Биосфера как область взаимодействия общества и природы

  • Вид работы:
    Реферат
  • Предмет:
    Биология
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    9,98 kb
  • Опубликовано:
    2009-01-12
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Биосфера как область взаимодействия общества и природы

Содержания:

Введение

Геологическое строение месторождения

.1 Стратиграфия

1.2 Тектоника

1.3 Морфология залежей

1.4 Гидрогеология

.5 Генезис

Стадии геологоразведочных работ

Подсчет запасов

Заключение

Список используемой литературы

Введение

Геология нефти и газа - это отрасль геологии, которая может быть определена как «наука поиска залежей нефти и газа», хотя геологи часто работают на разработке таких залежей и после их открытия. Использование последних достижений геологической науки при поисково-разведочных работах на нефть и газ не исключает, тем не менее, элемента случайности. Отношение безуспешных поисково-разведочных скважин к тем, которые дали хоть какие-нибудь притоки нефти или газа, составляет в среднем ок. 9 к 1. Кроме того, по оценкам, только одна из семидесяти скважин, пробуренных для поисков новых месторождений нефти и газа, приводит к коммерчески выгодному открытию. Из-за этого только крупные нефтяные компании содержат геологические службы, а многие мелкие компании нанимают геологов-нефтяников как консультантов.

Геологи постепенно пришли к осознанию взаимосвязей между естественным нахождением нефти и газа и структурой пород, и примерно к 1915 нефтяная геология сформировалась как признанная наука. С этого времени начался быстрый рост числа специалистов по нефте- и газоразведке; тысячи геологов во всем мире заняты сегодня поисками нефти и газа. Для того чтобы успешно разведать находящиеся в недрах земли залежи полезных ископаемых, необходимо максимально точно определить условия, благоприятные для образования таких залежей.

Месторождение Жанажол находится в пределах Предуральского плато, расположенного между Мугоджарскими горами и долиной реки Эмба и в административном отношении входит в состав Мугоджарского района Актюбинской области Республики Казахстан.

Ближайшими населенными пунктами являются хозяйство Жанажол, расположенное в 15 км к северо-востоку, и действующий нефтепромысел Кенкияк, расположенный в 35 км к северо-западу. Нефтепровод Атырау - Орск проходит на расстоянии около 100 км. От областного центра Актобе Жанажол стоит в 240 км (Рисунок 1.1).

Ближайшая железнодорожная станция Эмба на линии Москва - Средняя Азия отстоит на 100 км от площади. Производственное предприятие НГДУ „Октябрьскнефть” ОАО „СНПС-Актобемунайгаз” расположено в районном центре городе Кандыагаш, в 130 км к северу от месторождения Жанажол.

К настоящему времени от Кандыагаша до Жанажола проложена шоссейная асфальтированная дорога, а также подведена линия электропередачи.

Согласно схеме комплексного физико-географического районирования Казахстана, рассматриваемая территория расположена в полупустынной ландшафтной зоне умеренного пояса Сагиз-Эмбинского района, Уил-Эмбинского района, Узень-Урало-Эмбинской провинции, Северо-Каспийской области, Прикаспийско-Тургайской страны, на Подуральском денудационном плато.

Рельеф местности представляет собой слабо всхолмленную равнину, расчлененную пологими балками и оврагами. Абсолютные отметки его колеблются от 125 до 270 м. Южный участок ниже, северный участок выше, средний участок является седловиной с отметкой 125-150 м, с севера на юг его пересекает река Эмба.

Минимальные отметки приурочены к долине реки Эмба, с юго-запада ограничивающей территорию месторождения.

Гидрографическая сеть представлена реками Эмба и Атжаксы, которые относятся к бассейну Каспийского моря. Эти реки по условиям режима с резко выраженным преобладанием стока в весенний период. Река Атжаксы, протекающая с севера на юг, делит все месторождение на два приводораздельных склона с небольшим уклоном. Являясь притоком реки Эмба, река Атжаксы не имеет постоянного водотока, в летний период пересыхает. Ее бассейн, представленный балками и оврагами, наполняется водой лишь в весеннее время и на формирование грунтовых вод существенного влияния не оказывает. Река Эмба протекает в 2-14 км к юго-западу от месторождения. Вода минерализованная и используется для технических нужд. Для бытовых целей используется вода из колодцев. Уровень воды в колодцах и в пойме реки Эмба составляет 2 м и более.

Основная часть территории - степь. Климат района сухой, резко континентальный, с резкими годовыми и суточными колебаниями температуры и крайне низкой влажностью. Зимний минимум температуры (по данным Кожасайской метеостанции) достигает минус 40°С, летний максимум +40°С. Самыми холодными месяцами являются январь и февраль, а самым жарким месяцем - июль. Глубина промерзания почвы составляет 1,5-1,8 м.

Равнинность территории создает благоприятные условия для интенсивной ветровой деятельности. Зимой господствуют ветры западного направления, вызывают бураны. Летом преобладают ветры северо-восточных направлений, способствующих быстрому испарению влаги и иссушению верхнего горизонта почвы.

Среднегодовое количество атмосферных осадков невелико и достигает 140-200 мм в год. Период с середины ноября до середины апреля является периодом снежного покрова с толщиной снежного покрова зимой до 20-30 см. Первый снеговой покров обычно ложится в середине ноября и сохраняется до конца марта.

Месторождение находится в зоне пятибалльного землетрясения.

Растительность формируется только за счет атмосферных осадков, что в свою очередь обусловило ее характер. Травостой природных пастбищ изреженный и бедный. Основу его составляют ковыльно - полынно - типчаковые группировки. Толщина плодородного слоя 8 см (средняя величина по площади).

Животный мир очень разнообразный: встречаются представители различных типов. Из млекопитающих обитают волки, лисы, зайцы, из грызунов - суслики, тушканчики, песчанки, полевые мыши. Из пресмыкающихся следует отметить ящериц и различных змей, в том числе и ядовитых. Из пернатых встречаются орлы, степные куропатки, дрофы, дикие голуби. Через район проходят пути миграции сайгаков.

Район населен неравномерно. В экономическом отношении площадь работ представляет собой сельскохозяйственный район. Коренное население - казахи, в основном, занимаются скотоводством и земледелием - выращивают кормовые злака.

Непосредственно на территории месторождения широкое распространение получили такие строительные материалы как глины, пески, щебень и мергель. Глины выходят на поверхность на правобережье реки Атжаксы. Они характеризуются постоянством литологического состава и имеют среднюю толщину 3,9 м. Эти глины могут быть использованы как для приготовления глинистых растворов, так и в качестве сырья для местного строительства. Пески альбского, олигоценового и четвертичного возрастов имеют довольно широкое распространение, главным образом, в долине реки Эмба. Они используются как строительный и балластовый материал. Щебень имеет широкое распространение в местах развития маастрихтских отложений и обнажается на поверхности в виде маломощных прослоев - от 5 до 20 см, а в ряде случаев - от 40 до 50 см. Мергели широко распространены на площади в виде останцов и приурочены к маастрихтскому, кампанскому и сантонскому ярусам. В их составе от 19,9 до 36,6 % СаО и от 27 до 52 % нерастворимого остатка, что свидетельствует о возможности использования их для цементного производства.

