Основы построения беспроводных систем связи

  • Вид работы:
    Дипломная (ВКР)
  • Предмет:
    Информатика, ВТ, телекоммуникации
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    260,31 Кб
  • Опубликовано:
    2012-05-16
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Основы построения беспроводных систем связи

Введение

Целью данного дипломного проекта является подбор учебного материала по теме «Основы построения беспроводных систем связи». Необходимо не только отобрать нужный материал, но и адаптировать его, по возможности, для полного понимания студентов. При этом необходимо учесть уровень знаний обучающихся, то есть, отталкиваясь от изученных ранее предметов, преподнести новый материал в доступном виде. При создании такого теоретического пособия следует ориентироваться на уровень студентов третьего курса очной, заочной и дистанционной форм обучения.

Кроме того, данное пособие необходимо представить в электронном виде, для более удобного использования, а также подготовить его используя язык гипертекстовой разметки - HTML для последующей публикации на сайте сети Интернет. Таким образом, студенты дистанционной формы обучения, будут иметь возможность самостоятельно осваивать учебный материал с использованием в учебном процессе возможностей компьютерной техники, в том числе, Интернет-технологий. Дистанционная форма - это современное расширение известной заочной формы, но с большими возможностями. Это комплекс образовательных услуг, предоставляемых широким слоям населения в стране и за рубежом с помощью специализированной информационной образовательной среды, базирующейся на средствах обмена учебной информацией на расстоянии (спутниковое телевидение, радио, компьютерная связь и так далее).

Дистанционное обучение базируется на принципе самостоятельного обучения студента. Среда обучения характеризуется тем, что учащиеся в основном, отдалены от преподавателя в пространстве и во времени, в то же время они имеют возможность в любой момент поддерживать диалог с помощью средств телекоммуникации.

Любая из образовательных программ может реализовываться в дистанционной форме. Через систему компьютерных сетей обучающийся получает учебный материал, рассчитанный на самостоятельное освоение. В основе материала лежат учебные задания, которые для своего выполнения требуют усвоения теории. Таким теоретическим материалом для самостоятельного изучения и является данное электронное пособие. Для этого необходимо, чтобы подготовленный материал являлся самодостаточным и включал разнообразные графики, схемы и таблицы, которые необходимо представить в соответствии с рекомендациями для наилучшей наглядности и удобства прочтения.

Также, для полного усвоения материала, по каждой главе приводится список литературы, обращаясь к которому, любой желающий может более детально изучить какую-либо тему или теорию.

В данном электронном учебном пособии необходимо разработать ряд вопросов для самоконтроля, чтобы студент мог разобраться в том, как он усвоил материал и на какие аспекты следует обратить внимание в случае, если он не разобрался в материале до конца.

В учебном пособии, в соответствии со стандартом ОПД.Ф.07, где должны быть отражены следующие основные моменты, касающиеся беспроводных систем связи: основные принципы построения спутниковых и радиорелейных систем методы оценки помех и многое другое.

Структура пособия отражена на рисунке А.1 - приложение А.

Таким образом, цель данного дипломного проектирования сводится к созданию единого и полного материала, отражающего основы построения систем радиосвязи, который найдет практическое применение в учебном процессе.

1. Основы построения аналоговых радиорелейных линий

.1 Принципы построения радиорелейных линий прямой видимости

Радиосистема передачи, в которой сигналы электросвязи передаются с помощью наземных ретрансляционных станций, называется радиорелейной системой передачи [1].

Рисунок 1.1.1 - Принцип радиорелейной связи

За шесть десятилетий своего развития радиорелейные линии (РРЛ) превратились в эффективное средство передачи огромных массивов на расстояния в тысячи километров, конкурируя с другими средствами связи, в том числе кабельными и спутниковыми, удачно дополняя их.

Сегодня РРЛ стали важной составной частью цифровых сетей электросвязи - ведомственных, корпоративных, региональных, национальных и даже международных, поскольку имеют ряд важных достоинств, в том числе:

возможность быстрой установки оборудования при небольших капитальных затратах;

экономически выгодная, а иногда и единственная, возможность организации многоканальной связи на участках местности со сложным рельефом;

возможность применения для аварийного восстановления связи в случае бедствий, при спасательных операциях и в других случаях;

эффективность развертывания разветвленных цифровых сетей в больших городах и индустриальных зонах, где прокладка новых кабелей слишком дорога или невозможна;

высокое качество передачи информации по РРЛ, практически не уступающие ВОЛС и другим кабельным линиям.

Современные радиорелейные линии связи позволяют передавать телевизионные программы и одновременно сотни и тысячи телефонных сообщений. Для таких потоков информации требуются полосы частот до нескольких десятков, а иногда и сотен мегагерц и соответственно несущие не менее нескольких гигагерц. Известно, что радиосигналы на этих частотах эффективно передаются лишь в пределах прямой видимости. Поэтому для связи на большие расстояния в земных условиях приходится использовать ретрансляцию радиосигналов. На радиорелейных линиях прямой видимости в основном применяют активную ретрансляцию, в процессе которой сигналы усиливаются.

Протяженность пролетов R между соседними станциями зависит от профиля рельефа местности и высот установки антенн. Обычно ее выбирают близкой к расстоянию прямой видимости R0, км. Для гладкой сферической поверхности Земли и без учета атмосферной рефракции:

(1.1.1)

где h1 и h2 - высоты подвеса соответственно передающей и приемной антенн (в метрах). В реальных условиях, в случае мало пересеченной местности R0 = 40…70 км, а h1 и h2 50…80 м. Принцип радиорелейной связи показан на рисунке 1.1.1, где отмечены радиорелейные станции трех типов: оконечная (ОРС), промежуточная (ПРС) и узловая (УРС) [1].

На ОРС производится преобразование сообщений, поступающих по соединительным линиям от междугородных телефонных станций (МТС), междугородных телевизионных аппаратных (МТА) и междугородных вещательных аппаратных (МВА), в сигналы передаваемые по РРЛ, а также обратное преобразование. На ОРС начинается и заканчивается линейный тракт передачи сигналов.

С помощью УРС обычно решают задачи разветвления и объединения потоков информации, передаваемых по разным РРЛ, на пересечении которых и располагается УРС. К УРС относят также станции РРЛ, на которых осуществляется ввод и вывод телефонных, телевизионных и других сигналов, посредством которых, расположенный вблизи от УРС населенный пункт связывается с другими пунктами данной линии.

На ОРС и УРС всегда имеется технический персонал, который обслуживает не только эти станции, но и осуществляет контроль и управление с помощью специальной системы телеобслуживания ближайшими ПРС. Участок РРЛ (300…500 км) между соседними обслуживаемыми станциями делится примерно пополам так, что одна часть промежуточных станций входит в зону телеобслуживания одной УРС.

С помощью РРЛ решают следующие задачи:

. Создание стационарных магистральных линий для передачи больших потоков информации на расстояния в несколько тысяч километров. В этих случаях применяются системы большой емкости. Магистральные РРЛ обычно являются многоствольными.

. Использование стационарных РРЛ для организации зоновой связи. Эти линии имеют протяженность до 600…1400 км. Здесь применяют РРС средней емкости, которые в большинстве случаев рассчитаны на передачу телевизионных сигналов и сигналов радиовещания. Часто эти линии являются многоствольными и ответвляются от магистральных РРЛ.

. Использование РРЛ в местной (районной и городской) сети связи. Здесь в основном применяют РРЛ малой емкости.

. Обеспечение с помощью многоканальных РРЛ служебной связью железнодорожного транспорта, газопроводов, нефтепроводов, линий энергоснабжения и других систем, охватывающих большую территорию.

. Обеспечение подвижной связи, используемой в случае ремонта или модернизации стационарных РРЛ и кабельных линий связи (КЛС), а также для других целей.

Классификация РРЛ. Радиорелейные линии прямой видимости можно классифицировать по различным признакам и характеристикам [6].

По способу разделения каналов и виду модуляции несущей можно выделить:

РРЛ с частотным разделением каналов (ЧРК) и частотной модуляцией (ЧМ) гармонической несущей.

РРЛ с временным разделением каналов (ВРК) и аналоговой модуляцией импульсов, которые затем модулируют несущую.

Цифровые радиорелейные линии (ЦРРЛ), в которых в отличие от предыдущего случая импульсы (отсчеты сообщения) квантуются по уровням и кодируются.

По диапазону рабочих (несущих) частот РРЛ подразделяют на линии дециметрового диапазона и сантиметрового диапазонов. В этих диапазонах, решением ГКРЧ от апреля 1996 года для новых РРЛ определены диапазоны 8 (7.9-8.4); 11 (10.7-11.7); 13 (12.75-13.25); 15 (14.4-15.35); 18 (17.7-19.7); 23 (21.2-23.6); 38 (36.0-40.50) ГГц.

Однако в России еще длительное время будут использоваться ранее построенные линии в диапазонах 1.5-2.1; 3.4-3.9; 5.6-6.4 ГГц. При этом возможна замена устаревающей аппаратуры на современные РРС.

Новые РРС используются также в диапазоне 2.3-2.5 ГГц. Прорабатывается возможность использования диапазонов 2.5-2.7 и 7.25-7.55 ГГц.

Чем ниже диапазон, тем большую дальность связи можно обеспечить при тех же энергетических характеристиках оборудования, но переход на высокие диапазоны позволяет расширить информационные полосы частот, то есть пропускную способность систем.

Повышение эффективности использования частотного ресурса диапазона стало одним из самых важных требований к аппаратуре РРЛ. В нашей стране насыщенность радиорелейной связи пока что много меньше, чем в зарубежных странах, где идет интенсивное освоение всех диапазонов до 40 ГГц. Эффективность использования частотного ресурса диапазона определяется следующими факторами:

. Требуемой шириной полосы приемопередатчика, которая определяется скоростью передачи информации, выбранным методом модуляции и уровнем стабилизации частоты передатчика.

. Параметрами электромагнитной совместимости (ослабление чувствительности по побочным каналам приема, подавление внеполосных и побочных излучений).

. Возможностями полного использования всего отведенного участка диапазона, которые обеспечиваются использованием в составе станции синтезатора частоты.

По принятой в настоящее время классификации радиорелейные системы (РРС) разделяют на системы большой, средней и малой емкости.

К радиорелейным системам большой емкости принято относить системы, позволяющие организовать в одном стволе 600 и более каналов ТЧ. Если радиорелейная система позволяет организовать 60-600 или менее 60 каналов ТЧ, то эти системы относят соответственно к системам средней и малой емкости.

Радиорелейные системы, допускающие передачу в одном стволе телевизионных сигналов изображения, а также сигналов звукового сопровождения телевидения и звукового вещания, относят к системам большой и средней емкости.

Исходя из скорости передачи информации, цифровые РРЛ можно разделить на две основные группы.

Низкоскоростные РРС. К ним относятся отечественные РРС и подавляющая часть зарубежных, предлагаемых в России (около пятидесяти из них имеют российский сертификат).

Подобные РРС рассчитаны на трафик до 16Е1 (или Е3). Отметим что еще несколько лет назад РРЛ с трафиком Е3 считались среднескоростными, но сегодня это станции “низового звена” цифровых сетей, обеспечивающие возможность изменения (иногда программным путем) пропускной способности в пределах от Е1 или 2Е1 до 8Е1 или 16Е1.

Стало просто не выгодно выпускать РРС специально для передачи лишь потоков Е1 или менее, за исключением ряда новых весьма специфических и редких пока применений (передача Е1 шумоподобными сигналами, распределительные станции для систем доступа и прочие) [12].

Высокоскоростные РРС. Эти РРС в настоящее время создаются практически только на основе SDH-технологии и имеют скорость передачи в одном стволе 155.52 Мбит/с (STM-1) и 622.08 Мбит/с в одном стволе (STM-4).

Ранее к высокоскоростным относили РРС для передачи Е4 (то есть 139.254 Мбит/с) в сети PDH, но, новые РРЛ строятся уже на базе SDH-технологии, то есть со скоростью передачи 155.52 Мбит/с, хотя и обеспечивают возможность передачи 140 Мбит/с.

Высокоскоростные РРЛ применяются для построения магистральных и зоновых линий, в качестве радиовставок в ВОЛС на участках со сложным рельефом, для сопряжения ВОЛС (STM-4 или STM-16) с сопутствующими локальными цифровыми сетями, а также для резервирования ВОЛС и так далее.

Среди высокоскоростных РРС можно выделить две группы, отличающиеся по назначению, свойствам, конфигурации, конструкции и так далее.

Это, во-первых, многоствольные РРС, рассчитанные обычно на передачу до 6-7 потоков STM-1 по параллельным радиостволам, из которых 1 или 2 - резервные (конфигурация оборудования “3+1”, “7+1” или 2∙(3+1)). Протяженность РРЛ, как правило, велика - сотни километров и более.

Во-вторых, РРС, предназначенные для ответвлений от магистральных линий, необходимых при создании зоновых сетей и некрупных локальных ведомственных сетей, а также для передачи потоков STM-1 (155 Мбит/с) в условиях больших городов. Для этих ответвлений, как правило, используются диапазоны 7, 8, реже 11 ГГц, а для связи в больших городах - диапазоны 15, 18, 23 ГГц. По конфигурации это обычно двухствольные РРЛ на скорость STM-1, один из стволов - резервный (по схеме “1+1”).

К этой группе высокоскоростных РРС, использующих технологию SDH, можно отнести РРС со скоростью передачи информации 51.84 Мбит/с (STM-0), которые иногда называют “среднескоростными”. Они упрощают реализацию ответвлений от синхронных линий передачи, позволяют значительно увеличить возможности построения сетей SDH различной конфигурации, ответвлять от ВОЛС или РРЛ информацию к сетям доступа пользователя, подключать к сетям SDH до 21 потока Е1, а также потоки Е3 [7].

1.2 Структура радиосистем передачи

Под радиосистемой передачи РСП понимают совокупность технических средств, обеспечивающих образование типовых каналов передачи и групповых трактов первичной сети ВСС, а также линейного тракта, по которому сигналы электросвязи передаются посредством радиоволн в открытом пространстве рисунок 1.2.1.

