Проблемы моделирования трехмерной структуры белков. Методы их решения

  • Вид работы:
    Реферат
  • Предмет:
    Биология
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    10,93 Кб
  • Опубликовано:
    2012-03-27
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Проблемы моделирования трехмерной структуры белков. Методы их решения

ПЛАН РАБОТЫ

ВВЕДЕНИЕ

ФОЛДИНГ

СЛОЖНОСТИ МОДЕЛИРОВАНИЯ БЕЛКОВ

МЕТОДЫ МОДЕЛИРОВАНИЯ ПРОСТРАНСТВЕННОЙ СТРУКТУРЫ БЕЛКА

ОГРАНИЧЕНИЯ СОПОСТАВИТЕЛЬНОГО МОДЕЛИРОВАНИЯ

ЗАКЛЮЧЕНИЕ

ЛИТЕРАТУРА

ВВЕДЕНИЕ

Белки - универсальные биополимеры, из которых строится жизнь, - выполняют весь спектр биологических функций: от структурной до каталитической. Именно белки играют максимум ролей в живом мире, и важность их изучения не ограничивается только фундаментальной наукой: сегодня и медицина, и промышленность - потребители знаний о функциях и структуре белков.

Понимание механизмов функционирования живых систем, а значит, и возможность влиять на них, например, с помощью лекарственных средств, требует знания структуры белковых молекул и глубокого понимания их функций. Известно, что необходимая информация заключена в линейной последовательности аминокислот пептидной цепочки, и что никакой дополнительной генетической информации, большей, чем та, которая заключена в ДНК, не требуется. Однако физико-химические аспекты этого сложнейшего процесса, называемого также фолдингом белка, остаются до сих пор понятыми лишь приблизительно.

Кроме учёных, структура белка интересует и специалистов более практического профиля. Фармацевты и врачи, например, заинтересованы в производстве и выпуске на рынок новых поколений лекарственных средств. Для этого нужно хорошо разбираться в молекулярных механизмах действия проектируемого лекарства, - направленного, скорее всего, на взаимодействие с каким-нибудь белком (рецептором или ферментом) в человеческом организме. Проектирование нового лекарства с учётом атомарного строения молекул-мишеней, на которые это лекарство будет действовать - наукоёмкий и сложный процесс, называемый драг-дизайном.

Разработка новых биотехнологических ферментов кроме знания структуры белков и понимания механизмов их работы, требует ещё умения проектировать новые функции в белках, ранее выполнявших какую-то другую работу.

ФОЛДИНГ

Фолдинг - сворачивание белков (и других биомакромолекул) из развёрнутой конформации в «нативную» форму - физико-химический процесс, в результате которого белки в своей естественной среде (растворе, цитоплазме или мембране) приобретают характерные только для них пространственную укладку и функции. С термодинамической точки зрения самосворачивание белка является переходом белковой молекулы в наиболее статистически вероятную конформацию (что практически можно приравнять к конформации с наименьшей потенциальной энергией). С кинетикой же фолдинга связывают так называемый парадокс Левинталя, согласно которому, если бы молекула белкá длиной хотя бы в 100 аминокислотных остатков «перебирала» все возможные конформации, прежде чем свернуться в нативную форму, этот процесс потребовал бы времени, превышающего время существования Вселенной. Однако из практики известно, что максимальное время сворачивания ограничивается минутами, типичное время - порядка миллисекунд, а кратчайший требуемый срок, зарегистрированный для трёхлистового β-слоя - всего 140 нс.

Решение парадокса Левинталя заключается в том, что молекула никогда не принимает подавляющего большинства теоретически возможных конформаций. Кооперативные эффекты фолдинга - одновременное формирование «зародышей» вторичной структуры, являющихся энергетически стабильными и уже не изменяющимися в процессе дальнейшего сворачивания - приводят к тому, что молекула белка находит «кратчайший путь» на воображаемой гиперплоскости потенциальной энергии к точке, соответствующей нативной конформации белка. Нативная конформация при этом отделена заметным энергетическим промежутком (potential energy gap) от подавляющего числа несвёрнутых форм, а ближайшая её окрестность определяет естественную конформационную подвижность молекулы.

Ограниченность понимания механизмов фолдинга связана ещё и с тем, что его сложно наблюдать экспериментально: это достаточно быстрый динамический процесс.

СЛОЖНОСТИ МОДЕЛИРОВАНИЯ БЕЛКОВ

В настоящее время последовательности всех белков конвертируются из прочтённых геномов множества организмов в аннотированные базы данных, доступные через интернет. Так, число последовательностей в базе Swiss-Prot <#"justify">МЕТОДЫ МОДЕЛИРОВАНИЯ ПРОСТРАНСТВЕННОЙ СТРУКТУРЫ БЕЛКА

Распознавание фолда с использованием библиотеки известных фолдов

Предсказание архитектуры белковой глобулы на основе знаний об атомных воздействиях (метод ab initio или de novo)

Этот термин означает, что в предсказании не используют в явном виде информации о структуре других белков. Все вычисления, как правило, производятся в эмпирических силовых полях, описывающих парные взаимодействия в классической системе частиц, представляющей молекулу белка. Сами же эти силовые поля в неявном виде включают данные о структуре молекул (не обязательно белковых) - такие как парциальные заряды и массу атомов, а также длины и углы валентных связей, - и к квантово-механическим методам отношения не имеют.

