Мощный импульсный стабилизированный блок питания

  • Вид работы:
    Курсовая работа (т)
  • Предмет:
    Информатика, ВТ, телекоммуникации
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    12,16 Кб
  • Опубликовано:
    2012-08-27
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Мощный импульсный стабилизированный блок питания

Содержание

Введение

1. Анализ технического задания

1.1 Назначение и общая характеристика устройства

1.2 Требования по устойчивости к внешним воздействиям

2 Анализ схемы электрической принципиальной

3 Выбор и описание конструкции изделия

4 Разработка компоновки блока и выбор способа монтажа

5. Конструкторские расчеты

5.1 Компоновочный расчет печатной платы

5.2 Расчет размеров элементов печатного монтажа

5.3 Расчет паразитных емкостей и индуктивностей

5.4 Расчет теплового режима блока

5.5 Расчет частоты собственных колебаний конструкции

5.6 Расчет эргономических параметров лицевой панели

6 Технологический раздел

6.1 Технология изготовления печатной платы

6.2 Технология изготовления деталей корпуса

6.3 Технология сборки печатного узла

7. Защита устройства от дестабилизирующих факторов

Заключение

Введение

Процесс в развитии науки и техники не стоит на месте. Большую роль в этом процессе играет технология, так как от правильно выбранной или разработанной технологии зависят и характеристики конкретного изделия и его стоимость.

Необходимость проектирования сложных радиоэлектронных средств (РЭС) и требования к сокращению сроков их проектирования и повышению качества проектных работ противоречивы. Удовлетворить их можно лишь при широком использовании вычислительной техники в процессе проектирования. В связи с этим автоматизированные методы проектирования РЭС различного назначения широко внедряются в практику радиопромышленности.

Проектирование устройств средств вычислительной техники (СВТ) представляет собой ряд этапов:

. Этап технического предложения.

. Этап эскизного проектирования.

. Этап технического проектирования.

. Рабочий проект.

Процесс автоматизации проектирования радиоэлектронных средств по содержанию и последовательности решаемых задач может быть весьма разнообразен в зависимости от функциональной и конструктивной сложности разрабатываемых радиотехнических систем, комплексов, устройств и узлов.

В основном проектировании лежат определённые принципы, такие, например, как «Функционально - модульный принцип проектирования», который заключается в том, что вся электрическая схема разбивается на части (модули). Модули в свою очередь делятся по конструктивным уровням.

Появление мощных высоковольтных полевых транзисторов явилось предпосылкой для развития сетевых высокочастотных блоков питания с широтно-импульсным (ШИ) управлением. Основные преимущества подобных источников перед традиционными линейными - получение большей мощности на нагрузке при меньших габаритах и, соответственно, большего КПД.

1.Анализ технического задания

1.1 Назначение и общая характеристика устройства

Блок питания предназначен для преобразования сетевого переменного напряжения 220 Вв постоянное напряжение 28 В.

Для увеличения плотности монтажа заменим резисторы с рассеиваемой мощностью 0,25Вт на элемент поверхностного монтажа с планарными выводами (SMD). Для SMD резисторов существует достаточно много типоразмеров. Подходящим для замены является резистор в корпусе типа 0.8*0.5.

Из-за больших габаритов и отсутствия возможности непосредственного подключения к контактам печатной платы конденсаторы К75-25, сетевой трансформатор, силовой трансформатор и дроссель вынесем за пределы печатной платы и подключим их через провода. Так же для уменьшения элементной базы заменим наборы диодов и диодные мосты на диодный мост типа 2W04M.

Конструктивные особенности крепления платы заключаются в необходимости наличия на плате крепежных отверстий по каждому краю. Диаметр отверстий должен быть 5мм. Вокруг отверстий необходимо расположить запрещенную зону для проводников диаметром не менее 10 мм. Контактные площадки внешних выводов должны быть расположены вблизи краев печатной платы. Это позволит без особых трудностей выполнить подключение проводов входного напряжения, сетевого трансформатора, силового трансформатора, дроссели, конденсаторов и выходного напряжения.

Климатические условия некоторых помещений не всегда соответствуют установленным нормам. Поэтому материал платы не должен впитывать влагу и не быть подверженным короблению. Немаловажным фактором является и область рабочих температур. Исходя из вышесказанного, выбираем материал диэлектрика печатной платы. Для этого устройства выбираем стеклотекстолит.

Так как у всех элементов схемы электрической принципиальной расстояние между выводами кратно 2,5 мм, то шаг координатной сетки выберем равным 2,5 мм. Это позволит расположить выводы элементов в узлах координатной сетки.

предельная рабочая температура воздуха

при эксплуатации                            +1...+40°С

рабочая температура воздуха при эксплуатации                 +10...+35°С

относительная влажность

при температуре 25 ºС                    80 %

атмосферное давление                   84…106,7 кПа (630…800 мм рт. ст.)