С помощью современных РСП можно передавать любые виды информации: телефонные, телеграфные и фототелеграфные сообщения, программы телевидения и звукового вещания, газетные полосы, цифровую информацию и так далее [3].

Как и проводные системы передачи, подавляющее число РСП являются многоканальными. При этом обычно используются частотное или временное разделение сигналов.

Рисунок 1.2.1 - Обобщенная структурная схема многоканальной РСП

Многоствольные РРЛ. Пропускная способность РРЛ может быть в несколько раз увеличена за счет образования новых стволов. Для этого на станциях устанавливают дополнительные комплекты приемопередающего оборудования, с помощью которых создаются новые высокочастотные тракты. Для сигналов разных стволов используются различные несущие частоты. Вся система многоствольной РРЛ организуется таким образом, чтобы все стволы работали независимо один от другого, а с другой стороны были взаимозаменяемы. Такой принцип позволяет обеспечить необходимую верность передачи сообщений в каждом стволе и повышает надежность работы всей линии в целом. В тоже время повышение пропускной способности РРЛ за счет многоствольной работы не приводит к пропорциональному росту стоимости линии, так как многие высоконадежные компоненты линии (антенны, станционные сооружения, опоры для подвеса антенн, источники электроснабжения и тому подобное) являются общими для всех стволов [12].

В качестве примера, поясняющего принцип организации многоствольной работы, рассмотрим вариант РРЛ из трех дуплексных стволов. На рисунке 1.2.2 представлена упрощенная структурная схема основного оборудования трех станций этой линии: ОРС, ПРС, и УРС. Схема содержит: передатчики (П); приемники (Пр); оконечные устройства (ОУ), включающие модемы, усилители и другие элементы, осуществляющие преобразование групповых телефонных сообщений (ТФ) или компонентов сигналов телевизионного и звукового вещания (ТВ, ЗВ) в сигналы линейного тракта, а также обратное преобразование: системы полосовых фильтров (ПФ), каждый из которых имеет полосу прозрачности, соответствующую одному стволу при односторонней связи; в режиме передачи ПФ обеспечивает необходимую развязку передатчиков (у этих систем ПФ указан первый индекс 1, то есть они обозначены ПФ11, ПФ12, ПФ13; изменение вторых индексов отражает смену частот приема и передачи в соответствии с двухчастотным планом); в режиме приема системы ПФ являются разделительными фильтрами: из суммарного ВЧ сигнала каждый полосовой фильтр системы выделяет сигнал одного ствола и направляет его в соответствующий приемник (у этих систем ПФ указан первый индекс 2, то есть они обозначены ПФ21, ПФ22, ПФ23); развязывающие устройства (РУ), задачей которых является дополнительное уменьшение взаимовлияния трактов передачи и приема: ряд элементов этих трактов, таких, например, как фидеры и антенны (А), как правило являются общими. Аппаратура ввода-вывода сигналов (АВВ) обеспечивает решение специфических для УРС задач - разветвления и объединения информационных потоков.

Рисунок 1.2.2 - Упрощенная структурная схема РРЛ из трех дуплексных стволов

В качестве примера использования схемы рассмотрим на рисунке 1.2.2 передачу группового телефонного сообщения (ТФ) в одном направлении связи. Это сообщение формируется в аппаратуре объединения каналов (АОК) и по соединительной линии поступает на ОРС. С помощью ОУ и П сигнал ТФ преобразуется в ВЧ сигнал требуемой мощности, который через один из полосовых фильтров системы ПФ11 и РУ поступает в антенну А и излучается в направлении ПРС. Здесь сигнал данного ствола проходит последовательно через элементы А, РУ, ПФ22 и группу приемников. С помощью одного из Пр и ОУ ВЧ сигнал данного ствола может быть преобразован в сигнал ТФ и направлен в АВВ. Здесь односторонние ТФ каналы могут быть распределены по группам, одна из которых, например, может быть направлена в ближайшую МТС, другие же могут войти в состав новых ТФ стволов и направлены по разным радиоканалам. Кроме того, возможна и транзитная передача через УРС полного сигнала организованного на ОРС ствола в том или ином направлении связи. В этом случае сигналы с Пр на П могут идти в обход ОУ и АВВ.

Заметим, что при модуляции групповым телефонным сообщением того или иного параметра несущей в основном применяют два метода:

. Модуляцию групповым сообщением колебаний промежуточной частоты (модулятор в ОУ) и транспонирование полученного таким образом в область ВЧ (в передатчике).

. Непосредственную модуляцию групповым сообщением одного из параметров ВЧ несущей (модулятор - в передатчике) [1].

Последний вариант используется, в частности, на цифровых РРЛ.

В настоящее время прием и передачу сигналов на станции на каждом направлении связи ведут в основном по общему антенно-фидерному тракту (обычно антенны и фидеры оказываются гораздо более широкополосными, чем сигналы одного ствола) [8], а необходимую развязку приема и передачи обеспечивают не только фильтрами, но и различными невзаимными устройствами, то есть устройствами, свойства которых зависят от направления распространения электромагнитных волн. К этим устройствам относят, в частности, широко применяемые ферритовые вентили и циркуляторы. Кроме того, для обеспечения эффективной развязки трактов передачи и приема, а также соседних стволов, во многих современных РРС используют волны различной поляризации (горизонтальной и вертикальной). В этом случае в качестве РУ применяют, например, поляризационные селекторы. Схема на рисунке 1.2.2 построена с учетом рекомендованного МККР (ныне МСЭ) двухчастотного плана с группированием частот передачи и приема: группы передаваемых и принимаемы на каждой станции сигналов проходят через различные системы полосовых фильтров, например на ПРС - это ПФ12 и ПФ21. Заметим, что конструктивно системы ПФ с различными первыми, но одинаковыми вторыми индексами, например ПФ11 и ПФ21, могут быть выполнены вполне идентично.

Рассмотрим один из вариантов конкретного частотного плана и некоторые примеры схем антенно-фидерных трактов (АФТ) многоствольных систем [8]. На рисунке 1.2.3, а представлен план распределения частот, применяемый в магистральных радиорелейных системах «Восход», «Рассвет-2», «Курс-4», работающих в диапазоне 3.4…3.9 ГГц, в системе «Курс-6», работающей в диапазоне 5.67…6.17 ГГц и в зоновой системе «Курс-8», работающей в диапазоне 7.9…8.4 ГГц. Этот план позволяет организовать до восьми дуплексных широкополосных стволов по двухчастотной системе. Каждый из стволов может использоваться для организации телефонных каналов (до 1920) или для передачи телевизионной программы. Как видно из рисунка 1.2.3, а, несущие частоты стволов (f1,f2,…,f16 - отложены на оси fс) разнесены на интервалы, кратные F = 14 МГц. План рассчитан на промежуточную частоту Fпч = 5F = 70 МГц. При этом частоты гетеродинов (помечены точками на оси fг) размещаются в интервалах между рабочими частотами стволов, а частоты зеркальных каналов (помечены точками на оси fз) - внутри полосы, выделенной для системы. Частоты приема и передачи в одном дуплексном стволе разнесены на величину 19F = 266 МГц. Для соседних по частоте стволов в диапазонах, близких к 4 и 6 ГГц, должны использоваться различные антенны и разные типы поляризации волн - горизонтальная (г) и вертикальная (в). Распределение волн по поляризации на частотах приема (fпр) и передачи (fп) должно соответствовать рисунку 1.2.3, а, б или в. Обычно стволы разбиваются на две перемежающие группы. Одна группа стволов, например с нечетными номерами, используется для магистральных линий, а другая (с четными номерами) - в линиях, являющихся ответвлениями от магистрали, как показано на рисунке 1.2.4, а. Пример разнесения сигналов по разным антеннам на ПРС для шести дуплексных стволов показан на рисунке 1.2.4, б. Частотный план на рисунке 1.2.3, а предусматривает, что разность между частотами соседних стволов в одной антенне составляет величину 4F = 56 МГц, а в разных антеннах - 2F = 28 МГц; разность между ближайшими несущими частотами приема и передачи в разных антеннах - 5F = 70 МГц, в одной антенне - 7F = 98 МГц. Заметим, что система «Курс-8», функционирующая в диапазоне 7.9…8.4 ГГц при соответствующей компоновке АФТ (рисунок 1.2.5) допускает работу восьми дуплексных стволов на одну антенну. Разнесение сигналов разных стволов по частоте, по поляризации и по различным ветвям антенно-фидерного тракта, а также соответствующий выбор частот местных гетеродинов - все это в совокупности обеспечивает минимум внутрисистемных помех без значительного расширения частотных интервалов между стволами.

Рисунок 1.2.3 - План распределения частот и волн различной поляризации в системах «Восход», «Рассвет-2», «Курс-4», «Курс-6», «Курс-8»

Рисунок 1.2.4 - Примеры распределения частот и волн различной поляризации на УРС (а) и ПРС (б)

На рисунке 1.2.5 приведен вариант комплектации АФТ системы, в которой реализуется частотный план, показанный на рисунке 1.2.3, а. При этом многократное использование АФТ достигается на основе применения всех известных способов селекции радиоволн: по частоте, по поляризации и по направлению распространения (трехступенчатая схема разделения).

Рисунок 1.2.5 - структурные схемы АФТ

Элементами структурной схемы на рисунке 1.2.5 являются:

приемопередающая антенна (А);

переход (П), обеспечивающий согласование фидеров различной конструкции (в данном случае согласование антенны с волноводом);

герметизирующие элементы (ГЭ) - специальные волноводные вставки, создающие замкнутый объем для системы осушки волноводных трактов (СОВТ);

секции со штуцером (СШ), с помощью которых АФТ соединяется с воздухопроводом СОВТ;

фильтр поглощения (ФП), предназначенные для уменьшения в «многоволновом» круглом волноводе уровня паразитных высших волн (например, Е01 и Е11) с продольной составляющей электрического поля вдоль оси волновода (его основная волна - Н11; паразитные волны могут преобразовываться в основную волну и вызывать попутные потоки искажающие сигналы и, следовательно, ухудшающие качество передачи);

волновод круглого сечения (ВК), обычно используемый в вертикальном тракте, соединяющем установленную на опоре антенну с горизонтальным трактом, где применяют в основном эллиптические волноводы (ВЭ);

корректор эллиптичности (КЭ), снижающий уровень паразитной кросс-поляризованной волны в круглом волноводе, которая затрудняет разделение волн по поляризации;

поляризационный селектор (ПС), в котором с помощью поляризационных фильтров осуществляется разделение и объединение волн с различным типом поляризации - горизонтальной (г) и вертикальной (в);

нагрузка (Н), для поглощения паразитных волн, возникающих за счет несогласованности и неидеальности элементов АФТ;

ферритовые циркуляторы (ФЦ), обеспечивающие разделение волн по направлению распространения (основное свойство ФЦ: сигнал поступивший в ФЦ в плечо с номером i, (где i = 1,2,3), может выйти из ФЦ только через ближайшее плечо, указанное стрелкой);

разделительные фильтры (РФ), выполняющие задачу объединения и разделения сигналов различных стволов по частоте.

Приемники, подключенные к РФ1 и РФ3, и передатчики, соединенные с РФ2 и РФ4, обеспечивают дуплексную связь в одном направлении. Путь сигналов (на несущих f1…f16) каждого из стволов нетрудно проследить по схеме, руководствуясь направлением соответствующих стрелок [8].

На РРЛ прямой видимости, работающих в диапазоне СВЧ, используются рупорно-параболические антенны (РПА), перископические и параболические (однозеркальные и двухзеркальные). Выбор той или иной антенны зависит не только от типа аппаратуры, но и от емкости РРЛ. Этим же определяется состав и структура АФТ. Если, например, линия включает в себя не 8, а 4 ствола, то каждый из поляризационных фильтров через ВЭ и ГЭ может быть непосредственно соединен с одним из РФ. В другом варианте когда отсутствует разделение по поляризации, внешний волновод может быть соединен с двумя РФ (работающими один на передачу, другой - на прием) посредством ФЦ [9].

Разделительные фильтры также как и весь АФТ, допускают различные варианты построения. В последнее время все более широкое распространение получают РФ, в которых используются ферритовые циркуляторы (ФЦ).

1.3 Аппаратура радиорелейных линий прямой видимости с частотным разделением каналов и частотной модуляцией (ЧРК-ЧМ)

Приемопередающая аппаратура радиосвязи. Широкое использование в аппаратуре РРЛ получили гетеродинные приемопередатчики, которые построены на основе передатчика с преобразователем частоты и супергетеродинного приемника [2].

Упрощенная схема оконечной приемопередающей станции приведена на рисунке 1.3.1.

Как следует из рисунка 1.2.2 и рисунка 1.3.1 групповой сигнал (ГС) от многоканальных систем передачи поступает на устройство объединения групповых сигналов (УОГС), представляющих собой волну фильтров. В этом устройстве могут объединяться ГС, расположенные в непересекающихся областях частот.

Рисунок 1.3.1 - Упрощенная структурная схема приемопередающего оборудования

Далее сигнал усиливается в усилителе групповых сигналов (УГС), ограничивается по амплитуде в усилителе-ограничителе (АО) и подается на предыскажающий контур (ПК). Предыскажения вводятся с целью выравнивания отношения Pc/Рш по всему спектру ГС. В частотном модуляторе (ЧМ) производится модуляция промежуточной частоты (Fпч обычно выбирается равной 70 МГц) групповым сигналом [11].

Полосу частот ВЧ тракта (Пчм), необходимую для пропускания ЧМ сигнала можно определить по формуле Карсона:

,(1.3.1)

где fв - верхняя частота модулирующего сигнала.

Эффективная девиация частоты на выходе модулятора, которая получается при подаче на вход любого телефонного канала измерительного синусоидального сигнала (с частотой 800 Гц) мощностью 1 мВт (нулевой уровень) называется эффективной девиацией на канал - Δfк. Согласно рекомендациям МККР (ныне МСЭ) в современных многоканальных РРС в зависимости от числа каналов N используют ∆fк, равные 200, 140 или 100 кГц. Обычно в процессе настройки аппаратуры величина ∆fк выставляется при подаче на вход предыскажающего контура (ПК) вместо Uгр(t), измерительного сигнала с частотой, на которой предыскажения в ПК отсутствуют. Поэтому ∆fк называют эффективным значением девиации, создаваемой измерительным уровнем сигнала одного канала ТЧ на частоте нулевых предыскажений.