Наиболее «физически корректные» подходы из этой группы заключаются в основном в расчётах МД для моделирования процесса и результата фолдинга, однако эти методы из-за их огромной вычислительной сложности и неточности функций потенциальной энергии достигают успеха лишь для некоторых очень небольших белков. В остальных же случаях - тоже, относящихся к маленьким белкам (не более 150 аминокислотных остатков), - прибегают к дополнительным приближениям с целью уменьшить вычислительную сложность расчёта.

Для увеличения вычислительной эффективности, в de novo подходах часто используются упрощённые модели представления белка - отдельные аминокислотные остатки, присутствующие в модели, представлены не так подробно, как в полноатомных подходах: вся боковая цепь моделируется лишь одним-двумя центрами («псевдоатомами»). De novo фолдинг проводится в специальном силовом поле, оценивая огромное количество вариантов укладки сворачиваемой молекулы по значению потенциальной энергии. Идентификация конформации, значительно более «низкой» по потенциальной энергии, чем остальные, может служить признаком конца поиска - аналогично тому, как нативная конформация с некоторым отрывом отстоит от несвёрнутых промежуточных состояний.

Чтобы как-то приблизиться к природному механизму сворачивания, исследователи пытаются выделить в последовательности моделируемого белка структурно консервативные фрагменты (аналогичные тем, что в природе сворачиваются первыми и в дальнейшем уже остаются неизменными) и как бы «собирают мозаику» из этих фрагментов. Эта процедура позволяет существенно сократить время расчётов.

Одним из научных коллективов, активно занимающихся предсказанием структуры белков de novo, является вашингтонская лаборатория <#"justify">3.Моделирование по гомологии

Многие белки имеют типичные мотивы пространственной организации - то есть, принадлежат к различным семействам, образуя родственные группы. Все белки с известной структурой подразделяются на ≈3 500 структурных семейств, образующих ≈1000 типов пространственной укладки (согласно классификации SCOP - Structural Classification of Proteins <#"justify">Схема моделирования по гомологии:

·Идентификация структурного шаблона - белка с известной пространственной структурой, гомологичного моделируемому (идентичность последовательностей >30%). Поиск производится с помощью серверов FASTA <#"justify">Низкая гомология (<30% идентичности) часто уже не может быть корректно идентифицирована с помощью парного выравнивания последовательностей из-за слишком большого числа накопившихся замен, «маскирующих» последовательность белка, который, возможно, всё же сохранил определённое структурное сходство с каким-либо известным белком-«шаблоном». В этом случае часто используют методики поиска по профилям последовательностей, в которых для «запроса» к базе последовательностей используется не одиночная последовательность, а профиль, сконструированный на основе множественного выравнивания - своеобразная метапоследовательность, кодирующая в себе эволюционную вариабельность данного белка. С помощью этой методики иногда удаётся «вычислить» пригодный для моделирования структурный шаблон, несмотря на то, что идентичность последовательностей с ним составляет лишь 10-15%. Если же ни с помощью «традиционных» подходов поиска гомологичных последовательностей, ни с помощью профилей найти структурный гомолог не удаётся, единственный способ получить предсказание - это de novo методы.

белок моделирование структура фермент

ОГРАНИЧЕНИЯ СОПОСТАВИТЕЛЬНОГО МОДЕЛИРОВАНИЯ

В некоторых случаях основополагающая концепция метода моделирования по гомологии - «близкие последовательности упаковываются в близкие структуры» - нарушается. Белки, чьи последовательности практически идентичны и содержат лишь несколько замен, иногда могут принимать различные конформации. Некоторые белки при ди- или олигомеризации обмениваются доменами, в результате чего структура мономеров в составе олигомера и отдельно взятого мономера совершенно не похожи. Такие события не прогнозируются ни сопоставительным моделированием, ни другим теоретическим методам предсказания пространственной структуры.

ЗАКЛЮЧЕНИЕ

Хотя точность моделирования, как правило, оставляет желать лучшего, прогресс в развитии методов предсказания неизбежен. Во-первых, он позволяет суммировать весь накопленный опыт в одной технологической платформе, которой могут воспользоваться исследователи, не занимающиеся молекулярным моделированием, в том числе и через интернет. А во-вторых, появляется возможность строить модели огромного количества белков - например, всех белков, идентифицированных в геноме какого-нибудь отдельно взятого организма. Существуют интернет-ресурсы, содержащие компьютерные модели огромного числа белков, полученные автоматически в результате запуска такого масштабного «геномно-протеомного» моделирования.novo предсказания, помимо собственно моделирования структуры, могут оказать дополнительную помощь проектам по структурной геномике, указывая белки с не найденным ранее типом укладки. Смысл такого крупномасштабного моделирования созвучен целям глобального проекта по структурной геномике, направленного на получение трёхмерной структуры всех известных белков - в результате прямых экспериментов или компьютерных расчётов.

ЛИТЕРАТУРА

1.Новые технологии в биомедицине: биоинформатика. Арчаков А. И., Поройков В. В., Белкина Н. В. НИИ биомедицинской химии РАМН, 1983.

2.Шайтан К. В., Сарайкин С. С. Метод молекулярной динамики.

3.<http://biomolecula.ru> «Торжество компьютерных методов: предсказание строения белков».


Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!