1 Геологическое строение месторождения

.1 Стратиграфия

нефтегазовый месторождение жанажол

На площади Жанажол буровыми работами изучен комплекс отложений нижнекаменноугольного - верхнемелового возраста. При стратиграфическом расчленении разреза использованы имеющиеся палеонтологические определения, диаграммы, промыслово-геофизических исследований, описание керна.

Каменноугольная система С

Нижний отдел С1

Наиболее древними отложениями, вскрытыми на площади Жанажол, являются терригенные осадки средневизейского возраста. В скважине № 1-С они встречены в интервале минус 4190-4200 м. На соседних площадях Кожасай, Восточный Тобускен, Восточный Тортколь вскрытая толщина терригенной толщи среднего и нижнего визейского и турнейского яруса превышает 1000 м.

Выше по разрезу терригенные осадки сменяются карбонатной толщей пород верхневизейского (окский надгоризонт) и серпуховского возрастов, представленной серыми, светло-серыми органогенно-обломочными, мелкокристаллическими и массивными известняками, полимиктовыми песчаниками и доломитами с резкими прослоями темно-серых аргиллитов. Толщина тарусского горизонта нижнего подъяруса составляет 70-86 м; толщина стешевского 62-76 м; толщина протвинского горизонта верхнего подъяруса 72-90 м. Максимальная вскрытая толщина отложений нижнего карбона достигает 308 м.

Средний отдел С2

Отложения среднего карбона вскрыты в составе башкирского и московского ярусов.

Башкирский ярус С2b

Отложения башкирского яруса полностью пройдены скважиной № 1-С (3892-3668 м) и частично скважиной № 23 (3886-3803 м). Толщина достигает 224 м. Представлены они серыми и светло-серыми, органогенно-комковатыми, массивными доломитизированными известняками со стиллолитовыми швами, с резкими прослойками аргиллитов.

Московский ярус С2m

В составе же московского яруса выделяются два подъяруса.

Отложения нижнего московского подъяруса, представленные визейским и каширским горизонтами, вскрыты скважиной № 23 в интервале 3803-3647 м и скважиной № 1-С в интервале 3668-3566 м. Толщина подъяруса колеблется от 108 до 156 м. Сложен он карбонатными породами с единичными маломощными прослоями аргиллитов. Резкая фациальная изменчивость на площади является характерной чертой данного яруса.

Верхнемосковский подъярус представлен подольским и мячковским горизонтами. Нижняя часть подольского горизонта сложена преимущественно терригенной толщей пород, состоящей из переслаивания аргиллитов, песчаников, алевролитов, гравелитов, реже известняков, толщина его от 266 м до 366 м. Верхняя часть горизонта представлена светло-серыми, почти белыми, органогенно-обломочными, сгустковыми, прослоями микрозернистыми, массивными, крепкими известняками. Толщина подольских карбонатных отложений колеблется от 144 до 220 м. Выше по разрезу залегают органогенные, органогенно-обломочные, микрозернистые известняки и доломиты мячковского горизонта. Эта часть разреза довольно четко выделяется по положению между двумя реперными прослоями, образованными глинистыми породами толщиной до 10 м, прослеживающимися по всей площади месторождения. Мячковский горизонт вскрыт практически всеми скважинами на месторождении. Толщина его варьируется 115 до 164 м.

Верхний отдел С3

Граница верхнего карбона со средним отделом достаточно четко отбивается по изменению характера записи кривой гамма-каротажа. В составе верхнего карбона, благодаря находкам многочисленной микрофауны и конодонтов, выделяется касимовский и гжельский ярусы.

Касимовский ярус С3k

В литологическом отношении касимовский ярус на большей части площади сложен известняками и доломитами. В северо-восточной части месторождения характер разреза изменяется. Здесь наряду с известняками и доломитами большую роль играют голубовато-серые крупнокристаллические крепкие ангидриты. Степень ангидритизации разреза постепенно увеличивается снизу вверх от отдельных гнезд и включений до сплошных (толщиной 5-10 м) пластов и ангидритов. Толщина касимовского яруса варьирует от 50 до 97 м.

Гжельский ярус C3g

Гжельский ярус состоит из двух частей. Нижняя, толщина 53-136 м, в отложениях распространения сульфатных и карбонатных пород имеет строение, аналогичное нижележащему ярусу. Отличительной ее особенностью является широкое развитие органогенных известняков, на 65-85 % состоящих из обломков фауны и водорослей. Кроме того, в северо-восточной части площади еще более усиливается ангидритизация разреза, и значительное распространение получают также темно-серые, почти черные аргиллитоподобные глины

Таким образом, всю в основном карбонатную толщу пород подольского и мячковского горизонтов московского ярусов, а также касимовского и гжельского ярусов верхнего карбона, где наряду с карбонатными породами имеют развитие (особенно в северо-восточной части месторождения) и сульфатные отложения (ангидриты), относят к так называемой „верхней карбонатной толще KT-I”, суммарная толщина которой изменяется от 427 до 537 м.

Над карбонатной частью разреза расположена терригенная пачка пород гжельского яруса, состоящая из глин, алевролитов, реже гравелитов толщиной от 24 до 109 м.

Пермская система Р

Пермские отложения представлены нижним и верхним отделами.

Нижний отдел Р1

Нижняя пермь, представлена отложениями ассельского, сакмарского и кунгурского ярусов.

Ассельский и сакмарский ярусы P1a - P1s

Ассельско-сакмарская терригенная толща пород совместно с гжельской терригенной пачкой образует на Жанажолском месторождении региональный флюидоупор. Толщина этой покрышки, в значительной степени глинистой по составу, изменяется довольно в широких пределах от 16 до 598 м и имеет тенденцию к уменьшению с севера на юг. В литологическом отношении это переслаивание аргиллитов, песчаников, алевролитов, реже гравелитов и глинистых известняков. Толщина ассельского яруса колеблется от 9 до 359 м. Сакмарский ярус также не выдержан в отношении толщины (от 0 до 209 м в скважине № 5).

Кунгурский ярус P1k

Гидрохимические отложения кунгурского яруса совместно с верхней надкарбонатной терригенной толщей образуют мощную флюидоупорную покрышку для нефтегазонасыщенной части до кунгурского разреза.

Отложения кунгурского яруса в нижней части представлены сульфатно-терригенными породами (ангидриты и аргиллитоподобные темные глины) толщиной от 10 до 60 м. Выше залегает толща галогенных пород (каменная соль) с прослоями аргиллитов, реже песчаников и алевролитов, ангидритов. Максимальная толщиной галогенной толщи составляет 996 м, минимальная - 7 м. В верхней части кунгура залегает терригенно-сульфатная пачка („кепрок”), сложенная в основном ангидритами, толщиной 4-84 м.