,(1.3.2)

где Кчм - крутизна модуляционной характеристики; Ризм = 1 мВт - средняя мощность измерительного сигнала на сопротивлении R. Поскольку, если Uгр(t) и измерительный сигнал выделяются на одинаковых сопротивлениях R, , то

,(1.3.3)

где ∆fэ и ∆fк измеряются в кГц, а Рср - безразмерная величина, численно равная Рср в мВт. Если выходное сопротивление измерительного генератора активно и совпадает с входным сопротивлением канала (600 Ом), то соотношение Рср/ Ризм в дБ соответствует уровню

,(1.3.4)

откуда . Поэтому вместо (1.3.3) можно записать

.(1.3.5)

При N > 240, когда рср = -15 + 10 lg(N), дБ, в соответствии с (1.3.5) получаем  или

,(1.3.6)

В современных РРС с N=600 величины ∆fк=200 кГц; при N = 1920 ∆fк 140 кГц.

Частотная модуляция (ЧМ) позволяет обеспечить относительно высокую помехоустойчивость передачи сообщений [1]. При этом не требуется большая стабильность частоты передатчика. Мощность его используется весьма эффективно: она практически не зависит от характеристик сообщений на входе модулятора, пик-фактор всегда равен единице. Уровень сигнала на входе приемника может изменяться в достаточно широких пределах (на пример, при замираниях), не влияя на мощность полезного сигнала после демодулятора. Все это в целом объясняет широкое применение ЧМ на РРЛ, в спутниковых, тропосферных и других системах передачи. Вместе с тем частотной модуляцией свойственны и определенные недостатки: резкое снижение качества передачи, если отношение средних мощностей сигнала и шума на входе приемника (Рс/Рш)вх падает ниже некоторого порогового значения (пороговый эффект проявляется обычно при (Рс/Рш)вх ≤ 10); широкий спектр частот, который необходимо передавать по радиоканалу для нормального восстановления сообщений на выходе демодулятора; зависимость уровня шумов на выходе канала от мощности входного сигнала приемника (проявляется при замираниях); необходимость выравнивания качества работы разных телефонных каналов при их частотном разделении и другие.

При ЧМ нужен не просто широкополосный высокочастотный тракт, а тракт, амплитудно-частотная характеристика (АЧХ) и характеристика группового времени запаздывания (ГВЗ) которого удовлетворяют весьма высоким требованиям. В противном случае сигнал на выходе демодулятора может недопустимо исказиться и, например, при многоканальной передаче сообщений методом ЧРК качество связи соответственно упадет за счет так называемых переходных помех: работе одного (любого) частотного канала будут в значительной мере мешать сигналы, спектр которых состоит из гармоник и комбинационных продуктов колебаний в других каналах.

В системах с ЧРК если не принять специальных мер, ЧМ не может обеспечит равные условия работы разных частотных каналов. Причем более высокочастотным сигналом, когда увеличивается Fв и уменьшается индекс mэ, соответствует меньшая помехоустойчивость. Увеличением мощности передатчика или группового сигнала Uгр(t) можно добиться необходимой помехоустойчивости и в верхнем частотном канале. Но при этом в средних и нижних каналах запас по мощности будет не оправданно высоким. В целом такой режим не выгоден как с экономической точки зрения, так и с точки зрения уменьшения внутри- и межсистемных помех. Поэтому, как отмечалось ранее, для выравнивания в различных каналах отношения сигнала к шуму прежде чем подать Uгр на модулятор, это напряжение подают на предыскажающий фильтр, модуль коэффициента передачи которого y(F) обеспечивает изменение уровней таким образом, что уровни передачи нижних каналов становятся меньше уровней передачи верхних частотных каналов. Если теперь с помощью усилителя (с равномерной частотной характеристикой) довести среднюю мощность модулирующего сигнала Рср до значения, определенного ранее для Uгр(t), то величина ∆fэ останется такой же, как и без предыскажения Uгр(t). При этом подбором y(F) можно сделать так, что уровни сигналов в верхних каналах нового модулирующего сигнала  станут больше, чем у сигнала Uгр(t), а уровни сигналов в нижних соответственно меньше.

В системах с ЧМ сигнал Uгр(t) всегда подвергается предыскажению, а на выходе ЧД включают так называемый восстанавливающий контур с характеристикой обратной y(F). Этот фильтр не изменяет отношения сигнал-шум в отдельных каналах, но позволяет сделать более равномерным распределение уровней полезных канальных сигналов.

Характеристики предыскажающих и восстанавливающего контуров рекомендованы МСЭ. В общем случае характеристика предыскажающего контура хорошо аппроксимируется выражением

,(1.3.7)

где 0 ≤ F ≤ Fв, а Fв - верхняя частота модулирующего сигнала. Характеристика восстанавливающего контура  приведена на рисунке 1.3.2.

Рисунок 1.3.2 - Зависимость квадрата модуля коэффициента передачи yвк от F/Fв

Основное усиление сигнала осуществляется в усилителях промежуточной частоты (УПЧ). Тракт промежуточной частоты, используется для создания высокой избирательности при малых расстройках относительно границ полосы пропускания [12].

Для элементов тракта промежуточной частоты характерны следующие параметры: малая неравномерность АЧХ, группового времени запаздывания и дифференциального усиления в полосе частот точной коррекции; высокая степень входов и выходов сигнала промежуточной частоты в приемопередающей аппаратуре.

Мощный усилитель промежуточной частоты (МУПЧ) усиливает сигнал по мощности, необходимой для нормальной работы смесителя передатчика (СМпер). Модулированный сигнал промежуточной частоты после усиления смешивается в смесителе с высокостабильным колебанием генератора несущей частоты fн. На выходе смесителя в ПФ выделяется сигнал с частотой передачи fпер. Затем мощность этого сигнала усиливается в усилителе СВЧ до требуемого значения. В радиосистемах малой мощности (менее 1 Вт) усилитель СВЧ может не устанавливаться. Приемник радиоствола (рисунок 1.3.1) состоит из малошумящего усилителя сигнала СВЧ, преобразователя частоты, в который входят смеситель приемника (СМпр) и гетеродин приемника, и усилителя сигнала промежуточной частоты.

Гетеродин приемника включает в себя генератор сдвига (Гздв) и смеситель сдвига (СМсдв), в котором частота fсдв смешивается с частотой несущей fн. Таким образом частота гетеродина приемника (fгет) отличается от частоты fн на ± fсдв, чем обеспечивается разнос частоты приема и передачи. Обычно fсдв выбирается равной 213 МГц. На выходе смесителя приемника (СМпр) получается сигнал fпч ± ∆f, который через полосовой фильтр (ПФ) подается на главный усилитель ПЧ (УПЧ-1), в котором осуществляется основное усиление сигнала и автоматическая регулировка (АРУ). Таким образом, уровень сигнала промежуточной частоты на выходе главного усилителя поддерживается постоянным в достаточно большом диапазоне изменений уровня принимаемого сигнала (в приемниках магистральных РРЛ достигает 46-50 дБ). Оконечный усилитель (УПЧ-2) имеет два выхода, один из которых используется для подачи сигнала на вход передатчика (ретрансляция сигнала на ПРС), второй - для выделения сигнала промежуточной частоты на УРС. В РРЛ с частотным уплотнением и ЧМ, обычно устанавливается усилитель-ограничитель, который подавляет паразитную АМ. При работе станции в режиме ретрансляции сигнал с выхода УПЧ-1 приемника поступает на вход МУПЧ передатчика. На оконечных (ОРС) и узловых (УРС) станциях, где осуществляется преобразование спектра сигнала до группового (ГС), сигнал ПЧ подается на вход УПЧ-2 и после ограничения по амплитуде в АО поступает на частотный детектор (ЧД). ГС с выхода ЧД после коррекции АЧХ в выравнивающем контуре (ВК) и усиления в УГС подается на вилку фильтров ДК устройства разделения групповых сигналов (УРГС).

Особенности трактов промежуточной частоты цифровых РРЛ заключаются в разных требованиях к полосам пропускания и точной коррекции частотных характеристик тракта, а также в повышенном требовании к линейности амплитудной характеристики активных элементов этого тракта [7].

Нелинейные элементы тракта промежуточной частоты, такие как амплитудные ограничители, приводят к дополнительной потере помехоустойчивости цифровых РРЛ с квадратурной АМ. Поэтому в приемопередатчиках цифровых РРЛ АО не используются.

Нормирование качества связи на РРЛ. Радиорелейные линии широко используются как в региональных системах, так и для международной связи. Уровень шума на выходе канала существенно зависит как от условий распространения радиоволн и протяженности линии, так и от ее структуры, в частности от числа преобразований сигнала с выделением той или иной группы каналов. Поэтому, решая задачу нормирования уровня шумов на выходе каналов, необходимо ориентироваться на некоторую конкретную по протяженности и структуре РРЛ, в которой учитывался бы опыт разработки аппаратуры РРС, проектирования и эксплуатации РРЛ. Роль таких РРЛ стали играть специально разработанные гипотетические (предполагаемые) эталонные цепи. Структура этих цепей определяется, в частности, видом сообщений и способом их передачи.

На рисунке 1.3.3,а условно изображена гипотетическая эталонная цепь, предназначенная для РРЛ с ЧРК, на которых число каналов ТЧ больше 60. Указанная цепь имеет протяженность 2500 км и состоит из 9 однородных секций. Структура цепи фиксируется порядком размещения вдоль линии индивидуальных преобразователей частоты, первичных и вторичных преобразователей. Как видно из рисунка 1.3.3,а, на указанных РРЛ допускается лишь (не считая ОРС) две станции с выделением (вводом) индивидуальных каналов и пять станций с выделением (вводом) 12-канальных (первичных) групп. Внутри секции число ПРС, на которых имеет место только ретрансляция сигнала и нет выделения каналов ТЧ или стандартных групп каналов, не регламентируется.

Рисунок 1.3.3 - Структура гипотетических цепей МСЭ (МККР) для РРЛ с ЧРК: а) с числом ТФК более 60; б) с каналами телевидения и вещания; в) цепь ЕАСС для магистральной РРЛ

Протяженность некоторых магистральных РРЛ в РФ значительно превосходит 2500 км. Поэтому для взаимоувязанной сети связи (ВСС) пришлось разработать ряд новых гипотетических цепей. Так, на магистральной сети в качестве гипотетической эталонной РРЛ принята цепь протяженностью 12500 км. Она состоит из 5 участков по 2500 км (рисунок 1.3.3,в), которые соединены между собой по тональной частоте или видеоспектру. В случае организации каналов ТЧ принято, что каждый однородный участок такой номинальной цепи состоит из 10 секций протяженностью 250 км. При этом внутри участка не предусмотрены индивидуальные преобразователи, а каждая секция начинается и кончается преобразователем третичной группы.

Для каждого конкретного вида эталонной цепи можно определить допустимое значение мощности шума или отношения сигнал-шум на выходе канала. Но вследствие замираний шумы на выходе каналов РРЛ являются нестационарными случайными процессами. Поэтому для шумов в ТФ, ТВ и других каналах РРЛ вводится несколько норм, полученных на основе обработки соответствующих статистических данных, учета специфики аппаратуры и особенностей получателя сообщений [19], [20].

Рисунок 1.3.4 иллюстрирует рекомендации, установленные МККР для телефонных и телевизионных каналов РРЛ. Так, согласно этим рекомендациям принято, что в любом телефонном канале в точке с нулевым относительным уровнем допустимые мощности шума (Рш.доп), вносимого радиорелейным оборудованием линии, имеющей протяженность 2500 км и структуру, соответствующую гипотетической эталонной цепи, составляют следующие величины (смотри рисунок 1.3.4,а): среднеминутная псофометрическая мощность шума, которая может превышаться в течение не более Т = 20% времени любого месяца, 7500 пВт0, что соответствует 10lg(7500/109) = -51,25 дБ; среднеминутная псофометрическая мощность шума, которая может превышаться в течение не более Т = 0.1% времени любого месяца, 47500 пВт0 (-43.23 дБ); средняя за 5 мс невзвешенная мощность шума, которая может превышаться в течение не более Т = 0.01% времени любого месяца, 106 пВт0 (-30 дБ). В рекомендацию, относящуюся к 20% времени, включена и мощность помех (1000 пВт), обусловленных работой спутниковых систем в общих с РРЛ полосах частот.

Рисунок 1.3.4 - Нормирование мощности шумов и отношения сигнал-шум на выходе телефонных (а) и телевизионных (б) каналов

Если структура РРЛ протяженностью l км значительно отличается от эталонной, то допустимая среднеминутная псофометрическая мощность шума (Рш.доп) в телефонном канале, которая может превышаться в течение не более 20% времени любого месяца, составляет величины: Рш.доп = (3l + 200) пВт0, если 50 ≤ l ≤ 840 км; Рш.доп = (3l + 400) пВт0, если 840 ≤ l ≤ 1670 км; Рш.доп = (3l + 600) пВт0, если 1670 ≤ l ≤ 2500 км.

