена перечисленными антибиотиками, список которых постоянно увеличивается по мере открытия новых R-факторов и создания новых препаратов антибиотиков. Резистентность, определяемая R-плазмидами, распространена среди бактерий, относящихся к разным родам и семействам: Shigella, Escherichia, Salmonella, Proteus, Pseudomonas, Staphylococcus. Молекулярные механизмы, обеспечивающие устойчивость бактерий, несущих R-фактор (R+ клетки), к разным антибиотикам, различны. Устойчивость к пенициллину связана с синтезом пенициллиназы (бета-лактамазы), контролируемым одним из генов R-фактора. Этот фермент гидролизует бета-лактамное кольцо пенициллина. Саваи (T.Sawai, 1970) и соавторы установили, что существует три типа пенициллиназ, отличающихся друг от друга по физико-химическим, ферментативным и иммунологическим свойствам. Наряду с плазмидоспецифичными пенициллиназами у бактерий обнаружены пенициллиназы, синтез которых контролируется хромосомными генами. Они способны инактивировать все известные дериваты пенициллина и цефалоспорина.

Резистентность R+ бактерий к хлорамфениколу определяется действием фермента хлорамфениколацетилтрансферазы, кодируемой геном R-фактора. В результате хлорамфеникол превращается в неактивный О-ацетилдериват. Резистентность к антибиотику аминогликозидной группы в R+ бактериях определяется присутствием в клетке пяти ферментов, модифицирующих антибиотик в неактивную форму:

·стрептомицинфосфотрансферазы,

·стрептомицинаденилатсинтетазы,

·канамицинацетилтрансферазы,

·канамицинфосфотрансферазы,

·гентамицинаденилатсинтетазы, причем последний фермент инактивирует также канамицин и тобрамицин.

Инактивация стрептомицина осуществляется в R+ клетке первыми двумя из упомянутых ферментов и заключается в присоединении к 3-OH-группе антибиотика фосфата или АМФ, донором которых является АТФ. Существует прямая корреляция между резистентностью R+ штаммов к канамицину и неомицину и присутствием в них третьего и четвертого из вышеперечисленных ферментов. Ацетилирующий фермент обладает некоторой специфичностью в отношении типа неомицина, например, ацетилирование неомицина В не сопровождается полной его инактивацией.

Таким образом, инактивация антибиотика в R+ штаммах, характеризующихся множественной резистентностью, осуществляется тремя типами реакций:

·фосфорилированием,

·ацетилированием и

·аденилированием.

Изучение биохимических механизмов устойчивости бактерий к антибиотикам показало, что резистентность к отдельному антибиотику не всегда контролируется индивидуальным геном R-фактора. Иными словами бактерия может обладать резистентностью к большему числу антибиотиков, чем число генов, контролирующих этими признаки. Это связано с тем, что индивидуальный фермент, синтез которого детерминируется одним геном, способен инактивировать разныеантибиотики <#"justify">·R-пенициллиназа,

·стрептомицинаденилатсинтетаза и

·стрептомицинфосфаттрансфераза.

Расшифровка биохимических и генетических механизмов, обеспечивающих резистентность бактерий к антибиотикам, обосновывает рациональность клинического их использования, способы преодоления резистентности бактерий и направленность поиска новых лечебных препаратов. Преодоление множественной антибиотикорезистентности бактерий теоретически может быть достигнуто путем использования препаратов, избирательно блокирующих репликацию R-фактора (препараты акридинового ряда) или путем инактивации ферментов, модифицирующих антибиотики <http://paratsels.ru/antibiotiki/>. Одним из возможных подходов для борьбы с антибиотикорезистентностью, связанной с действием R-ферментов, является комбинированное применение препаратов, одни из которых защищают другие от инактивации.

Например, гентамицин способен в низких концентрациях угнетать инактивацию других аминогликозидов. Из работ Умедзавы (H.Umezawa) известно, что ряд простых сахаров, например, 3-амино-3-дезокси-d-глюкозамин, подавляет фосфорилирование канамицина ферментом, выделенным из Pseudomonas.


Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!