Верхний отдел Р2

Отложения верхней пeрми представлены пестро-цветными, серо-цветными терригенными породами: глины, в нижней части аргиллиты; полимиктовые, глинистые мелкозернистые песчаники и алевролиты; реже мелкогалечные конгломераты с отдельными выдержанными прослоями (от 3-5 до 10-15 м) высокоомных пород - ангидритов.

Толщина верхней перми изменяется от 633 м в своде северного купола до 1808 м на восточной периклинали.

Триасовая система Т

Отложения триаса выделяются в составе нижнего отдела и литологически представлены чередованием пестроокрашенных глин, песчаников, алевролитов, встречаются прослои слежавшихся слабосцементированных песков. Толщина отложений варьирует от 65 до 371 м.

Юрская система J

Юрские отложения выделяются в составе нижнего и среднего отделов. Суммарная их толщина колеблется от 60 до 246 м. Представлены они серыми глинами, темно-серыми песчаниками, плотными алевролитами и серыми, зеленовато-серыми, полимиктовыми, разнозернистыми песками.

Нижний отдел К1

В составе нижнего отдела выделяются песчано-глинистые отложения готеривского, аптского и альбского ярусов суммарной толщиной от 298 до 437 м.

Верхний отдел К2

Верхний мел представлен преимущественно зеленовато-серыми, мергелистыми глинами с прослоями конгломератов. Толщина верхнего отдела колеблется от 28 до 132 м.

Четвертичная система Q

Четвертичные отложения небольшой толщины (2-3 м) повсеместно перекрывают отложения верхнего мела, представлены суглинками и супесями.

1.2 Тектоника

В тектоническом отношении район месторождения Жанажол расположен в восточной прибортовой части Прикаспийской впадины, которая отделена от Уральской геосинклинальной зоны Ащисайским и Северно-Кокпектинским разломами.

Одной из характерных черт геологического развития явилось интенсивное опускание территории и формирование мощного осадочного чехла (7-10 км). Основную часть этой толщины составляет подсолевой комплекс, включающий отложения, заключенные между поверхностью докембрийского фундамента и подошвой галогенных осадков кунгурского яруса [2].

Поверхность подсолевых отложений моноклинально погружается на запад, от 2,0-2,5 км близ Ащисайского разлома до 5,5-6,0 км на меридиане купола Беттау.

В пределах указанной моноклинали выделен ряд обособленных ступеней. Последние более четко проявляются по нижним горизонтам и последовательно погружаются к центральной части впадины. С востока на запад выделяются Жанажолская, Кенкиякская, Коздысайская и Шубаркудукская системы ступеней, в пределах которых кровля подсолевого горизонта соответственно находится на глубинах: 3-3,5 км, 3-4 км, 4-5 км и ниже 5 км. К северу от Кенкияка несколько обособленно выделяются Остансукский прогиб, который вдоль западной границы структур Талдышоки, Остансук, Северный Остансук и Байжарык ограничивается нарушением. К северу он непосредственно примыкает к Актюбинскому периклинальному прогибу. Тектонические ступени в значительной степени осложнены разрывными нарушениями.

Одной из особенностей Жанажолской ступени является развитие мощных карбонатных массивов, которые в свою очередь осложнены крупными поднятиями брахиантиклинального типа.

Месторождение Жанажол приурочено к верхней части обширного карбонатного массива, сложенного породами подольско-гжельского возраста. О строении этого массива по более нижним горизонтам можно судить по данным сейсморазведочных работ. На структурной карте по подошве нижней карбонатной толщи пород окско-каширского возраста локализован он в районе скважин № 4 и № 5. По кровле нижней карбонатной толщи, намечаются два локальных свода, оконтуренных изогипсой минус 3200 м. Северный из них расположен в районе скважин № 4 и № 5, южный свод намечается в районе скважины № 18 .

Мозаичная рисовка изогипс остается и по горизонтали, которая характеризуют строение верхней карбонатной толщи пород. По подошве верхнего карбонатного комплекса северный свод Жанажолского поднятия расположен в районе скважин № 4 и № 10; южный свод намечается в районе скважины № 18.

На структурной карте по кровле высокоомного разреза, фиксирующей резкую плотностную границу при смене терригенных пород надкарбонатной толщи сульфатно-карбонатными породами гжельского яруса, Жанажолское поднятие имеет по длинной оси длину 28 км и представляет собой брахиантиклинальную складку субмеридионального простирания, образованную в теле карбонатного массива пород. Она состоит из двух локальных поднятий. Северное в районе скважины № 50 оконтурено изогипсой минус 2300 м. По замкнутой изогипсе минус 2500 м его размеры составляют 10,5 х 5,5 км. Свод южного поднятия залегает на 50 м ниже и оконтурен изогипсой минус 2350 м в районе скважины № 19. Размеры поднятия по изогипсе минус 2500 м составляют 9,5 х 4 км.

Амплитуда поднятия в изученной бурением части составляет порядка 250 м, западное его крыло более крутое (8-10 м) относительно восточного (4-7 м). В целом по всем горизонтам, связанным с границами карбонатных массивов пород, сохраняется унаследованность структурных форм, высокая амплитуда поднятий, их значительные размеры. Лишь по подошве отложений кунгурского яруса, ввиду резкого различия величины мощности подсолевой терригенной толщи пород, которая в пределах площади изменяется от 15 до 600 м, структурный план поднятия как бы нарушается.

Свод северного поднятия немного смещается к востоку и оконтуренный изогипсой минус 1850 м намечается в районе скважин № 5 и № 8.

Структурные карты были зарисованы по кровлям КТ-I и КТ-II на основании применения данных стратиграфического расчленения 284 добывающих и всех разведочных скважин. Общая форма структуры для КТ-I, а также и для КТ-II антиклиналь с южным и северным куполами, с одной седловиной в середине. Направление длинной оси антиклинали ориентировано к северу с отклонением к востоку на 25º.

Структура КТ-I: по структурному плану кровли абсолютная отметка свода южного купола минус 2330 м, абсолютная отметка замыкающей изогипсы минус 2500 м, площадь по замкнутой изогипсе 9,38 км х 4,38 км, высота структуры 170 м; западное крыло данного поднятия круче, с углом падения пластов 10°, восточное крыло пологое, угол падения пластов 7°. Абсолютная отметка свода северного купола минус 2260 м, абсолютная отметка замыкающей изогипсы минус 2500 м, площадь по замкнутой изогипсе 11,25 км x 5,38 км, высота 240 м. Крылья структуры данного поднятия в основном симметричны друг другу, угол падения пластов около 9°.