Для видеоканалов нормируется отношение размаха сигнала изображения к визометрическому напряжению шума (Uр/Uш). На выходе гипотетической цепи протяженностью 2500 км это отношение (рисунок 1.3.4,б) может быть менее 61 дБ, 57 дБ и 49 дБ в течение соответственно не более 20, 1 и 0.1% времени любого месяца (при использовании унифицированного взвешивающего фильтра допускается уменьшение защищенности ТВ каналов на 4 дБ и, в частности, приведенные рекомендации на Up/Uш, относящиеся к 20 и 0.1% времени любого месяца снижаются до 57 и 45 дБ соответственно). При этом учитываются помехи от всех источников, влияющих на качество работы данного канала. Поскольку случайные процессы, представляющие все помехи на РРЛ, как внутренние, так и внешние, практически во всех случаях могут считаться независимыми, мощность помех на выходе канала (Рп.вых) обычно находится суммированием мощности помех отдельных источников. Так, для линии протяженностью 2500 км, псофометрическая мощность помех в канале ТЧ может превышать 7500 пВт в течение не более 20% времени любого месяца, связывают с выполнением следующего условия с учетом помех от ИСЗ будет равна:

,(1.3.8)

где Рп.г - мощность переходных помех, вносимых одним комплектом оборудования, с помощью которого осуществляется переприем по групповому спектру; m - число узловых станций на которых осуществляется переприем по групповому спектру (две ОРС приравниваются одной УРС); n - число пролетов на линии; Рп.вч i - суммарная мощность переходных помех, обусловленных неидеальностью характеристик элементов ВЧ тракта на i-м пролете; Рт i (20%) - мощность (превышаемая в течение не более 20% времени любого месяца) теплового шума, вносимого на i-м пролете; Рп.м i (20%) - мощность переходных помех, обусловленная мешающим действием радиопомех на i-м пролете; третье и четвертое слагаемые в (4.6.2) содержат величины зависящие от времени (в третье слагаемое кроме тепловых шумов, мощность которых зависит от изменения мощности сигнала на входе приемника, вызванных замираниями, входят также и постоянные по мощности компоненты теплового шума Рт.г и Рт.м).

Тепловые шумы, учитываемые при оценке качества работы телевизионных каналов, как и в каналах ТЧ, складываются по мощности. Если, например, в расчет принимать мощность шумов, превышаемую в течение не более 20% времени любого месяца, то

,(1.3.9)

где Uт (20%) - эффективное визометрическое напряжение теплового шума на выходе видеоканала, превышаемое в течение не более 20% времени любого месяца; Uр - напряжение размаха сигнала изображения; Uт.м и Uт.г - эффективное визометрическое напряжение теплового шума, вносимого соответственно одним модемом (м) и одним гетеродинным трактом; обычно Uт.м = 0.14…0.22 мВ, а Uт.г = 0.06…0.14 мВ; Uт i (20%) - эффективное визометрическое напряжение (превышаемое в течение не более 20% времени любого месяца) теплового шума, вносимого на i-м пролете.

1.4 Принципы построения аппаратуры с ВРК

На рисунке 1.4.1 приведена упрощённая структурная схема оконечной станции многоканальной системы с ВРК [6]. Непрерывное сообщение от каждого из абонентов u1(t) … uN(t) через соответствующие дифференциальные системы ДС1 … ДСN подаются на входы канальных модуляторов КМ1 … КМN. В канальных модуляторах в соответствии с передаваемым сообщением производятся модуляции импульсов, следующих через период дискретизации Тд, по одному из параметров, например, ФИМ. В соответствии со значением передаваемого непрерывного сообщения в момент отсчёта при ФИМ происходит изменение положения импульса постоянной амплитуды и длительности относительно середины канального интервала от +∆tm до - ∆tm. Промодулированные импульсы с выхода КМ, импульсы синхронизации от генератора синхронизации (ГИС), а также импульсы датчика служебной связи (ДСС), датчика сигналов управления и вызовов (ДУВ) объединяются. В результате получается групповой сигнал uгр (t). Для обеспечения работы канальных модуляторов и дополнительных устройств последовательности импульсов с частотой дискретизации Fд, сдвинутые относительно первого канала на i∆tк, где i - номер канала. Таким образом, моменты начала работы КМ определяются запускающими импульсами от РК, который определяет моменты подключения к общему широкополосному каналу соответствующего абонента или дополнительного устройства [1].

Полученный групповой сигнал uгр(t) подаётся на вход регенератора (Р), который придаёт дискретным сигналам различных каналов одинаковые характеристики, например одинаковую форму импульса. Все устройства, предназначенные для образования сигнала uгр(t): КМ1 … КМN, РК, ГИС, ДУВ, ДСС, Р - входят в аппаратуру объединения сигналов (АО), которая осуществляет объединение во времени всех сигналов и формирует групповой сигнал. Далее сигнал может передаваться на следующую станцию по проводным соединительным линиям или с помощью радиосвязи.

Рисунок 1.4.1 - Упрощённая структурная схема оконечной станции системы связи с ВРК

На приёме выделенный сигнал u*гр(t) подаётся на входы всех канальных демодуляторов КД1 … КДN и приемников служебной связи (ПСС), управления и вызова (ПУВ).

Канальные демодуляторы осуществляют разделение u*гр(t) на отдельные канальные сигналы, представляющие собой дискретные отсчёты, и восстановление по этим отсчётам непрерывных сообщений u*1(t) … u*N(t), соответствующих поданным на входы КМ в АО. Для обеспечения временного разделения канальных сигналов необходимо, чтобы каждый из КД открывался поочерёдно только в соответствующие данному каналу интервалы времени ∆tк. Это обеспечивается импульсами, снимаемыми с выходов РК′ аппаратуры разделения сигналов (АР), работающего аналогично РК в АО на передающем конце линии связи. Для обеспечения правильного разделения каналов РК′, который находится в АР, должен работать синхронно и синфазно с РК АО, что осуществляется с помощью импульсов синхронизации (ИС), выделяемых соответствующими селекторами (СИС) и блоком синхронизации (БС). Сообщения с выходов КД поступают к соответствующим абонентам через дифференциальные системы [2].

Помехоустойчивость систем передачи с ВРК во многом определяется точностью и надёжностью работы системы синхронизации и распределителей каналов, установленных в аппаратуре объединения и разделения каналов. Для обеспечения точности работы системы синхронизации импульсы синхронизации (ИС) должны иметь параметры, позволяющие наиболее просто и надёжно выделять их из последовательности импульсов группового сигнала u*гр(t). Наиболее целесообразным при ФИМ оказалось применение сдвоенных ИС, для передачи которых выделяют один из канальных интервалов ∆tк в каждом периоде дискретизации Тд (смотри рисунок 1.4.2).

Рисунок 1.4.2 - Групповой сигнал при ВРК с ФИМ

Определим число каналов, которое можно получить в системе с ФИМ. На рисунке 1.4.2 показана последовательность импульсов при многоканальной передаче с ФИМ. Из рисунка следует, что

Тд = (2∆τмакс + τз)Nгр,(1.4.1)

где τз - защитный интервал; ∆τмакс - максимальное смещение (девиация) импульсов. При этом полагаем, что длительность импульсов мала по сравнению с τз и ∆τмакс.

Из формулы (1.4.1) получаем

;

максимальная девиация импульсов при заданном количестве каналов

,

принимаем , поэтому

.

Учитывая, что при телефонной передаче Тд = 125 мкс, получим при Nгр = 6 ∆τмакс = 8 мкс, при Nгр = 12 ∆τмакс = 3 мкс и при Nгр = 24 ∆τмакс = 1.5 мкс. Помехоустойчивость системы с ФИМ тем выше, чем больше ∆τмакс.

При передаче сигналов с ФИМ по радиоканалам на второй ступени (в радиопередатчике) может использоваться амплитудная (АМ) или частотная (ЧМ) модуляция. В системах с ФИМ - АМ обычно ограничиваются 24 каналами, а в более помехоустойчивой системе ФИМ - ЧМ - 48 каналами.

1.5 Методы оценки помех в каналах РРЛ

Как отмечалось ранее, на передачу сигналов по РРЛ, как и во всех радиосистемах, влияют помехи внешнего и внутреннего происхождения. К внешним помехам относят космические и атмосферные шумы, индустриальные помехи и сигналы от других радиосистем [1]. Уровень этих помех обычно удается свести к минимуму с помощью тех или иных организационных мер (соответствующий выбор частот, фильтрация мешающих радиосигналов, правильное размещение станций и тому подобное). Если РРЛ работает в диапазоне дециметровых или сантиметровых волн, то влиянием индустриальных помех можно пренебречь.

Особое внимание при организации РРЛ приходится уделять внутрисистемным помехам. К ним относятся флуктуационные (тепловые и дробовые) шумы, аппаратурные шумы (пульсации питающих напряжений, шумы коммутации и другие) и специфические помехи, обусловленные искажениями широкополосных сигналов при прохождении через тракты с неидеальными характеристиками. При многоканальной передаче такие помехи проявляются как переходные. Для уменьшения влияния флуктуационных шумов (обычно их сводят к тепловым шумам) приходится увеличивать «энергетический потенциал» системы, то есть увеличивать мощность передатчиков (при некоторой заданной средней протяженности пролетов), уменьшать шумовую температуру приемников (например, применением параметрических усилителей на входе приемников), увеличивать коэффициент усиления антенн и тому подобное. Борьба с аппаратурными шумами ведется путем совершенствования аппаратуры и порядка ее эксплуатации.

Тепловые шумы в телефонных каналах. При передачи по телефонным каналам сигналов в аналоговой форме тепловые шумы накапливаются (суммируются по мощности) по мере прохождения сигнала через различные элементы тракта от одной станции до другой. Качество телефонного канала принято характеризовать мощностью помех в точке нулевого относительного уровня сигнала на выходе ТФ канала. Эта мощность определяется многими слагаемыми. Шумовые свойства всех блоков линейной части приемника до АО учитываются коэффициентом шума приемника Ш. При этом полная эквивалентная мощность теплового шума, отнесенного ко входу приемника (при условии согласования его входного сопротивления с сопротивлением эквивалентного источника шума),

,(1.5.1)

где k - постоянная Больцмана; Т - абсолютная температура окружающей среды (обычно принимают Т=290 К); Пэ - эффективная полоса шумов приемника, которая обычно принимается равной ширине полосы ∆fп.ч тракта промежуточной частоты; Рт.вых - мощность шума на выходе линейной части приемника, имеющей коэффициент усиления по мощности, равный Км. Если принять, что мощность Рт.вх равномерно распределена в полосе Пэ, то спектральная плотность мощности, выделяемой на сопротивлении 1 Ом,

Gт.вх = kТШRвх,(1.5.2)

Уровень шума на входе ЧД зависит от уровня сигнала на входе приемника uс(t).

На рисунке 1.5.1,а представлена векторная диаграмм, из которой видно, что в результате сложения случайного вектора шума Uт.вх(t), отображающего uт.вх(t), с вектором сигнала Uc, отображающим uс(t), образуется случайный вектор U∑(t), отображающий суммарный сигнал

,(1.5.3)

Из векторной диаграммы следует, что в результате действия теплового шума полезный сигнал в приемнике приобретает паразитную амплитудную (АМ) и фазовую (ФМ) модуляцию. Как отмечалось выше, паразитная АМ обычно устраняется АО. Влияние же паразитной ФМ, обусловлено случайным изменением фазы φ(t) сигнала u∑(t), может быть уменьшено только увеличением энергетического потенциала системы, то есть увеличением uc(t). Из векторной диаграммы следует, что девиация фазы φ(t) непосредственно зависит от величины модулей Uc и Uт.вх(t).

Рисунок 1.5.1 - Векторное (а) и спектральное (б,в) представления сигнала и теплового шума на входе (а,б) и выходе (в) приемника

Таким образом, случайные изменения фазы частотно-модулированного сигнала при частотном детектировании его трансформируются в случайные изменения амплитуды сигнала, то есть проявляются в виде шума [3].

Мощность теплового шума в канале ТЧ на i-м интервале РРЛ может быть определена по формуле:

,(1.5.4)

где  - коэффициент шума приемника; ∆Fк = 3.1 кГц - ширина полосы i-го канала ТЧ; Fк - значение центральной частоты канала ТЧ в групповом сигнале; ∆fк - эффективная девиация на канал; βпр - коэффициент учитывающий предыскажения сигнала; Кп - псофометрический коэффициент.

В телефонных каналах обычно нормируется псофометрическая (взвешенная) мощность шума в точке с нулевым относительным уровнем, в которой средняя мощность измерительного сигнала равна 109 пВт 0. Псофометрический коэффициент отражает реальное восприятие различных составляющих спектра шума и для канала ТЧ  выбирается равным 0.56 (-2.5 дБ). При измерениях шумов в канале используются псофометрические фильтры для телефонных и вещательных и визометрические для телевизионных каналов. Характеристики этих фильтров приведены на рисунках 1.5.2 и 1.5.3 соответственно.

Мощность сигнала на входе приемника Рпр i зависит от параметров аппаратуры, условий распространений радиоволны [5]. Первоначально ориентируются на конкретную величину Рпр i = Рпр i (20%) - мощность сигнала на входе приемника, которая может уменьшаться в течении не более 20% времени любого месяца

,(1.5.5)

где Рпр.св - мощность без учета влияния условий распространения радиоволн; V20% - величина множителя ослабления, ниже которой он может быть в течение не более 20% времени любого месяца наблюдения. Обычно выбирают V20% ≈ 0.5.

Рисунок 1.5.2 - амплитудно-частотная характеристика псофометрических фильтров для телефонных (1) и вещательных каналов (2)

Рисунок 1.5.3 - Частотная характеристика унифицированного визометрического фильтрова


С учетом вышеизложенного

,(1.5.6)

где Рп [Вт] - мощность передатчика; Gп, Gпр - коэффициенты передающей и приемной антенн соответственно; λ - длина волны; Ri - расстояние между станциями; ηп, ηпр - коэффициент полезного действия антенно-волноводного тракта передающей и приемной станции соответственно.

,(1.5.7)

где аАВТ [дБ] - суммарное ослабление сигнала в АВТ.

Формула (1.5.6) через V20% учитывает долговременное состояние тропосферы, при этом среднеминутная псофометрическая мощность шума равная 7500 пВт может превышаться в течении не более t=20% времени любого месяца.

В тоже время на интервалах РРЛ могут иметь место глубокие замирания сигнала из-за изменения состояния тропосферы.

Для более глубоких замираний может допускаться большая мощность шума, но на более коротких интервалах времени.

Так, среднеминутная псофометрическая мощность шума 47500 пВт0 может превышаться в течение не более t = 0.1 % времени любого месяца, а средняя за 5 мс не взвешенная мощность шума 106 пВт0 может превышаться в течение не более t = 0.01 % времени любого месяца. Указанные нормы приведены для эталонной линии протяженностью 2500 км.