2. Анализ схемы электрической принципиальной

Основа устройства - преобразователь, собранный по полумостовой схеме. В источнике питания выполнена полная гальваническая развязка между входной высоковольтной и выходной цепями. Узел управления собран на основе ШИ-контроллера TL494. Транзисторный оптрон U2 обеспечивает гальваническую развязку в цепи отрицательной обратной связи по напряжению.

Микросхема DA5 стабилизирует напряжение 8 В для питания делителя, состоящего из фототранзистора оптронаU2.2 и резистора R17. Напряжение от средней точки делителя поступает на не инвертирующий вход первого усилителя сигнала ошибки ШИ-контроллера DA6. Напряжение для питания узла управления и драйверов (микросхема DA7)полевых транзисторов обеспечивает вспомогательный источник на сетевом трансформаторе Т2 и аналоговых стабилизаторах напряжения DA2 и DA3. Узел защиты по току собран на компараторе DA4 и триггере DD1.1. Функцию датчика тока выполняет резистор R5,включенный в диагональ полумоста. На неинвертирующий вход компаратораDA4 подается напряжение треугольной формы с конденсатора (С26) частотозадающей цепи тактового генератора ШИ-контроллера.

На выходе компаратора формируются тактовые импульсы, поступающие на вход С триггера DD1.1.Если падение напряжения на резисторе R5 достигнет 1,1В, включаются излучающие диоды и открывается фототранзистор оптрона U1. На вход S триггера DD1.1 поступит низкий уровень.

На прямом выходе триггера DD1 1 и, следовательно, на неинвертирующем входе второго усилителя сигнала ошибки ШИ-контроллера DA6 установится высокий уровень. В этом случае оба транзистора VT1 и VT2 будут закрыты. Для управления мощными коммутирующими полевыми транзисторам и применена специализированная микросхема - двуканальный драйвер DA7. Параметры драйвера позволяют непосредственно управлять полевыми транзисторами с изолированным затвором, коммутирующими ток до 50 А при напряжении не более 1200 В.

3. Выбор и описание конструкции изделия

Конструктивные особенности крепления платы заключаются в необходимости наличия на плате крепежных отверстий по каждому краю. Диаметр отверстий - 10 мм Вокруг отверстий необходимо расположить запрещенную зону для проводников. Разъемы должны быть расположены вблизи краев печатной платы. Это позволит без особых трудностей выполнить подключение проводов.

Климатические условия могут не соответствовать установленным нормам. Поэтому материал платы не должен впитывать влагу и не быть подверженным короблению. Немаловажным фактором является и область рабочих температур. Исходя из вышесказанного, выбираем материал диэлектрика печатной платы. Для этого устройства выбираем стеклотекстолит.

Класс точности для печатной платы данного устройства выберем 3. Данный выбор обусловлен тем, что в устройстве есть элементы как со штырьковыми выводами, так и с планарными. Данный класс так же устанавливает высокую или среднюю насыщенность поверхности печатной платы навесными изделиями электронной техники, а также для плат имеющих в своём составе микросхемы.

Для улучшения паяемости и проводимости, а также для защиты от коррозии контактные площадки, печатные проводники и металлизированные отверстия покрываем металлическим покрытием - сплавом Розе (олово-свинец).

Сплав Розе состоит из 25% олово, 25% свинца и 50% висмута. Температура плавления данного сплава 94ºС, что обеспечивает защиту деталей от перегрева при пайке элементов..

Для создания защитного покрытия выбираем покрывной лак УР-231 - эпоксидно-уретановый лак, образующий на поверхности платы механически прочную, гладкую, блестящую, пленку с целью повышения влагостойкости и увеличения механической и электрической прочности.

В качестве материала для корпуса изделия выбираем фенопласт (синтетический полимер) с органическим наполнителем из пресс-порошка марки Э1-340-02 на основе фенолформальдегидных смол. Электрические параметры фенопласта:

диэлектрическая проницаемость ε                                       5-6

- удельное электрическое сопротивление ρ, Ом*м            

электрическая прочность,МВ/м                             1,5 - 10

4. Разработка компоновки блока и выбор способа монтажа

Компоновка представляет собой процесс размещения модулей, электро-радиоэлементов и деталей РЭА на печатной плате с определением основных геометрических форм и размеров. При решении задач компоновки основным критерием оптимальности компоновки является минимизация числа межмодульных связей, а также ряд других требований:

между отдельными узлами, приборами и блоками должны отсутствовать заметные паразитные электрические и магнитные взаимосвязи, влияющие на технические характеристики изделия;

взаимное расположение элементов конструкции должно обеспечивать технологичность сборки и монтажа, легкий доступ к деталям монтажа для контроля, ремонта и обслуживания;

расположение и конструкция органов управления должны обеспечивать максимальные удобства;

изделие должно удовлетворять требованиям технической эстетики;

габариты и масса должны быть минимальными.