Рисунок 1.1 - Карты изопахнт для пород терригенной толщи подольского горизонта (A), I-KT (Б), ассельского яруса (В), артинского яруса (Г); структурные карты по кровле II-KT (Д), по размытой поверхности I-KT (E)

а - изопахиты, м; б - изогипсы, м; в - тектонические нарушения; г - области денудации; д - глубокие скважины; палеовалы: I - Урихтау-Южно-Мортукский, II - Кумистобинский, III - Курганский, IV - Жанажол-Алибекмолинский; площади: 1 - Боэоба, 2 - Кенкияк, 3 - Южный Мортук, 4 - Урихтау, 5 - Жагабулак, 6 - Кумистобе, 7 - Кожасай, 8 - Синельниковская, 9 - Жанажол, 10 - Алибекмола

Рисунок 1.2 - Палеотектонические профили Жанажол-Кожасайской группы структур в настоящее время (А), к началу кунгурского века (Б), к началу ассельского века (В), к началу подольского времени (Г)

Структура КТ-II: по структурной карте кровли абсолютная отметка южного свода минус 3110 м, абсолютная отметка замкнутой линии минус 3380 м, площадь по замкнутой изогипсе 12,75 км х 5,38 км, высота структуры 270 м. Западное крыло структуры круче, чем восточное: угол падения пластов западного крыла около 10°, угол падения пластов восточного крыла около 7°. Абсолютная отметка северного свода минус 3050 м, абсолютная отметка замкнутой линии минус 3380 м, площадь по замкнутой изогипсе 11,63 км х 5,5 км, высота структуры 330 м. Два крыла в основном симметричны, а угол падения пластов около 10°.

.3 Морфология залежей

Месторождение представляет собой крупное антиклинальное подсолевое поднятие платформенного типа северо-восточного простирания. Продуктивные пласты в нем приурочены к среднегжельскому регионально - нефтегазоносному комплексу пород, представленному двумя мощными толщами карбонатов (КТ-I и КТ-II), сложенных из известняка и доломитов. Глубина залегания продуктивных горизонтов составляет КТ-I до 2850 м и КТ-II до 3850 м.

Продуктивные пачки отличаются здесь большой неоднородностью по коллекторским свойствам и дискретностью по толщине и простиранию. Основными типами коллекторов являются поровой и порово-каверново-трещинный со средней пористостью около 10-11% и представляют собой в каждой карбонатной толще единые пластово-массивные системы. К характерным особенностям залежей нефти и газа месторождения Жанажол относятся: высокое содержание в нефти и газе коррозийных и токсичных компонентов, высокое содержание конденсата в газе (до 600 г/м3) и растворенного газа в нефти (250 - 300 м3/т), большие глубины залегания продуктивных горизонтов и сложные условия бурения ввиду наличия в соленосной толще кунгура прослоев пластичных монтмориллонитовых глин. Трудноизвлекаемые запасы сырья составляют здесь около 40 %, нефть и газ содержат до 6 % сероводорода.

Нефтегазоносность месторождения связана с отложениями двух карбонатных толщ. В отложениях первой карбонатной толщи выделены 4 продуктивные пачки: А, Б, В и небольшая пачка В'. Пачки объединены в 4 объекта разработки: пачка А, пачка Б, северный купол пачек В+В' и южный купол пачек В+В'. Все выделенные пачки первой карбонатной толщи объединены между собой единой гидродинамической системой и практически представляют собой одну пластово-массивную газонефтяную залежь с общим газонефтяным и водонефтяным контактами. Средняя глубина залегания залежей составляет 2800 метров. Начальное пластовое давление Рпл, приведенное к отметкам ГНК и ВНК равно соответственно 29,1 и 30 МПа. Пластовая температура равна 58-61°С. Геотермический градиент равен 2,4°С.

Продуктивность второй карбонатной толщи связана с двумя пачками Г и Д. Пачки разбиты тектоническими нарушениями на три блока. В первом блоке (южный купол) выделено 3 объекта разработки: один в пачке Г - Г-I, и два в пачке Д - верхний Дв-I и нижний Дн-I

Нефтеносность второго блока связана с одним небольшим объектом Г-II. В третьем блоке первоначально выделялись три объекта разработки: два в пачке Г - верхний Гв-III и нижний Гн-III и один в пачке Д - объект Д-III. Затем было признано целесообразным объединить верхнюю и нижнюю часть пачки Г в один объект разработки Г-III. Это единственный объект КТ-II, имеющий газовую шапку, остальные объекты Дв-I, Дн-I, Д-III являются чисто нефтяными.

Поры размерами 0,05-0,1 мм составляют 13-15,8%, а каверны в 1,1-1,9 мм - до 3% породы и сообщаются между собой микротрещинами. Открытая пористость пород КТ-II составляет 9,2-19,5% при проницаемости до 979-1279 мкм2 с максимальными значениями на Жанажол, Урихтау где по ГИС коэффициент пористость достигает до 42,67-46,1%. О наличии в разрезе КТ-II пластов с хорошими фильтрационными свойствами свидетельствуют полученные фонтаны притоков нефти, газа и конденсата на Жанажоле - 165-720 м3/сут.

Нефти в отложениях КТ-II нафтеново-метановые с содержанием нафтеновых углеводородов до 5,8%. Они бензиновые (31-35%) при керосиновых фракциях до 14-15% и масляных до 14%. Нефти имеют плотность 823,7-918,3 кг/м3 при t = 200. Утяжеление нефтей обнаруживается в разрезе от кровли к подошве - наиболее тяжелые в зоне ВНК. Вязкость при 200С составляет 564-130,4 мПа×с, они сернистые (0,4-1%) и высокосернистые (1,4-3,8%), парафиновые (4,7-8,7%) с температурой плавления t = 42-500C, малосмолистые (смол селикагелевых 4,2-9,5%, асфальтеновых 0,5-3,8%, содержание кокса до 4,7-6,7% и золы до 0,1%, газовый фактор равен 123- 40,67 м3 на 1 м3 нефти, при давлении насыщения 27,8-34,6 МПа. Начало кипения 58-620С, а для тяжелых нефтей 105-1820С. При t = 1500С выкипает 3,4-22,8%, 2000С - 9,2-35,6%, 3000С 18,2-58,8% иногда до 70,4%. Пластовая температура 63-940С, пластовое давление 35,8-41,7 МПа.

Средний суточный дебит скважин по месторождению составляет 27,34 т/сут. Состав нефти и некоторые показатели залежей месторождения показаны в таблицах 1.1 и 1.2.

Таблица 1.1 - Состав нефти и газа

Состав

Нефть (%)

Газ (%)

N2

0,0001

1,71

CH4

0,13

81,18

CO2

0,01

0,72

C2H6

1,23

8,64

H2S

0,53

2,64

C3H8

5,29

3,68

i-C4H10

2,23

0,42

n-C4H10

5,36

0,67

i-C5H12

3,55

0,16

n-C5H12

3,82

0,13

C6H14

4,73

0,05

C7H16

0,01

C8H18

1,78

0,02

CS

0,0001

0,0001

CH3SH

0,0157

0,0026

C2H5SH

0,0265

0,0012

C3H7SH

0,1965

0,0026

C4H9SH

0,0151

0,0001

140°С

7,49

0,004

165°С

12,20

0,002

200°С

5,52

0,0001

230°С

4,57


250°С

4,00


270°С

3,77


290°С

3,62


312°С

4,89


298°С

21,006



Таблица 1.2 - Показатели залежей месторождения Жанажол


КТ-I

КТ-II

Итого

Разведанные запасы, тыс. т

166423

233499

399922

Площадь нефтеносности, км2

75,204

70,00

-

Разведанные запасы газа, млрд. м3

76,597

31,018

107,615

Площадь газоносности, км2

70,695

42,5

-

Глубина середины залежей, м

2800

3800

-

Толщина нефтяного пласта, м

110

80

190

Толщина газового пласта, м

110

190

Температура нефтяного пласта,°С

61

75

-

Объемный коэффициент нефти

1,6862

1,46-1,81

-

Первоначальное пластовое давление, МПа

29,2-29,3

38,0-39,2

-

Давление насыщения, МПа

29,15

27,0-35,0

-

Первоначальный газовый фактор, ма/м3

302

209-373

-


1.4 Гидрогеология

Жанажолское месторождение входит в восточную окраину Прикаспийского сложнопостроенного артезианского бассейна.