В общем случае множитель ослабления V(t) интегрально учитывает влияние на процесс распространения радиоволн Земли и тропосферы. V(t) - векторная величина, но во многих случаях достаточно знать ее модуль

|V(t)| = V(t) = E(t)/E0,(1.5.8)

где Е(t) и Е0 - модули напряженности электрического поля на входе приемной антенны при распространении радиоволн соответственно в реальных условиях (с учетом влияния тропосферы и Земли) и в свободном пространстве. В общем случае V(t) - случайная функция времени, и, например, V(20%) находится с использованием некоторых статических данных.

Из-за неоднородностей тропосферы радиоволны распространяются в ней по криволинейной траектории, что получило название тропосферной рефракции [5]. Электрические свойства тропосферы характеризуются степенью изменения диэлектрической проницаемости воздуха по высоте и определяются градиентом диэлектрической проницаемости .

Профилем пролета называется вертикальный разрез местности между двумя соседними радиорелейными станциями с учетом леса, строений и особенностей рельефа. Пример такого профиля показан на рисунке 1.5.4. При этом в качестве определяющего параметра выбирается величина просвета (зазора) Н между линией «прямой видимости» АВ, соединяющей центры антенн, и ближайшей к ней (по вертикали) точкой препятствия С (на рисунке 1.5.4 изображен вариант профиля с одним препятствием; в специальных пособиях по расчету и проектированию РРЛ [11,14] рассматриваются также профили, когда в минимальную область пространства попадает несколько препятствий). Просвет Н считается положительным, если линия АВ проходит выше препятствия, и отрицательным, если эта линия пересекает профиль пролета.

Механизм распространения радиоволн на участке от передающей антенны (будем считать, что она установлена в точке А, рисунок 1.5.4) до приемной (в точке В) существенно зависит от величины просвета Н, что, естественно, накладывает отпечаток и на методику расчета, в частности, множителя ослабления V. При этом можно выделить три основные группы пролетов (для некоторого фиксированного состояния тропосферы):

. открытые, когда Н ≥ Н0;

. полуоткрытые, когда Н0 > Н ≥ 0;

. закрытые, когда Н < 0.

Через Н0 здесь обозначен просвет, при котором в точке приема векторная сумма напряженности поля прямого и отраженного сигналов равна напряженности поля в свободном пространстве (V = 1). В общем случае [11]

,(1.5.9)

где к1 = R1/R - относительная координата точки препятствия С.

Рисунок 1.5.4 - Профиль пролета РРЛ прямой видимости

Профиль пролета позволяет учесть влияние Земли на процесс распространения радиоволн [6]. В частности, с помощью профиля можно получить представление об отражении радиоволн от поверхности Земли. Но в целом характер передачи сигналов на участке АВ будет весьма приближенным, если не учесть влияния тропосферы. При этом прежде всего приходится считаться с рефракцией радиоволн, то есть искривлением траектории волн (АВ на рисунке 1.5.4), обусловленным неоднородным строением тропосферы. Основную роль здесь играет неоднородность тропосферы в вертикальной плоскости. Рефракцию учитывают тем, что в величину просвета над определяющими точками (на рисунке 1.5.4 - точка С) вносится поправка

,(1.5.10)

Таким образом, зависящая от g величина просвета H(g) = H + ∆H(g).

При изменении метеорологических условий на пролете изменяются величины g и H(g), что может привести к резким колебаниям множителя ослабления, а следовательно, и уровня сигнала на входе приемника. На открытых пролетах (Н ≥ Н0) напряженность поля в точке приема определяется в основном интерференцией прямой и отраженных от земной поверхности волн. В случае одной отраженной волны (как на рисунке 1.5.4) множитель ослабления для реальных условий можно представить в виде [11]

,(1.5.11)

где |Ф| - модуль коэффициента отражения от земной поверхности, а

,(1.5.12)

относительный (нормированный) просвет. Из (1.5.11) следует, что при p(g)≥1 максимальные значения множителя ослабления чередуются с минимальными (рисунок 1.5.5).

Рисунок 1.5.5 - Зависимость множителя ослабления V от относительного просвета p(g) и параметра μ

На полуоткрытых и закрытых пролетах, где p(g) < 1, уровень поля в точке приема обусловлен главным образом процессом дифракции радиоволн, то есть огибанием ими земной поверхности. Множитель ослабления V в этом случае рассчитывается на основе приближенных методов, с применением аппроксимации реального препятствия частью сферической поверхности. Прежде чем найти V, необходимо применить параметр μ, характеризующий радиус кривизны сферы, аппроксимирующей препятствие, и зависящий от высоты ∆y и хорды  сегмента аппроксимирующей сферы [11]. На полуоткрытых пролетах и пролетах с малым закрытием хорда r определяется из профиля пролета (рисунок 1.5.5) как расстояние между точками пересечения препятствия линией, параллельной АВ и отстоящей от вершины на величину ∆y = Ho. Для пролетов, имеющих среднюю протяженность и одно препятствие, во многих случаях можно руководствоваться приближенным значением V, определяемым из графиков рисунок 1.5.5, полагая, что

, (1.5.13)

где α = ∆y/H0 = 1, ℓ = r/R, к1 =R1/R.

Как видно из рисунка 1.5.5, множитель ослабления V может изменяться в широких пределах. Для оценки устойчивости связи необходимо знать минимально допустимое значение множителя ослабления Vi min на каждом i-м пролете. Под Vi min понимается такое значение Vi, при котором суммарная мощность помех (Pп.вых) или отношение (Uт/Up)2 в канале на конце линии равны максимально допустимым значениям Pп.вых max или (Uт/Up)2max, определяемым соответствующими рекомендациями для малых процентов времени.

В конечном счете расчет сводится к определению процента времени, в течении которого на выходе канала суммарная мощность шумов может быть больше максимально допустимой (Ршт.max). На пролете это условие соответствует вероятности того, что множитель ослабления будет меньше минимального допустимого значения T(V<Vmin), поскольку при V=Vmin шумы на выходе канала равны максимально допустимым. Множитель ослабления на пролете может стать меньше Vmin только при глубоких замираниях, которые вызываются независимыми друг от друга причинами. Поэтому, вероятность того, что на пролете будут наблюдаться значения V<Vmin равна сумме замираний различного вида:

, (1.5.14)

где n - количество интервалов; Т0 (V<Vmin) - вероятность того, что V<Vmin за счет экранирующего действия препятствия; ∑Тп(V<Vmin) - вероятность того, что V<Vmin за счет интерференции прямой волны и волны, отраженной от поверхности Земли; Ттр(V<Vmin) - вероятность того, что V<Vmin за счет интерференции прямой волны и волны, отраженной от слоистых неоднородностей в тропосфере; Тд(V<Vmin) - вероятность того, что V<Vmin за счет ослабления радиоволны в осадках.

Для телефонного ствола на j-ом интервале

,(1.5.15)

где Мтф[пВт0/км2] - параметр, характеризующий аппаратуру телефонного ствола. Более подробно о порядке расчета устойчивости РРЛ для 0.1% и 0.01% времени смотрите [4]

Переходные помехи, вносимые в телефонный канал групповым трактом. Эти помехи обусловлены нелинейностью амплитудных характеристик устройств группового тракта (усилителей, модуляторов, демодуляторов и так далее). Эти помехи можно рассчитать по формуле:

,пВт, (1.5.16)

где ∆Fк = 3.1 кГц - ширина телефонного канала; Fв, Fн - верхняя и нижняя частот группового сигнала; Рср - средняя мощность многоканального сообщения; y2(δ), y3(δ) -коэффициенты, учитывающие распределение мощности нелинейных шумов в групповом спектре по 2-ой и 3-ей гармоникам соответственно, где δ = (F-Fн)/(Fв-Fн), а F - некоторая частота в групповом спектре, в области которой определяются шумы. Графики y2(δ) и y3(δ) для различных значений β=Fв/Fн приведены на рисунке 1.5.6.

Рисунок 1.5.6 - Графики зависимостей y2(δ),y3(δ), а2(δ) и а3(δ)

а2(δ), а3(δ) - поправочные коэффициенты, учитывающие перераспределение шумов в групповом спектре из-за введения предыскажений (рисунок 1.5.6,в). К2к(δ), К3к(δ) - коэффициенты нелинейности по 2-й и 3-й гармоникам элементов группового тракта измеренные при измерительном уровне [4].

Переходные помехи из-за неравномерности амплитудно-частотных характеристик (АЧХ) и группового времени запаздывания (ГВЗ) элементов ВЧ тракта. Эти шумы могут быть рассчитаны по формуле:

, пВт, (1.5.17)

где ,  - коэффициенты учитывающие неравномерность ГВЗ: (∆τ+) - при отклонении частоты ЧМ-сигнала от ω0 на +∆ω и (∆τ-) - на -∆ω; Fк - частота в области которой оцениваются шумы.

2. Цифровые радиорелейные линии

.1 Радиорелейные системы связи с ВРК и цифровыми методами передачи

Особенности применения цифровых методов передачи на РРЛ.

Возможны следующие способы построения цифровых радиорелейных линий:

) передача информации в цифровой форме по телефонным или телевизионным стволам аналоговых РРЛ одновременно с аналоговым телевизионным или многоканальным телефонным сообщением;

) организация передачи только цифрового потока в стволе аналоговой РРЛ;

) организация цифровых радиорелейных систем, по которым передается только цифровая информация; по таким системам могут передаваться цифровые потоки от ЦСП любой ступени иерархии; в этом случае используются различные способы модуляции (АМ, ЧМ, ФМ), в том числе многопозиционные.

В настоящее время большинство магистральных РРЛ оснащено современным оборудованием синхронной цифровой иерархии [7].

Однако сегодня на сетях связи страны еще имеется большое количество РРЛ с ЧРК-ЧМ. Поэтому внедрение цифровых методов передачи информации путем создания цифровых линейных трактов на базе аналоговых РРЛ является целесообразным.

Такой подход обусловлен рядом причин: 1) незначительным объемом арендуемых цифровых каналов; 2) недостаточным пока объемом ввода в действие оборудования цифровой коммутации; 3) организацией передачи ТВ сигналов на сетях магистральной и внутризоновой связи только в аналоговом виде; 4) возможностью в кратчайшие строки при минимальных затратах образовывать на магистральных и внутризоновых линиях цифровые каналы стерео- и моновещания, передачи газетных полос, видео телефонной связи, видеоконференц связи и так далее, качественные показатели которых выше, чем у аналоговых, а также цифровые каналы и тракты магистральной и внутризоновых первичных сетей; 5) возможностью создания на внутризоновых линиях смешанных аналого-цифровых систем, в которых сигналы телефонии передаются в цифровом виде, а ТВ сигналы - в аналоговом с сохранением единой системы управления РРЛ.

Аналогично осуществляется организация цифровых трактов первичных, вторичных, а в будущем - и третичных ЦСП на магистральных и внутризоновых линиях ВСС на основе действующих аналоговых РРЛ путем установки только дополнительного оконечного цифрового оборудования. Тогда применение частотной модуляции сигнала ПЧ позволяет полностью сохранить системы управления аналоговых РРЛ.

При реализации первого варианта обобщенная структурная схема аналого-цифрового ствола имеет вид рисунок 2.1.1

Рисунок 2.1.1 - Обобщенная структурная схема аналого-цифрового ствола

Особенность организации цифровых линейных трактов в аналоговых РРЛ заключается в возможности оперативного образования цифровых каналов в случае необходимости быстрого удовлетворения потребности различных служб связи. Это обеспечивается использованием действующей РРЛ с готовой инфраструктурой.

При создании цифровых линейных трактов на базе существующих аналоговых РРЛ основное внимание уделяется максимальному использованию их оборудования, включая частотные модемы и систему управления, поскольку это позволяет передавать цифровые сигналы наиболее простыми средствами. Такому требованию отвечает серийно выпускаемая аппаратура ОЦФ-2У и ОЦФ-8. С помощью первой можно передавать цифровые сигналы со скоростью 2.048 Мбит/с в основной полосе частот одного радиорелейного ствола совместно с телевизионным сигналом (без звуковых поднесущих) или с сигналом многоканальной телефонии (до 1320 каналов ТЧ) [1].

В потоке 2.048 Мбит/с могут быть организованны каналы цифрового вещания (до шести каналов высшего класса при использовании аппаратуры ИКМ-В6/12); 30 основных каналов (ОЦК); каналы передачи газетных полос, видеоконференцсвязи и так далее. В аппаратуре ОЦФ-2У передача цифровых сигналов организованна на поднесущей 7.5 или 7.3 МГц методом офсетной фазовой манипуляции (ФМ) при ширине полосы, занимаемой ФМ сигналом, около 1.6 МГц. Фазоманипулированный сигнал, передаваемый со скоростью 2.048 Мбит/с, располагается на свободном участке спектра основной полосы частот между аналоговым сигналом и пилот-сигналом системы резервирования оборудования аналоговых РРЛ. Аппаратура ОЦФ-2У стыкуется с каналообразующей аппаратурой первичной ЦСП и обеспечивает преобразование цифровых сигналов для передачи по аналоговым РРЛ, а также контроль входного и выходного сигналов и индикацию ошибок без перерыва связи.

На рисунке 2.1.2 приведено распределение спектра основной полосы частот аналого-цифрового радиорелейного ствола при использовании аппаратуры ОЦФ-2У для телефонного (а) и телевизионного (б) стволов (на этом рисунке: СС, ТО, СР - соответственно сигналы служебной связи, телеобслуживания, системы резервирования). ОЦФ-2У и ОЦФ-8 представляют собой оконечное цифровое оборудование и служат для организации цифрового радиорелейного тракта в стволе аналоговой РРЛ (рисунок 2.1.3); на этом рисунке: АООРС - аналоговое оконечное оборудование радиорелейного ствола, УС - устройство сложения, УР - устройство разделения.

Рисунок 2.1.2 - Распределение спектров для телефонного (а) и телевизионного (б) стволов

Рисунок 2.1.3 - Обобщенная схема подключения оконечного цифрового оборудования к аналоговой РРЛ (а) - передача, (б) - прием

Устройствами сложения (разделения) для аппаратуры ОЦФ-2У служат неравноплечие согласованные тройники, а для аппаратуры ОЦФ-8 - вилки фильтров ДК-55.