Удовлетворить одновременно всем перечисленным требованиям в большинстве случаев не удается. Поэтому процесс компоновки сводится к нахождению оптимального решения.

Высокая сложность разрабатываемой в настоящее время РЭА, построенной с применением различного типа микросхем, микросборок и других, современных электрорадиоэлементов, вызвала необходимость поиска таких конструктивных и компоновочных решений, которые позволили бы удовлетворять следующим требованиям:

высокой степени микроминиатюризации аппаратуры в целом;

широкой унификации элементов конструкции;

возможности параллельной сборки и регулировки составных частей РЭА;

обеспечения высокой эксплуатационной надежности аппаратуры многоразового действия за счет быстрой замены вышедших из строя составных частей;

возможности проведения модернизации отдельных составных частей при сохранении неизменными других.

Основной задачей при этом является реализация схемы изделия в виде набора отдельных конструктивно законченных модулей, узлов или блоков, связанных друг с другом цепями электрической коммутации. Важным этапом при этом является разбиение электрической принципиальной схемы изделия на подсхемы (функциональное разбиение).

При выборе конструкции необходимо иметь в виду тот факт, что в настоящее время при конструировании РЭА наиболее приемлем базовый метод конструирования (модульный принцип, т.е. необходимо разбить изделие на составные части). При разработке радиоэлектронной аппаратуры может использоваться один из четырёх способов конструирования:

Моносхемный способ проектирования. Представляет собой способ, при котором электрическая схема располагается на одной печатной плате. Этот способ конструирования является простейшим и наиболее быстрым. Преимущество моносхемного конструирования - простота, отсутствие межблочных соединений, что улучшает электрические параметры, повышает надёжность, удешевляет изделие, сокращает количество вспомогательной аппаратуры при изготовлении, а также уменьшает общий вес и габариты. К недостаткам следует отнести трудность обслуживания изделия, так как отказ одного компонента приводит к отказу всей платы, невозможность оперативной замены неисправного компонента, низкую стойкость к механическим воздействиям.

Схемно-узловой способ проектирования. Представляет собой способ, при котором электрическая схема разбивается на несколько частей и выполняется на отдельных платах. А эти части уже выполняют моносхемным способом. Достоинства этого способа заключаются в том, что возможен более лёгкий способ доступа к неисправным деталям устройства, более высокая стойкость к механическим воздействиям, возможность более компактного размещения плат в корпусе. Недостатки метода заключаются в наличии переходных и межблочных соединений.

Функционально-узловой способ проектирования. Способ, при котором электрическая схема разбивается на отдельные блоки, выполняющие определённые функции и каждый блок выполняется на отдельной плате. Этот способ является более сложным, т.к. необходимо в схеме выделить все блоки, выполняющие определённые функции, разработать для них печатные платы и выбрать оптимальное положение печатных плат в корпусе[10].

Таким образом, при выборе того или иного принципа конструирования нужно руководствоваться в первую очередь сложностью схемы и количеством элементов. Так как схема проста, количество элементов в схеме чуть более 100, то при разработке данного изделия следует использовать моносхемный способ и проектировать устройство на одной печатной плате. Плата помещается в корпус из фенопласта.

Одной из важнейших задач, решаемой на этапе предварительной компоновки изделия, является выбор типа внутриблочного электрического монтажа. Его тип определяется используемой элементной базой, рабочим диапазоном частот, условиями эксплуатации и вариантом конструкции модуля. В РЭА используются два способа монтажа:

объемный (жгуты, провода, кабели);

плоский (печатный монтаж).

На конструкцию объемного электромонтажа решающее влияние оказывает частотный диапазон работы устройства. В устройствах, работающих на средних и низких частотах (до 1 МГц), монтаж выполняется объемным гибким проводом либо плоским кабелем. Их выбор зависит от силы тока, напряжения, частоты и условий эксплуатации. В блоках, работающих на высоких частотах (от 1 до 300 МГц), ощутимым становится влияние паразитной емкости и индуктивности элементов электромонтажа. При этом отдельные участки электромонтажа становятся источниками или приемниками радиопомех. С целью устранения паразитных связей между узлами применяют электромагнитные экраны, а электромонтаж выполняют экранированным или коаксиальным кабелем.

В блоках СВЧ (свыше 300 МГц) для электрического монтажа используют коаксиальные линии связи или волноводы.

Для реализации внутримодульного электромонтажа применяют печатный монтаж.

В нашем устройстве будут, применятся оба вида монтажей, поскольку некоторые элементы не целесообразно располагать не на самой плате, а просто пометить их в корпус приемника.

Для размещения элементов и разработки токопроводящего рисунка я использовал систему автоматизированного проектирования P-CAD 2001.


Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!