В палеозойских и мезозойских отложениях восточной окраины впадины выделяются четыре водоносных комплекса: подсолевой палеозойский, кунгурско-верхнепермский, триасовый и юрско-меловой. Каждый их них заключает несколько регионально-выдержанных водоносных горизонтов, приуроченных к определенным стратиграфическим толщам. Ввиду отсутствия мощных глинистых пластов, простирающихся на большие расстояния, и наличия различного рода гидрогеологических окон подземные воды выделенных водоносных комплексов в региональном плане не достаточно хорошо изолированы друг от друга. Но локальный водообмен между подсолевыми и надсолевыми отложениями весьма затруднен.

Чередование положительных и отрицательных тектонических движений, испытанных восточной окраиной при ее геологическом развитии в позднепалеозойское и мезозойское время, создало определенную гидрогеологическую цикличность, и каждый раз приводило к изменению палеогидрогеологических условий, нарушавших статическое состояние палеозойских подземных вод.

После каждого гидрогеологического цикла изменялась гидрохимическая характеристика подземных вод, происходила перестройка гидродинамического режима и возникла необходимость в разгрузке подземных вод через имевшиеся тектонические разрушения и плоскости угловых несогласий для выравнивания пластовых давлений, как в совмещенных водоносных горизонтах, так и в горизонтах с уменьшенными пластовыми давлениями.

Воды нижнекаменноугольных отложений хлоридно-кальциевого типа с минерализацией 182,1 г/л.

Воды среднекаменноугольных отложений соленые сероводородные хлоридно-кальциевого типа с минерализацией 96,4 г/л, сульфатные слабоминерализованные.

Воды нижнепермских терригенных отложений приурочены к песчаным прослоям артинских, сакмарских и ассельских отложений. Они хлоридно-кальциевого типа с минерализацией до 129 г/л, неметаморфизованные, сульфатные. Статический уровень устанавливается на 80-100 м от устья [3].

Воды кунгурских отложений локализуются в терригенно-сульфатных прослоях в толщи каменной соли, являются рассолом хлоридно-кальциевого типа с минерализацией 67,3-263 г/л, воды являются метаморфизованными или слабометаморфизованными.

Воды верхнепермских отложений располагаются в нескольких песчаных водоносных горизонтах, являются минерализованными. Воды хлоридно-кальциевого типа с минерализацией от 50,3 до 292 г/л при плотности 1035,7-1185,6 кг/м3 с растворенными в них метаном и азотом.

Газосодержание вод колеблется от 0,062 до 0,973 ма/м3 при упругости газов 1,16-5,65 МПа. Состав растворенных в воде газов в законтурных и подошвенных водах азотно-метановый и метановый с содержанием метана 55-79,2 %.

Кроме того, в растворенных газах подошвенных и законтурных вод содержится соответственно: этан - 11,1-26,8 % и 0,04-3,6 %; тяжелые углеводороды - 4,3-24 % и 0,03-0,05 %; углекислый газ - 0,36-3,48 %; гелий - 0,003-0,3 %; аргон - 0,03-0,748 %. Возраст пластовых вод неоген-верхнемеловой и он намного меньше возраста водосодержащих отложений. Верхнепермские отложения содержат напорные воды.

Воды нижнетриасовых отложений гидрокарбонатно-натриевые, сульфатно-натриевые, хлоридно-магниевые и хлоридно-кальциевые с минерализацией от 7,1 до 251 г/л. Пластовые воды, в основном, неметаморфизованные. Воды имеют запах сероводорода. Газосодержание варьирует от 0,015 до 0,823 м3/м3 при упругости 3,4-4,57 МПа. Содержание растворенных газов в законтурной и подошвенной воде колеблется соответственно от 48,6 до 82,9 % и 2,9-40,1 %, метана от 4,5 до 41,7 % и 51,2-89,3 %. В водах установлены также этан - 0,13-21,3 % и тяжелые углеводороды - 0,31-26,1 %, гелий - 0,002-0,053 % и аргон - 0,09-0,932 %. Возраст пластовых вод соответствует раннему миоцену.

Воды юрских отложений образуют два водоносных комплекса: нижнеюрский и среднеюрский.

Нижнеюрские воды сульфатно-натриевые и хлоридно-кальциевые, в единичных случаях гидрокарбонатно-натриевые и хлоридно-магниевые. Минерализация их меняется от 1,4 до 221,9 г/л. Воды слабометаморфизованные. Газосодержание подошвенных вод колеблется от 0,025 до 0,235 м3/м3 при упругости газа до 3,53 МПа.

В состав растворенных газов подошвенных и законтурных вод входят: метан - 49,9-74 % и 30,3 %, этан - 2,6-4,5 % и 0,1 %, тяжелые углеводороды - 1,6-2,1 % и 0,01 %, углекислый газ - 2,5-2,9 % и 0,2 %, азот - 4,29-15,4 % и 67,5 %, гелий - 0,02-0,002 % и 0,43 %, аргон - 0,141-0,315 % и 0,738 %. Абсолютный возраст вод плиоценовый, что свидетельствует о более молодом возрасте водосодержащих отложений.

Воды среднеюрских отложений представлены водами ааленских и байосс-батских отложений.

Воды ааленских отложений гидрокарбонатно-натриевые, сульфатно-натриевые и хлоридно-кальциевые. Общая минерализация вод изменяется от 2 до 202,8 г/л. Воды в основном слабометаморфизованные. В состав водорастворенного газа входят: метан - 5,4%, этан - 0,3 %, тяжелые углеводороды - 0,2 %, углекислый газ - 0,3 %, кислород - 0,3 %, азот - 32,1 %, гелий - 0,043 % и аргон- 0,798 % при газовом факторе 0,04 ма/м3 и общей упругости газа 0,4 МПа. Воды напорные.

Воды байосс-батских отложений гидрокарбонатно-натриевые и сульфатно-натриевые, хлоридно-магниевые и хлоридно-кальциевые. Они характеризуются минерализацией от 0,7 до 259 г/л. Газосодержание законтурных и подошвенных вод составляет 0,025-0,775 ма/м3 при общей упругости газа от 0,21 до 4,86 МПа. В законтурных водах растворен газ азотного состава с содержанием азота 67,5-98,1% и низким содержанием метана при газовом факторе в 0,025-0,05 ма /м3 и общей упругости 0,14-0,84 МПа.