Схема подключения ОЦФ-2У к аппаратуре «Восход» приведена на рисунке 2.1.4. На этом рисунке: Вх. ФМ и Вых. ФМ - входной и выходной сигналы фазоманипулированной цифровой поднесущей; ФФК - фильтр цифровых поднесущих; СрПд и СрПм - соответственно блоки сложения и разделения аналоговых и цифровых сигналов; Разв. - разветвитель; ВУ - видеоусилитель; БП Дм - блок переключения демодуляторов; ПСК и ВСК - соответственно контура предыскажения и восстановления.

Рисунок 2.1.4 - Схема подключения ОЦФ-2У к аппаратуре «Восход»

Структурная схема подключения ОЦФ-8 к радиорелейной аппаратуре (на примере стойки СО аппаратуры «Курс») показана на рисунке 2.1.5. На этом рисунке КСКП - блок коррекции кабельной линии, Разв. - разветвители, Атт - аттенюаторы, ДК-55 - вилка фильтров сложения (разделения) служебных сигналов и телефонии, КмМд и КмДм - соответственно коммутаторы модулятора и демодулятора.

Рисунок 2.1.5 - Схема подключения ОЦФ-8 к телефонному стволу аппаратуры «Курс»

При организации передачи по второму способу на РРЛ подается линейный цифровой сигнал (ЛЦС) получаемый от цифровой системы передачи (ЦСП) [1].

Этот цифровой сигнал после некоторых преобразований модулирует СВЧ несущую. Модуляция несущей дискретным сигналом называется манипуляцией (подробнее смотри раздел 2.2). Если в ЦСП применена ИКМ, а в РРЛ - амплитудная модуляция (АМ), то говорят о передаче ИКМ-АМ сигнала по РРЛ.

Перспективным направлением является применение многопозиционных методов манипуляции, позволяющих повысить пропускную способность ЦФ ствола без расширения полосы частот приемно-передающей радиорелейной аппаратуры. Такие методы частот используются для передачи бинарных (относительных бинарных) ЛЦС, при этом число позиций (уровней) манипуляции М = 2n. В общем виде цифровые сигналы с многопозиционной ЧМ обозначаются ИКМ-МЧМ, с многопозиционной ФМ - ИКМ-МФМ и тому подобное, либо вместо М указывается его числовое значение, например, ИКМ-4ФМ [7].

На рисунке 2.1.6. показана функциональная схема ЦФ ствола РРЛ на примере ОРС при М = 4. На ОРС поступают ЛЦС по соединительной линии СЛ от ЦСП, например, от ИКМ-30 (при М = 4, n =2, то есть нужны две ЦСП). Передаются ЛЦС обычно в квазитроичном коде. Схема ОРС содержит оконечное оборудование ЦФ ствола ОКОЦФ, приемно-передающее радиорелейное оборудование (модулятор МД, передатчик СВЧ колебаний ПСВЧ, приемник СВЧ колебаний ПрСВЧ, демодулятор Д), антенно-фидерный тракт АФТ и антенну.

Рисунок 2.1.6 - Функциональная схема ЦФ ствола РРЛ на примере ОРС при М = 4

В составе передающей части ЦСП показаны АИМ-тракт, на выходе которого образуется многоканальный сигнал с АИМ; кодер, на выходе которого получаем двоичный цифровой сигнал (ЦС); преобразователь кода (ПК3), на выходе которого получаем линейный цифровой сигнал (ЛЦС).

Выбор кода ЛЦС определяется особенностями передачи его по соединительным линиям, в качестве которых используются симметричные или коаксиальные кабели. Важным параметром ЛЦС является его спектр. Спектральная плотность однополярного двоичного цифрового сигнала в общем случае состоит из постоянной составляющей, непрерывной части и дескретных компонент на частотах fk = k∙fт, где fт - тактовая частота, k = 1,2,3…. По кабельным соединительным линиям постоянная составляющая ЛЦС не передается. Возникают искажения ЛЦС из-за ограничения полосы в линейном тракте как со стороны нижних частот (из-за наличия переходных конденсаторов и согласующих трансформаторов), так и со стороны верхних частот (с ростом частоты увеличивается затухание кабеля). Поэтому целесообразно выбрать такой ЛЦС, который не содержит постоянной составляющей и имеет максимум спектральной плотности энергии в области средних частот. Этим требованиям отвечает спектр квазитроичного ЛЦС. Заметим, что при любом варианте квазитроичного кода ЛЦС представляет собой трехсимвольную импульсную последовательность: -1, 0, +1. При чем «0» кодируется отсутствием импульса, «1» - поочередно импульсами положительной и отрицательной полярности.

Следовательно, преобразователь кода ПК3 служит для согласования спектра ЛЦС с частотной характеристикой соединительных линий. Он осуществляет формирование ЛЦС в квазитроичном коде из двоичного цифрового сигнала, а ПК4 выполняет обратное преобразование [1].

В составе приемной части ЦСП показаны регенератор РЕГ3, преобразователь кода (ПК4), декодер и АИМ-тракт. Устройства ПК4 и ПК3 служат для согласования спектра ЛЦС с частотной характеристикой СЛ.

Оконечное оборудование ЦФ ствола часто называют устройством сопряжения, так как оно служит для сопряжения ЦСП с передающим (приемным) радиорелейным оборудованием. Передающая часть ОКОЦФ содержит регенераторы РЕГ1, преобразователи кодов ПК1, скремблеры СКР и суммирующее устройство (∑), а в составе приемной части - дескремблеры (ДСКР), преобразователи кода ПК2 и регенераторы РЕГ2.

Регенераторы служат для восстановления формы, длительности и амплитуды каждого из символов ЛЦС. При этом РЕГ1 служат для исправления искажений, вызванных СЛ (такое же назначение имеет РЕГ3 в ЦСП), а РЕГ2 - для исправления искажений, возникающих при передаче сигнала по РРЛ. В ПК1 производится преобразование квазитроичного ЛЦС в бинарный (или относительный бинарный). Этот сигнал в отличие от ЛЦС будем называть двоичным (бинарным) ЦС или двухуровневым ЦС. Длительность импульса двоичного ЦС, соответствующего передаче одного символа, обычно равна тактовому интервалу Т. Обратное преобразование двоичного ЦС в ЛЦС происходит в ПК2. При передаче длинных серий символов 0 (или 1) подряд на тактовых интервалах, на выходе ПК1 могут появиться отрицательные (или положительные) импульсы большой длительности (К∙Т). Это наблюдается, например, при передаче измерительных сигналов, малой загрузке и в других случаях. В этом случае в двоичном ЦС появляются постоянная и НЧ составляющие и уменьшается плотность энергии на тактовой частоте. Если этот ЦС передать по РРЛ, то на приеме из него будет трудно выделить колебания тактовой частоты, необходимые для нормальной работы регенератора и других устройств. В результате могут наблюдаться срывы систем тактовой синхронизации по всей РРЛ.

Передача таких ЦС по ЦРРЛ нежелательна ещё и потому, что ухудшает условия электромагнитной совместимости. Действительно, при передаче импульсов длительностью К∙Т, энергия сигнала на выходе передатчика оказывается сосредоточенной в более узкой полосе, чем при передаче последовательности символов 0 и 1. Вследствие чего при работе нескольких РРС в общей полосе частот возрастают помехи другим станциям от этого передатчика. Поэтому двоичный ЦС до того, как поступит на модулятор, подвергается специальному преобразованию - скремблированию в СКР, в результате которого импульсы большой длительности К∙Т превращается в последовательность положительных и отрицательных импульсов длительностью от Т до R∙T, где R<K. В результате скремблирования увеличивается период повторения для последовательности символов двоичного ЦС.

В ОРС (рисунок 2.1.6) двоичные ЦС с выхода СКР поступают на ∑, где объединяются в один четырехуровневый сигнал (в общем случае многоуровневый ЦС). Сумматор представляет собой ПК, в котором каждому возможному сочетанию полярностей импульсов входных двоичных ЦС ставиться в соответствие определенный входной уровень в зависимости от принятого кода.

Многоуровневый ЦС используют для модуляции. На выходе ПСВЧ модулируемый параметр СВЧ сигнала может принимать одно из М дискретных значений. Например, при ИКМ-4ЧМ несущая частота СВЧ сигнала на каждом интервале длительностью Т принимает одно из следующих четырех значений: f1, f2, f3, f4. При ИКМ-4ФМ начальная фаза СВЧ сигнала на каждом интервале длительностью Т может принимать одно из таких значений: ±45º, ±135º (либо в других ЦРРЛ: 0º, 90º, 180º, 270º). Длительность импульсов на входе и выходе ∑ одинакова. Следовательно, приемно-передающая аппаратура ЦРРЛ при четырехпозиционной модуляции может иметь ту же полосу пропускания, что и при двухпозиционной (кроме систем с ЧМ), однако пропускная способность ствола увеличена вдвое.

Разделение на приеме многоуровневого сигнала на отдельные двоичные ЦС обычно происходит в демодуляторе. На ОКОЦФ поступает несколько ЦС (рисунок 2.1.6 - два ЦС). Дескремблеры выполняют преобразование ЦС, обратное скремблированию, то есть восстанавливают сигнал, идентичный входному сигналу скремблера (при условии, что прием без ошибок).

В рассмотренной схеме сначала отдельные двоичные ЦС объединяются в многоуровневый сигнал, которым затем осуществляется манипуляция. Наряду с этим существуют схемы, где сначала производится манипуляция двоичным ЦС нескольких несущих ПЧ или СВЧ, а затем эти манипулированные сигналы объединяются. Если же число передаваемых ЛЦС (n) велико, то могут использоваться обе ступени объединения (как бинарных ЦС, так и СВЧ сигналов), например в системе 16 КАМ. Если на ОРС поступает по одной СЛ высокоскоростной ЛЦС, например, В = 140 Мбит/с, спектр которого значительно шире, чем полоса ствола П = 30 МГц, то ∑ в схеме (рисунок 2.1.6) будет выполнять более сложные функции. Он должен разделить ЛЦС на несколько бинарных ЦС с меньшей скоростью и сформировать из них многоуровневые сигнал, один или несколько.

При использовании действующих аналоговых РРЛ для организации ЦРЛТ оказывается несколько сложным выполнить все требования МККР по показателям качества, особенно на магистральной сети. Главным образом, это касается параметра «секунды с ошибками». Дело в том, что переключение на резерв в действующих РРЛ с ЧРК-ЧМ осуществляется на ПЧ. Время переключения даже при предварительном подключении резервного ствола составляет около 2 мкс. Кроме того, в аналоговых системах нет проскальзывания и выравниванию времени пробега сигнала по рабочему и резервному должного внимания не уделялось. Поэтому при переключении на резерв в цифровом тракте, образованном в аналоговых РРЛ, возможно появление проскальзывания, если не принять меры по выравниванию времени пробега. Сегодня такая операция осуществляется с помощью кабеля, дополнительно устанавливаемого в тракте ПЧ, что не всегда бывает оптимальным. Наиболее целесообразно проводить выравнивание в цифровой форме, что требует установки модема в резервном стволе и модификации оконечного цифрового оборудования. Выравнивание трактов при пространственно-разнесенном приеме возможно только путем регулировки длин кабельных перемычек и волноводов.

Следует также отметить, что устойчивость (проценты SES И DM) ЦРЛТ (цифровых радиорелейных трактов), организованных на основе существующих аналоговых РРЛ, зависит от их качественных показателей. Данные предварительных испытаний подтверждают возможность обеспечения высоких показателей качества и готовности таких ЦРЛТ. Тем не менее, для них необходимо провести дополнительные долговременные исследования на различных РРЛ для проверки выполнения норм рекомендаций МСЭ. В то же время, при пакетной коммутации и возможности переспроса описываемые ЦРЛТ могут с высоки качеством удовлетворять требованиям различных абонентов. Однако на магистральных РРЛ во всех случаях обеспечивается норма на остаточный коэффициент ошибок [25].

Скорости передачи информации в РРЛ тесно связанны с видом используемой технологии. Технология PDH - наиболее «старая» и традиционная, она развивается уже более двадцати лет. Широко используются два стандарта - Североамериканский, со скоростью передачи первичного потока 1544 кбит/с, и стандарт Европейской конференции администрации почт и связи (СЕПТ) со скоростью передачи первичного потока 2048 кбит/с.

В России используется лишь стандарт СЕПТ, согласно которому вторичный поток образуется асинхронным объединением 4 потоков 2048 кбит/с (обозначаются Е1) и имеет скорость потока 8448 кбит/с (обозначается Е2). Третичный поток Е3 имеет скорость 34368 кбит/с и объединяет четыре асинхронных потока Е2. Самый мощный - четверичный поток Е4 имеет скорость 139264 кбит/с и объединяет 4 потока Е3.

В 80-е годы системы PDH широко распространялись по всему миру в связи с удешевлением цифровой микроэлектроники (и, следовательно, мультиплексоров), РРС и ВОЛС, которые позволили транспортировать потоки 140 Мбит/с, эквивалентные 1920 каналам 64 кбит/с. Появились тенденции еще большего увеличения емкости потоков.

Но в 90-х годах стала актуальна непосредственная передача данных, например со скоростью 64 кбит/с (с протоколом Х.25) - для обеспечения межбанковских операций. Оказалось, что к этому PDH не очень приспособлена.

Так при связи между телефонными узлами PDH позволяет достаточно эффективно передавать большие потоки телефонных сигналов между ними, и мультиплексирование (то есть «сборка» и «разборка» телефонных сигналов) производится лишь на оконечных пунктах. Когда требуется связать между собой несколько отделений банка, офисы и тому подобное потоками 64 кбит/с или 2 Мбит/с, вводя и выводя их в каждом пункте из группового потока 140 Мбит/с, каждому пользователю необходимо проводить трехуровневое демультиплексирование сигнала PDH (разложить Е4 на четыре потока Е3, затем нужный поток Е3 - на 4 потока Е2, затем один поток Е2 - на четыре потока Е1). После ответвления абонентского потока Е1 нужно снова произвести - в обратном порядке - полную сборку сигнала Е4. При наличии многих таких пользователей сеть становится экономически невыгодной [25].

Вторая проблема технологии PDH - явно недостаточные возможности в организации служебных каналов для контроля и управления потоком в сети, почти полное отсутствие средств маршрутизации потоков низшего уровня.

В последние годы, указанные недостатки PDH частично исправляются с помощью РРС.

Во-первых, в РРС производится трансформация скорости: в структуру входных потоков вводятся дополнительные биты, позволяющие полностью решать все задачи управления радиорелейной сетью, а также обеспечивать необходимое кодирование и другие функции, повышающие надежность связи.

Во-вторых, в РРЛ используется преимущественно однократное мультиплексирование: потоки Е3 получают непосредственно объединением 16 потоков Е1, минуя формирование Е2. Новое поколение РРЛ PDH непосредственно стыкуется с потребителями по стыкам Е1 (количество стыков Е1 может быть до 16).

Выпуск мультиплексоров потоков Е4 практически прекратился: подобные объемы информации стало удобнее передавать синхронными методами, в сетях SDH. В России системы с Е4 (на 1960 каналов ТЧ) не успели найти широкого применения, но за рубежом в эксплуатации находится большое число РРЛ такой емкости; новые РРЛ с мультиплексорами Е4 уже не разрабатываются.

В настоящее время имеется достаточно много образцов оконечной аппаратуры для цифровизации аналоговых РРЛ:

Модем МДП-2 предназначен для передачи и приема цифрового потока 2048 кбит/с на модулированной поднесущей в спектре группового сигнала аналоговой радиорелейной линии.

Оборудование УВВ-Пн обеспечивает выделение и ввод поднесущей, передаваемой в групповом спектре, при ретрансляции сигнала ПЧ на промежуточной радиорелейной станции.

Аппаратура АЦТ-8-4/2 предназначена для передачи 4 асинхронных цифровых потоков 2048 кбит/с в стволе РРЛ. АЦТ-8-4/2 используется как оконечное оборудование РРЛ для организации соединительных линий между АТС, между узлами связи и земными станциями спутниковой связи, в сетях распределения программ радиовещания и т. п.

Аппаратура АЦТ-17-8/2 предназначена для передачи 8 асинхронных цифровых потоков 2048 кбит/с в стволе РРЛ. АЦТ-17-8/2 используется как оконечное оборудование РРЛ для организации соединительных линий между АТС, между узлами связи и земными станциями спутниковой связи, в сетях распределения программ радиовещания и т. п.

Аппаратура АЦТ-34-16/2 предназначена для передачи 16 асинхронных цифровых потоков 2048 кбит/с в стволе РРЛ. АЦТ-34-16/2 используется как оконечное оборудование РРЛ для организации соединительных линий между АТС, между узлами связи и земными станциями спутниковой связи, в сетях распределения программ радиовещания и т. п.

Указанная оконечная аппаратура РРЛ - стыкуется с любым типом РРЛ (КУРС, ГТТ, РАКИТА, РАДУГА, КОМПЛЕКС и другие) по ПЧ 70 МГц. Содержит модемное и мультиплексорное оборудование, имеет систему телеконтроля и служебной связи, обеспечивает автоматическое резервирование сигналов. Позволяет преобразовать аналоговые РРЛ в цифровые.

С помощью аппаратуры АЦТ осуществлена успешная цифровизация аналоговой радиорелейной линии, состоящей из 38 пролетов общей протяженностью 1748 км.

Достоинство SDH - принципиальная возможность прямого доступа к любому из сигналов (преимущество принципа временного уплотнения), передаваемых в составе группового потока, минуя процедуры последовательного мультиплексирования.

Одно из исходных соображений, определивших выбор принципов SDH, - необходимость сопряжения будущих сетей SDH с существующими сетями PDH, чтобы интегрироваться с ними в единые цифровые сети.

Этого удалось достигнуть выбором в качестве первичного для SDH-сигнала с пакетной структурой с групповой скоростью передачи 155,52 Мбит/с. Каждый пакет (формат) имеет длительность 125 мкс, содержит 2430 байт, из которых 81 байт образует заголовок, несущий самую разнообразную служебную, в том числе и адресную информацию. Такой пакет назвали синхронным транспортным модулем 1-го уровня.

Структура STM-1 обеспечивает стыковку SDH почти со всеми существующими в мире сигналами PDH и позволяет создавать цифровые сети любой конфигурации. Вторичный уровень SDH - сигнал STM-4 с групповой скоростью 622,08 Мбит/с, третичный (STM-16) - скорость 2488,32 Мбит/с.

Предусмотрена также еще более высокая скорость STM-64 = 4 х STM-16 = 64 STM-1, т. е. 9953,28 Мбит/с.

Из указанных скоростей в РРЛ используются только STM-1 (очень редко - STM-4). Потоки STM-4 и выше рассчитаны главным образом на ВОЛС.

Однако для РРЛ трафик, обеспечиваемый форматом STM-1, является часто излишним, например, когда надо ответвить от магистральной линии часть информации и передать по РРЛ в местные, зоновые или локальные сети. Поэтому для передачи по РРЛ в SDH предусмотрен так называемый «подсигнал STM-1» с общей скоростью передачи 51,84 Мбит/с, равной 1/3 от скорости STM-1 (такой сигнал обозначают иногда STM-0). Структура сигнала STM-0 позволяет упаковывать в него потоки PDH: один поток Е3, до 21 потоков Е1, А также все сигналы PDH варианта США.

РРЛ с STM-0 - удобный мост, через который сети PDH могут подключаться к мощным линиям SDH (в том числе ВОЛС) [26].

Обзор существующего цифрового радиорелейного оборудования отечественных и зарубежных производителей приведен в приложении Б.

2.2 Основные виды манипуляции, применяемые в ЦРРЛ

Модуляция несущего колебания цифровым сигналом называется манипуляцией. От выбора вида манипуляции при заданной пропускной способности ЦРРЛ зависят такие важные характеристики ЦРРЛ, как полоса пропускания, восприимчивость к искажениям различного вида, стоимость аппаратуры и другие. В зависимости от назначения ЦРРЛ в них могут применяться различные разновидности фазовой, частотной, амплитудной манипуляции [1].

Различают двухуровневые и многоуровневые виды дискретной манипуляции. Так при двухуровневой АМ (ДАМ) амплитуда напряжения несущей частоты передатчика может принимать только два дискретных значения, например Uс и 0, как это показано на рисунке 2.2.1,б для случая передачи двоичного цифрового сигнала (рисунок 2.2.1,а). Таким же образом различают двухчастотные и многочастотные виды дискретной манипуляции. При двухчастотной ЧМ (ДЧМ) (иногда также называемой двухпозиционной ЧМ) амплитуда несущей постоянна, а частота может принимать только два дискретных значения, например f1 и f2 (рисунок 2.2.1,в). Соответственно и при дискретной фазовой модуляции различают двухфазную манипуляцию (ДФМ) (рисунок 2.2.1,г) и многофазные виды манипуляции. Многоуровневые, многочастотные и многофазные виды манипуляции используются либо для увеличения пропускной способности цифровых радиоканалов без расширения полосы пропускания аппаратуры, либо для передачи цифровой информации, использующей коды с многозначными символами (mс>2), например, третичные, четвертичные или другие коды [7.1].

Перейдем к рассмотрению энергетических спектров.

ВЧ сигнал с ДАМ (рисунок 2.2.1,б) при передаче некоррелированных положительных и отрицательных посылок с равной вероятностью и при длительности модулирующего цифрового сообщения τ = Т (рисунок 2.2.1,а), имеет энергетический спектр, показанный на рисунке 2.2.2,а, на котором В = 1/Т - скорость манипуляции в бодах. Этот спектр характеризуется наличием дискретной составляющей (дельта-функция на рисунке 2.2.2,а) с частотой равной частоте несущей fс, и с мощностью пропорциональной  (среднее значение амплитуды напряжения ВЧ сигнала равно Uс/2). Других дискретных составляющих в спектре нет (предполагается, что корреляция между передаваемыми символами равна нулю).

Рисунок 2.2.1 - Виды манипуляции напряжения несущей частоты дискретными цифровыми сообщениями

Рисунок 2.2.2 - Огибающие энергетических спектров манипулированных сигналов


Если вычесть из сигнала с ДАМ (рисунок 2.2.1, б) с амплитудой Uc напряжение несущей частоты с амплитудой Uc/2, то получим ВЧ сигнал, аналогичный показанному на рисунке 2.2.1, г, но с амплитудой U0/2, что соответствует сигналу с ДФМ. Полученный таким образом ВЧ сигнал с ДФМ имеет спектр, равный непрерывной части спектра рисунок 2.2.2,а. Увеличение в 2 раза амплитуды полученного ВЧ сигнала до значения Uc, показанного на рисунке 2.2.1, г, приводит к увеличению его мощности, а следовательно и плотности его энергетического спектра в 4 раза (рисунок 2.2.2,в). Сравнение рисунков 2.2.2,а и 2.2.2,в показывает, что при ДФМ вся мощность передатчика распределена по непрерывной части спектра, которая содержит полезную информацию и не расходуется на излучение несущей. Этим в основном и объясняется значительно большая помехоустойчивость сигналов с ДФМ, чем сигналов с ДАМ.

Сигнал с ДЧМ (рисунок 2.2.1,в) можно рассматривать как сумму двух ВЧ сигналов с ДАМ, но имеющих разные несущие частоты f1 и f2. поэтому спектр сигнала с ДЧМ (рисунок 2.2.2,б) является суммой двух спектров, аналогичных показанному на рисунке 2.2.2,а. Спектр сигнала с ДЧМ, очевидно, шире спектров сигналов с ДАМ или с ДФМ на величину размаха девиации частоты .

Теоретически для оптимального приема сигналов с ДАМ или ДФМ полоса пропускания приемника должна равняться минимально допустимому значению П0 = 1/Т = В (рисунок 2.2.2,а и в). При ДЧМ она должна быть шире на величину ∆fр (рисунок 2.2.2,б). Однако при когерентном детектировании ВЧ сигналов с ДФМ рекомендуется выбирать несколько большую полосу пропускания приемника

,(2.2.1)

во избежание срывов синхронизации генератора опорного напряжения (ГОН). Если на вход приёмника поступают достаточно длинные регулярные последовательности знакопеременных посылок, то спектр таких сигналов дискретен и состоит только из боковых частот, равных fc±(2n-1)B/2, где порядковый номер компоненты n > 0. Чтобы при этих условиях на вход фазового детектора поступали хотя бы только две первые боковые составляющие с частотами fc+ B/2 и fc- B/2, необходимо выполнить условие (2.2.1). Из (2.2.1) следует, что в малоканальной ЦРРЛ с ДФМ (или с ОФМ), каждый ствол которой предназначен для передачи сигналов, Ппр ≈ 2.25 МГц, так как С30 = 2.048 Мбит/с. Это примерно равно полосе приемников РРЛ с ФИМ-АМ с такой же пропускной способностью, но в четыре раза превышает полосу приёмников РРЛ с ЧУ и ЧМ. Однако в ЦРРЛ можно использовать принцип двукратной модуляции, при которой удваивается пропускная способность стволов при той же полосе Ппр.

При таких методах передатчик манипулируют одновременно двумя независимыми групповыми цифровыми сообщениями, имеющими одинаковые синхронные тактовые частоты Fc = 1/T. Каждое сообщение подается на отдельный вход манипулятора, схема которого составляется таким образом, чтобы соблюдались условия, указанные в таблице 2.2.1 для двукратной ДЧМ и для двукратной ДФМ.

Таблица 2.2.1

Частота колебаний при ДЧМ

Фаза колебаний, град. при ДФМ

Передача символов



в первом групповом сообщении

во втором групповом сообщении

f1 f2 f3 f4

0 90 180 270

+ + - -

+ - - +


Ограничение спектра манипулированных ВЧ сигналов до входа детектора приемника будет неизбежно приводить к возникновению переходных процессов, затягивающих процесс нарастания напряжения в начале каждой посылки. Следовательно, эти переходные процессы явятся источником появления так называемых межсимвольных помех, так как из-за них предыдущие посылки искажают форму последующих посылок. Межсимвольные помехи существенно понижают помехоустойчивость цифровых сигналов, так как ухудшают условия работы решающих устройств, установленных на выходах приемников. Величина межсимвольных помех зависит не только от ограниченности полосы пропускания ВЧ трактов аппаратуры. Она в значительной степени определяется нелинейностью фазовой характеристики в пределах заданной полосы пропускания. По этой причине следует учесть, что для уменьшения уровня межсимвольных помех необходимо тщательно скорректировать фазовую характеристику приема с помощью соответствующих фазовыравнивателей (корректоров времени задержки).

Для получения максимальной верности приема цифровой информации форма огибающей импульсов на входе приемников должна быть возможно ближе к прямоугольной. Однако ввиду нецелесообразности излучения передающими антеннами слишком широких спектров частот рекомендуется выбирать полосу пропускания передающих трактов аппаратуры ЦРРЛ Пп ≈ 2В (смотри рисунок 7.2, в). Таким образом, перспективным направлением является применение многопозиционных методов манипуляции, позволяющих повысить пропускную способность ЦФ ствола без расширения полосы частот приемно-передающей радиорелейной аппаратуры [1]. Такие методы часто используются для передачи бинарных (относительных бинарных) ЛЦС, при этом число позиций (уровней) манипуляции М = 2n (рисунок 2.2.3). В общем виде цифровые сигналы с многопозиционной ЧМ обозначаются ИКМ-МЧМ, с многопозиционной ФМ - ИКМ - МФМ и так далее, либо вместо М указывается его числовое значение, например, ИКМ - 4ФМ.

Рисунок 2.2.3 - Фазовая манипуляция

Сигнал всех типов ФМ может быть получен с помощью балансной схемы (КАМ-модулятора) (рисунок 2.2.4), причем обеспечение ОФМ достигается соответствующим измененинием битового потока в кодере К.

Рисунок 2.2.4 - КАМ-модулятор

Широкое применение находит квадратурная амплитудная манипуляция (КАМ). Этот вид манипуляции, по существу, представляет собой сочетание АМ и ФМ, в связи с чем его еще называют амплитудно-фазовой манипуляцией (АФМ). В случае КАМ изменяется и фаза и амплитуда несущей. Применяются КАМ четвертого уровня и выше (КАМ-4, КАМ-16 (рисунок 2.2.5), КАМ-64 и т.д.), причем КАМ-4 совпадает с ОФМ четвертого уровня.