В подошвенных и в приконтурных водах растворенные газы преимущественно углеводородные с содержанием метана 74,3-91,4 %. Газосодержание по мере приближения к контуру нефтеносности возрастает от 0,227 до 0,775 ма/м3 при упругости газа 0,75-4,86 МПа. Кроме метана и азота в водах содержатся: этан - 0,5-5,6 %, тяжелые углеводороды - 0,01-8,8 %, углекислый газ - 0,1-7,9 %, кислород - 0,1-3,4 %, гелий - 0,002-0,052 % и аргон - 0,029-1,626 %. Воды четвертичного и плиоценового возраста, что свидетельствует об их инфильтрационном генезисе. Воды обладают значительным пьезометрическим напоре в 42-712 м. Статические уровни в скважинах устанавливаются на глубине 8-68 м.

Воды меловых отложений представлены готеривским, барремским, атским и альбским водоносными комплексами.

Воды готеривских отложений, в основном, гидрокарбонатно- и сульфатно-натриевые и частично хлоридно-кальциевые с минерализацией от 1,9 до 117 г/л. Воды независимо от степени минерализации являются метаморфизованными. В приконтурных водах растворенный газ имеет, в основном, метановый состав с содержанием метана 83,8 % и азота 6,7 %; в законтурных - азотный состав с содержанием азота 82,8-86,6 % и метана до 14,3 %. В водах присутствует также: этан - 0,01-9,1 %, углекислый газ - 0,1- 0,5 %, гелий - 0,003-0,009 % и аргон - 1,052-1,187 %. Возраст вод - четвертичный.

Водонапорные статические уровни устанавливаются на глубине 12-43 м.

Воды барремских отложений гидрокарбонатно- и сульфатно-натриевые с минерализацией 0,3-31,7 г/л. Газосодержание законтурных и подошвенных вод составляет 0,022-0,247 ма/м3 при упругости газа 0,12-0,9 МПа. В подошвенных водах растворен метановый газ с содержанием метана 86,9 % и азота 6,5 %. В законтурных водах и на нефтеносных куполах газ азотный с концентрацией азота 89,1-96 % и метана 3,9-8,2 %. В составе газа определены также этан - до 0,37 %, тяжелые углеводороды - до 2,13 %, углекислый газ - 0,1-4 %, гелий -0,006-0,016 % и аргон - 0,227-1,674 %. Возраст вод четвертичный. Водонапорные, статические уровни их в скважинах устанавливаются на глубине 5-55 м, а дебит при понижении уровня на 40 м достигает 8 л/с.

Воды аптских отложений преимущественно гидрокарбонатно- и сульфатно-натриевые, частично хлоридно-магниевые и хлоридно-кальциевые с минерализацией 0,5-90,8 г/л при плотности 1000-1067 кг/м3. На некоторых участках водоносный горизонт залегает неглубоко от поверхности и содержит слабоминерализованные воды. Воды неметаморфизованные. Состав газов законтурных вод: азота - 95,7-97 %, метана - 2 %, углекислого газа - 0,2-1 %, гелия - 0,003 % и аргона - 0,298-1,8 %. Водонапорные, статические уровни в их скважинах устанавливаются на глубине 4-80 м от устья. Дебиты при понижении уровня на 20 м составляют 0,3-10 л/с.

Воды альбских отложений сульфатно-натриевые и хлоридно-магниевые с минерализацией 0,21-0,472 г/л. Воды песчаных отложений альба подпитываются солеными водами более древних отложений и становятся непригодными для питьевых целей. Газосодержание вод равно 0,04 ма/м3 при упругости газа 1,9 МПа. Растворенный газ азотный с содержанием азота - 67 %, метана - 26,4 %, этана - 0,25 %, тяжелых углеводородов - 1,2 %, углекислого газа-3,6 %, гелия - 0,005 %; и аргона - 1,106 %. Статические уровни вод в скважинах устанавливаются на глубине 10-30 м от устья, максимальные дебиты 8,0-13,5 л/с.

В четвертичных отложениях имеет распространение водоносный горизонт, связанный с делювиальными отложениями, слагающими долины балок и пониженные участки рельефа. Питание его осуществляется, в основном, за счет атмосферных осадков. По типу залегания делювиальные воды относятся к грунтовым.

Таким образом, подземные воды продуктивных горизонтов верхнепермских и мезозойских отложений относятся в основном к высокоминерализованным. Минерализация их увеличивается с глубиной.

По гидрохимическим показателям они не типично нефтяные с застойным режимом, не сингетичны вмещающим отложениям, а инфильтрационные, что указывает на нахождение водоносных горизонтов в зоне водообмена с дневной поверхностью и свидетельствует о плохой закрытости недр и активном разрушении нефтяных залежей.

Содержание водорастворенных газов на водонефтяном контакте месторождения Жанажол составляет в среднем 3,1 ма/м3, из которых примерно половина приходится на кислые (сероводород, двуокись углерода) и половина на метан и его гомологи.

Характерной особенностью химического состава растворенных газов является высокое содержание сероводорода (34,4%) и двуокиси углерода (11,7%). Обращает на себя внимание также низкая концентрация гомологов метана (около 2%), что не характерно для подземных вод, контактирующих с нефтяной залежью.

.5 Генезис

Советский этап становления

Во второй половине 20-х гг. XX века нефтяники Эмбы начали применять роторное вращательное бурение, что способствовало развитию буровых работ, росту глубины скважин, темпа вскрытия и разведки нефтяных залежей. Вращательное бурение на Эмбе было применено впервые в СССР. В результате этого, средняя глубина скважин с 196,7 м., в 1929 г. возросла до 637,7 м в 1932 г.

Нефтяники Эмбы первыми в СССР и Европе освоили на Доссоре и Макате сверхглубокое бурение того времени - до 2500-2800 м. В докладе «Перспективы развития Урало-Эмбинского района», сделанного И.М. Губкиным в 1927 г. на заседании Совета нефтяной промышленности ВСНХ, говорилось о необходимости внимательнейшим образом отнестись к развитию Эмбинского региона.

Непосредственное руководство геолого-поисковыми работами на Эмбе осуществлял Геологический комитет главного горно-топливного управления ВСНХ СССР. Особое внимание развитию Урало-Эмбинского района уделял И.М. Губкин.

В 1931 г. в докладе на чрезвычайной сессии Академии наук СССР И.М. Губкин подчеркнул: «Энергичная и смелая разведка может сделать из Урало-Эмбинского района грандиозный район со многими десятками миллионов тонн добычи. Сюда нужно бросить максимум средств и сосредоточить на этом районе неослабное внимание».

Новый импульс развитию геолого-разведочных исследований на территории Западного Казахстана был дан в 1925-1926 годах. В 1925 г. по результатам проверки работы треста «Эмбанефть» перед нефтяниками была поставлена конкретная задача: в течение 5-7 лет разведать структуры с признаками нефтегазоносности площадью 3500 квадратных верст на территории северных районов (Темирского района) Актюбинской области. Согласно этим задачам, к началу 30-х годов поисковые работы вышли за пределы Южной Эмбы и стали проводиться на территории Актюбинской области. В связи с этим возникла необходимость организации территориального треста «Актюбенефтеразведка», а позднее - треста «Казнефтеразведка» в г. Гурьеве (Атырау).

В 1931 г. бурением скважины №10 вновь организованным трестом «Актюбенефтеразведка» в Актюбинской области открыто месторождение Шубаркудык. Двумя годами позже открыто месторождение Жаксымай. Оба месторождения находились далеко от г. Гурьева. Вскоре возникла проблема транспортировки добываемой нефти, которая была решена строительством железной дороги Гурьев - Кандагаш, соединившей месторождения Шубаркудык и Жаксымай с Доссором и Макатом.

Таким образом, к концу 20-х гг. геологоразведочные работы расширились, чему способствовал охват значительной части Актюбинской области. В течение 5 лет изучением нефтяных богатств Западного Казахстана занимались 135 геологических и геофизических партий. Это привело к значительному росту объемов работ.

С 1920 по 1929 гг. на промыслах Урало-Эмбинского района было добыто 1630 тыс. тонн нефти, или на 19% больше по сравнению с количеством, полученным за весь дореволюционный период. Максимальная добыча была достигнута в 1931 г.

Совет народных комиссаров КазССР в 1934 году принял специальное постановление «О мероприятиях по развитию Эмбанефти», в котором обязал предприятие ввести в эксплуатацию месторождение Косшагыл и Искене, а также построить там же электростанции, соорудить нефтехранилища и провести водопровод. Особое внимание в постановлении обращалось на необходимость строительства железной дороги Макат - Косшагыл и ветку на Искене. Не остались без внимания и вопросы создания нефтяниками нормальных условий. Было рекомендовано построить жилые дома на нефтепромыслах и в г. Гурьеве, а также создать подсобные хозяйства (огороды, молочные фермы, животноводческое хозяйство). Кроме того, рекомендовать соответствующим органам решить вопрос о вербовке для работы на нефтяных промыслах 200 рабочих и 100 квалифицированных специалистов строительных специальностей.

Большое внимание развитию Эмбинского нефтяного района было уделено на 17 и 18 съездах ВКП(б). Принятые там документы определили основные направления поисков нефтяных богатств. В целом поисково-разведочные работы этого периода позволили определить рациональный комплекс исследований, необходимый для детального изучения соляных куполов. Осознание необходимости активизации поисковых и разведочных геолого-геофизических работ привело к организации в 1940 г. первой в республиканском масштабе геофизической службы. Тогда при Казахском геологическом управлении была создана геофизическая группа под руководством М.Морозова.

В ноябре 1935 г. состоялась специальная сессия АН СССР, посвященная вопросам развития нефтяной и химической промышленности Эмбы, на которой академик И.М. Губкин изложил конкретную задачу: создать нефтяную базу на востоке страны, которая по своей производительной мощности была бы не меньше Кавказской. Крупными частями второй нефтяной базы должны явиться Западно-Уральский и Урало-Эмбинский нефтяные районы. На сессии было принято решение направить в эти регионы научную экспедицию. И в 1936 г. в Эмбинский район выехала экспедиция под руководством В.Батурина.

За годы довоенных пятилеток в Западном Казахстане, в основном в Эмбинском районе, работало до 53 геологоразведочных и до 60 геофизических партий.

Форсирование поисково-разведочных работ и открытие ряда месторождений в 30-годы диктовалось необходимостью создания прочной сырьевой базы нефтегазодобывающей промышленности на востоке страны на случай военных действий, наступление которых с каждым годом ощущалось все острее. В 1937 г. важным событием явилось открытие трестом «Казнефтеразведка» мощной залежи нефти на Кульсарах и установление промышленной нефтеносности Толеса.

Интенсивные нефтепоисковые работы, проведенные комбинатом «Казахстаннефть» (после упразднения комбината «Эмбанефть»), увенчались открытием и вводом в эксплуатацию в сжатые сроки таких месторождений, как: Нармонданак, Бекбике и Жолдыбай в 1941-1942 гг. Таким образом, 30-е годы и начало 40-х гг. ознаменовались открытием основных нефтегазовых месторождений Южной Эмбы и созданием прочной сырьевой базы нефтегазодобывающей промышленности на востоке бывшего СССР. Годовая добыча нефти в 1940 г. достигла 750 тыс. тонн.

С ростом добычи нефти все острее ощущалась проблема ее транспортировки, осуществлявшаяся железнодорожным и водным транспортом. Построенные в 30-х гг. нефтепроводы Доссор-Гурьев, а особенно нефтемагистраль Каспий-Орск через промыслы Актюбинской области, имели огромное народнохозяйственное значение. Нефтепровод Каспий-Орск был построен за 3 года, в октябре 1935 г. он вступил в строй. По этому нефтепроводу 65% эмбинской нефти перекачивалось в Орск.

Суровым испытанием для всей страны стала Великая Отечественная война. В целях возмещения производства временно прекративших свою деятельность нефтяных районов Майкопа и Грозного, важнейшей военно-хозяйственной задачей было всемерное форсирование добычи нефти в Казахстане, от успешного разрешения которой зависело удовлетворение первоочередных нужд народного хозяйства страны и боеспособность Советской Армии.

Добыча нефти в 1941-1945 гг. составляла в среднем 800 тыс. тонн в год.

В годы Великой Отечественной войны геологические исследования были концентрированы в Урало-Эмбинской нефтеносной области. Продолжались исследования и на Мангыстау.

Развитие нефтяной отрасли не ограничивалось территорией Гурьевской области. В 1930 г. началось бурение первой разведочной скважины, вскрывшей нефть на соляном куполе Шубаркудук. Через шесть лет здесь вступил в строй нефтяной промысел и был создан трест «Актюбнефть», позже переименованный в «Актюбнефтеразведка».

В годы Великой Отечественной войны вошло в строй действующее месторождение Жаксымай. С 1930 по 1947 гг.

В Актюбинской области было пробурено уже около 90 скважин.

В послевоенный период Правительство СССР приняло ряд специальных решений, направленных на повышение буровых и строительных работ и нефтяной промышленности республики. Для усиления строительных и разведочных работ были организованы специальные тресты «Казахстаннефтестрой», «Казахстаннефтеразведка», «Актюбнефтеразведка» и Казахстанское отделение Государственного геофизического треста.

На промыслах стали широко внедряться мощные буровые станки, станки-качалки нормального ряда, тракторные подъемники. Изменилось на Эмбе направление буровых работ. Если в период Отечественной войны разведочное бурение осуществлялось главным образом вокруг существующих материально-технических баз, то после войны оно было перенесено в наиболее перспективные районы юго-востока Эмбы для выявления новых месторождений. А трест «Актюбнефтеразведка» развернул работы в районе Актюбе.