Рисунок 2.2.5 - КАМ-16 с примерами сигнальных точек квадрибитов 1110, 1000, 0111, 0001

Вид модуляции одновременно определяет и ширину излучаемого спектра, а, следовательно, требуемую ширину полосы приемопередатчика, и пороговое отношение сигнал/шум в демодуляторе. В настоящее время в РРЛ используются следующие виды модуляции:

Для высокоскоростных РРС (от 155 Мбит/с и выше) - квадратурная амплитудная модуляция с уровнем квантования 64 и выше (64 QAM и выше) либо более сложные методы модуляции, объединяющие модуляцию и кодирование, в частности, решетчатая кодовая модуляция (ТСМ) и блоковая кодовая модуляция (ВСМ);

Для среднескоростных РРС - 16 QAM, 32 QAM;

Для низкоскоростных РРС (ниже 34 Мбит/с) - наиболее распространена модуляция QPSK, которая позволяет вдвое уменьшить ширину спектра сигнала по сравнению с 2-PSK (то есть ОФТ) без потери помехозащищенности. При этом используется несколько модификаций QPSK - офсетная О-QPSK, с постоянной огибающей СЕРМ или PSK, 4QAM и другие, отличающиеся методами реализации. Многие фирмы применяют более простой метод 4FSK, обеспечивающий такую же занимаемую полосу частот, что и QPSK, но за счет некоторого снижения энергетики РРЛ. Для малых скоростей передачи иногда применяют еще более простые методы - 2 PSK и FSK, особенно в диапазонах 26 - 40 ГГц.

Для скорости 34 Мбит/с наметилась тенденция замены QPSK на 16 QAM в диапазонах ниже 13 ГГц с целью уменьшения занимаемой полосы ствола РРЛ до 14 МГц вместо 28 МГц при QPSK.

То есть чем выше скорость передачи, тем более сложную модуляцию приходится использовать, чтобы вписаться в стандартные планы частот РРЛ, а тем сложнее вид модуляции, тем сложнее аппаратура реализации и, соответственно, выше стоимость изделия.

В таблице 2.2.2 приведены типовые для большинства современных РРС значения полосы частот, занимаемой при передаче цифровых потоков.

Отметим, что при сравнении энергетических параметров РРС антенны обычно не учитывают, так как их коэффициент усиления определяется, в основном, габаритами и выбирается проектировщиками линии связи в зависимости от конкретных условий.

Таблица 2.2.2 - Полосы частот занимаемые цифровыми потоками, при различных видах модуляции

Вид модуляции

Ширина полосы частот радиоствола, занимаемая при передаче цифровых потоков в РРС, МГц


2Е1

4Е1(Е2)

8Е1(2Е2)

16Е1(Е3)

STM-0

STM-1

PSK

7

14

28




QPSK, 4QAM, Q-QPSK, CEMP и т.п.

3.5

7

14

28



4FSK

3.5

7

14

28



16QAM

1.75

3.5

7

14

28


32QAM




7

14


64QAM






28


2.3 Радиорелейные линии синхронной цифровой иерархии

Как отмечалось ранее, третьим является вариант построения РРЛ изначально ориентированный на передачу цифровой информации. В настоящее время промышленностью разных стран выпускаются и на сетях связи работают большое разнообразие таких систем (таблица Б.1).

Скорость передачи аналоговых РРЛ практически ограничена потоком Е3,что определяется как полосой пропускания В4 ствола Δfств, так и неравномерностью ГВЗ, «проскальзыванию» сигнала при переключениях на резерв, используемыми видами манипуляции ВЧ сигнала.

В цифровых РРЛ влияния указанных факторов сведены до минимального, а использование многопозиционной относительной ФМ позволяет эффективно использовать полосу пропускания ствола РРЛ.

Оптимальная ширина полосы ствола при передаче цифровых сигналов по РРЛ может быть определена по формуле:

,(2.3.1)

где Δfоп - ширина полосы, численно равная скорости передачи цифрового сигнала В; Км = 1/log2M - коэффициент, учитывающий изменение полосы частот, занимаемой стволом, при использовании М-позиционной модуляции, М = 2,4,8,16,32,… . Сужение полосы пропускания ВЧ тракта ниже величины (2.3.1) вызывает сильное увеличение межсимвольных помех, расширение полосы - увеличение мощности тепловых шумов в более широкой полосе, и тот и другое приводит к увеличению коэффициента ошибок [7].

Так, например, для передачи 720 телефонных каналов методом ИКМ требуется скорость передачи цифровой информации 52 Мбит/с. При использовании двухпозиционной относительной ФМ (М=2) ширина полосы одного ствола согласно (2.3.1) примерно равна 52·1.3 = 68 МГц. При использовании четырехпозиционной относительной ФМ (М=4) полоса частот ствола может быть уменьшена до 34 МГц. Такую же полосу частот занимает ствол аналоговой РРЛ при передаче 1920 телефонных каналов, то есть при малой кратности модуляции ЦРРЛ уступают аналоговым РРЛ по пропускной способности в отведенной полосе частот. Ширина полосы частот радиоствола при передаче цифровых потоков РРЛ при различных видах модуляции приведена в таблице 2.2.2.

В настоящее время по ЦРРЛ передаются цифровые потоки соответствующие STM-RR и STM-1. При прохождении этих модулей по ЦРРЛ производится обработка секционного заголовка SOH, состоящего из заголовков мультиплексной MSOH и регенерационной RSOH секций и AU указателя. В соответствии со структурой секционного заголовка на ЦРРЛ выделяются мультиплексные и регенерационные секции рисунок 2.3.1.

Рисунок 2.3.1 - Мультиплексные и регенерационные секции ЦРРЛ

На ОРС1 заканчивается мультиплексная секция MS1 кабельной соединительной линии между мультиплексным оборудованием MUX и оконечной радиорелейной станцией (ОРС) и начинаются мультиплексная MS2 и регенерационная RS1 секции РРЛ. Регенерационные секции радиорелейной линии начинаются и заканчиваются на всех пролетах. Мультиплексные секции радиорелейной линии начинаются и заканчиваются на ОРС и узловой радиорелейной станции (УРС), следовательно, на ОРС и УРС обрабатывается весь заголовок SOH STM, включая AU указатель. На промежуточной станции (ПРС) обрабатывается только заголовок регенерационной секции RSOH, а остальная часть заголовка проходит через эти станции транзитом.

При рассмотрении структурных схем станций РРЛ СЦИ в пособии используется терминология и обозначения принятые в аппаратуре фирмы NEC (Япония). Структурная схема оконечной радиорелейной станции ОРС1 на примере аппаратуры фирмы NEC приведена на рисунке 2.3.2.

Рисунок 2.3.2 - структурная схема оконечной радиорелейной станции

На вход рабочего ствола РРЛ СЦИ по кабельной соединительной линии от MUX поступает линейный цифровой сигнал в коде CMI со скоростью 155.52 Мбит/с (STM-1).

На ОРС1 заканчивается мультиплексная секция кабельной соединительной линии, на ней производится обработка заголовка этой секции (модуль SOH MS1) рисунок 2.3.2 и 2.3.3. В этом модуле (C/N-преобразователь) осуществляется преобразование линейного кода CMI в код NRZ, который и используется в аппаратуре радиорелейных станций как наиболее узкополосный из двоичных кодов.

Рисунок 2.3.3 - Структурная схема обработки секционного заголовка на приемной стороне

Здесь же осуществляется преобразование входного цифрового потока 155.52 Мбит/с в восемь параллельных потоков по 19.44 Мбит/с (S/P-преобразователь), для того чтобы в дальнейшем можно было использовать микросхемотехнику с невысоким быстродействием, но при этом количество комплектов оборудования увеличивается в восемь раз. Для обеспечения этих преобразований (C/N и S/P) необходимо тактовая частота, которая выделяется из входного сигнала.

Обработка секционного заголовка заключается в выделении и соответствующей обработке байт секционного заголовка. Для определения местоположения байт заголовка в структуре синхронного транспортного модуля определяется начало его цикла, то есть осуществляется синхронизация начала цикла генераторного оборудования (ГО) приема под начало цикла принимаемого сигнала. Для этого используется приемник циклового синхросигнала (Пр.ЦС).

Далее сигнал обрабатывается в дескремблере, где из него удаляется псевдослучайная последовательность (ПСП), введенная на передающей стороне в скремблере для того, чтобы исключить появление в передаваемом цифровом сигнале длинных последовательностей «0» и «1». Наличие таких последовательностей приводит к отсутствию в такие моменты времени информации о тактовой частоте, что ухудшает работу выделителя тактовой частоты.

Затем производится контроль ошибок по коду BIP-24 (BIP-24 детектор), для чего рассчитываются 24 битовые суммы по всем тройкам байт (кроме байт заголовка регенерационной секции RSOH) текущего цикла и сравниваются с битовыми суммами записанными на передающем конце в байты В2 следующего цикла. Здесь же производится выделение байт заголовка (SOH выделение), используемых для организации служебных каналов: Е1, Е2, F1 - каналы служебной связи на мультиплексных и регенерационных секциях; D1,…D12 - каналы для системы телеуправления. С выхода модуля SOH выделенные сигналы поступают на интерфейс секционного заголовка (SOH INTF) (рисунок 2.3.2), от куда подаются на соответствующее оборудование или проходят транзитом.

С выхода дескремблера цифровой сигнал восьмью потоками поступает на модуль обработки AU-указателя (PTR), где устраняется расхождение фаз между значением AU-указателя и местоположением первого байта нагрузки, появившееся при прохождении сигнала через мультиплексную секцию и перезаписи цифровых потоков под тактовую частоту местного генератора (reference clock). При этом изменяется значение AU-указателя.

После обработке AU-указателя сигналы поступают на модуль SOH MS2, где начинается мультиплексная секция радиорелейной линии. В этом модуле осуществляются генерация кодов BIP-8 и BIP-24 и вставление (мультиплексирование) байт заголовка SOH.

После обработки в модуле SOH MS2 сигналы поступают на модуль резервирования стволов, работой которого управляет блок управления резервированием (БУР) [7].

В ЦРРЛ используется поучастковая система резервирования стволов, например 3+1,6+2 и так далее. Переключение рабочих стволов на резервный ствол осуществляется на оконечных и узловых станциях. На приемной стороне участка резервирования блок управления резервированием контролирует работоспособность рабочих и резервных стволов. При ухудшении качества работы одного из рабочих стволов (из-за замираний сигналов на пролетах, увеличения уровня внутренних или внешних шумов и помех) и работоспособном резервном стволе, приемная часть БУР принимает решения о переключении данного рабочего ствола на резервный ствол. По служебному каналу приемная часть БУР передает команду на передающую сторону участка резервирования.

На передающей стороне участка резервирования передающая часть БУР посылает команду на соответствующий переключатель ППд и информационный сигнал с этого момента передается параллельно по рабочему и резервному стволам. На приемной стороне вначале производится выравнивание времени распространения сигналов по рабочему и резервному стволам, чтобы исключить эффект проскальзывания сигналов. После этого производится безобрывное переключение выхода с помощью ключа ППр с рабочего ствола на резервный ствол. После восстановления работоспособности рабочего ствола восстанавливается исходная коммутация и освобождается резервный ствол.

После модуля резервирования стволов сигнал STM-1 восьмью потоками суммарной скоростью 155520 кбит/с поступает на многоуровневый кодер, в котором: к выходному цифровому потоку прибавляется дополнительный заголовок радио цикла (RFCOH - Radio Frame Complementary Overhead); производится скремблирования; осуществляется кодирование (FEC - Forward Error Correction) и размещение полученных цифровых потоков на фазоамплитудной плоскости сигнала модулятора (рисунок 2.3.4).

Рисунок 2.3.4 - Структурная схема многоуровневого кодера

В преобразователе скорости 1 осуществляется увеличение суммарной скорости восьми цифровых потоков на 4.24 Мбит/с за счет того, что тактовая частота считывания из буферной памяти превышает тактовую частоту записи информации в эту память. В результате такого преобразования в выходных потоках образуются тактовые интервалы свободные от информационных символов.

В мультиплексоре дополнительного заголовка радиоцикла (рисунок 2.3.5) в свободные тактовые интервалы вставляются информационные символы служебных сигналов, основные из которых: цифровой поток 2 Мбит/с (WS - Way Side), доступный на каждой станции; служебные каналы для связи передающей и приемной сторон блока управления резервированием и для сбора информации о состоянии оборудования станций системой теленаблюдений. В этом же модуле формируется цикл по дополнительному заголовку, причем структура восьмиразрядного циклового синхросигнала может изменяться с помощью переключателя, что обеспечивает идентификацию ствола необходимую при наличии эффекта прохождения сигналов через три интервала и на узловых радиорелейных станциях с большим числом ответвлений.

Рисунок 2.3.5 - Структура сигнала на выходе многоуровневого кодера

После мультиплексора сигналы поступают на скремблер, в котором к ним добавляется псевдослучайная последовательность, устраняющая в двоичном сигнале длинные последовательности нулей и единиц.

В преобразователе скорости 2 суммарная скорость цифрового потока увеличивается на 10 Мбит/с (рисунок 2.3.5) и полученные цифровых потоков суммарной скоростью около 170 Мбит/с поступают на модуль предкоррекции ошибок и размещения. Свободные тактовые интервалы, полученные на выходе преобразователя скорости 2, присутствуют только в первом в соотношении 3/4 (три информационных символа из четырех) и втором в соотношении 11/12 цифровых потоков из шести.

Операция размещения (mapping) полученных цифровых потоков на фазоамплитудной плоскости (constellation - созвездие) сигнала модулятора заключается в том, что соседние точки на созвездии определяются первыми из шести потоков, который имеет наибольшую защиту (3/4). Это определяется тем, что из-за действия шумов и помех наиболее вероятным будет переход данной точки созвездия на соседние точки.

Похожие работы на - Основы построения беспроводных систем связи

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!