Первые послевоенные годы отмечены открытием ряда месторождений: Мунайлы и Толес Южный в 1947 г., Каратон в 1948 г., Толес в 1958 г., Карсак в 1951 г.

Вовлечение упомянутых месторождений в разработку повлекло за собой резкое увеличение годовой добычи нефти до 1,5 млн. тонн и многократное возрастание разведанных запасов.

С 1946 г. объемы геологоразведочных работ в Прикаспийской впадине резко возросли, проводились геофизические исследования, бурение глубоких опорных и параметрических скважин. Поисково-съемочные, аэрогеологические работы на обширных территориях Западного Казахстана сопровождались картировочным бурением, геофизическими, геохимическими, геоботаническими и др. исследованиями.

С 1948 г. на территории всей Прикаспийской впадины начала работать аэрогеологическая экспедиция. Интенсивно велись разведочные работы в различных нефтеносных районах. На Эмбе они привели к открытию нефтяных месторождений Теренозек (1951г.), Тажигали (1956 г.), Караарна(1957 г.).

Промышленная нефтеносность была установлена на Жыланской структуре (Актюбинское Приуралье).

В 1959-1960 гг. выявлены крупные залежи нефти на Кенкияке (Актюбинская область) и Прорве. Первая глубокая скважина на Прорве 11 августа 1960 г. дала мощный фонтан нефти и газа. В результате усиления геолого-разведочных работ междуречья Урал - Эмба были открыты новые месторождения Мартыши (1962), Юго-Западный Камышитовый (1962), Жанаталап (1964), Гран и Октябрьское (1969). Добыча нефти на Эмбе в 1968 г. достигла 2 млн. тонн, а в 1972 - 3 млн. тонн.

Конец 50-х и начало 60-х гг. также характеризуется вовлечением в сферу поисковых работ новых регионов, в частности, Южного Мангыстау. Для более детальной разведки месторождений нефти и газа в этом районе в 1957 г. в составе объединения «Казахстаннефть» был организован трест «Мангышлакнефтегазразведка», перешедший затем в подчинение Западно-Казахстанского геологического управления Министерства геологии Казахской ССР.

В условиях безлюдной и безводной пустыни, в совершенно необжитом и отдаленном от крупных городов, железнодорожных и водных путей регионе в короткий срок был открыт новый крупный нефтегазоносный бассейн - Южно-Мангыстауский.

В 1961 г. на структуре Узень при бурении структурной скважины №18 из глубины 367,5 метра впервые на Южном Мангыстау был получен фонтан газа. После этого на площади Узень форсированными темпами проводилось разведочное бурение. В результате, разведочная скважина №1 при опробовании из глубины 1248-1261 метр дала фонтан нефти с дебитом 80 кубических метров в сутки.

В дальнейшем промышленные залежи нефти на площади Узень подтвердили фонтаны нефти, полученные из того же горизонта в скважинах №2 и №22.

В 1959 г. было начато поисковое бурение на структуре Жетыбай. В 1961 г. из разведочной скважины № 6 месторождения Жетыбай был получен нефтяной фонтан. Таким образом, в 1961 г. на Южном Мангыстау почти одновременно были открыты два нефтяных месторождения - Узень и Жетыбай.

Для промышленного освоения богатств Южного Мангыстау в январе 1964 г. было создано производственное объединение «Мангышлакнефть». На освоение нефтяной целины приехали тысячи квалифицированных рабочих и опытных инженерно-технических работников из Азербайджана, Татарии, Башкирии, Краснодарского и Ставропольского краев. Выросли поселки нефтяников Ералиево, Жетыбай, город Новый Узень (Жанаозен). Было организовано нефтепромысловое управление Узень.

июня 1965 года первый эшелон мангышлакской нефти по железной дороге был отправлен на Гурьевский нефтеперерабатывающий завод.

С открытием Южно-Мангыстауского нефтегазоносного региона с его крупнейшими месторождениями Узень и Жетыбай разведанные запасы нефти по промышленным категориям увеличились в 20 раз, а годовая добыча в 14 раз. В последующие 10 лет были выявлены, разведаны и разработаны новые месторождения: Тенге, Тасболат, Карамандыбас, Восточный Жетыбай и др.

С резким увеличением добычи нефти возникала острейшая необходимость строительства нефтепровода для ее транспортировки на Гурьевский нефтеперерабатывающий завод, а также другие заводы СССР. В короткий срок, в течение 2-х лет, этот нефтепровод был построен, и проблема транспортировки мангышлакской нефти была решена.

В 1969 г. введена в эксплуатацию первая очередь нефтепровода Узень-Гурьев-Куйбышев (Самара). На Мангыстау впервые была применена транспортировка высокопарафинистой нефти по «горячему нефтепроводу». Мангышлакская нефть по 700-километровой подземной магистрали начала поступать в Гурьев. Построена железнодорожная линия Узень-Шевченко протяженностью 150 километров.

В целях поддержания высокой интенсивности добычи нефти внедрен бескомпрессорный газлифтный способ эксплуатации скважин, впервые в мире использована промышленная установка по закачке в пласт горячей воды и др.

Открытие и ускоренное освоение Мангышлака сыграло решающую роль в многократном увеличении разведанных запасов. Это также способствовало выходу Казахстана в число ведущих нефтедобывающих республик бывшего СССР.

С 1959 г. открыто еще несколько нефтяных и два газовых месторождения (Бостагайское и Кызылойское), вступившие в строй в 1967 г., а затем - Кумсай, Кокжиде, Мортык и другие в северной части бассейна реки Эмбы. В 1967 г. месторождение Кенкияк уже начало давать нефть.

В 70-х годах фронт поисковых и разведочных работ разворачивается на полуострове Бозащи, завершившихся открытием и разведкой крупных месторождений Каражанбас, Северное Бозащи, Каламкас и др.

Крупным событием в нефтеразведочном производстве Западного Казахстана стало бурение сверхглубоких Аралсорской, Биикжальской скважин (до 7000 м) и обоснование нефтеносности подсолевого комплекса пород. Управление «Казнефтегазразведка», организованное в г. Гурьеве в 1972 г., приступило к бурению глубоких скважин с целью вскрытия нефтегазовых залежей в подсолевых отложениях. Вскоре были открыты подсолевые месторождения Жанажол и гигантские нефтегазоконденсатные залежи Карачаганака.

В 1978 г. на нефтегазоконденсатном месторождении Жанажол был впервые получен высокодебитный приток нефти из глубины 3000 метров. Разрабатывается оно с 1983 г.

Накануне нового 1980 г. начатые еще в начале 70-х годов буровые работы по вскрытию подсолевого комплекса привели к открытию гигантского нефтяного месторождения Тенгиз, которое вошло в число 5 крупнейших месторождений мира.

В 1983 году были открыты нефтяные месторождения Кожасай и Урихтау, а в 1987 г. - Синельниковское.

Как было уже отмечено, 70-90-е гг. в целом явились для Казахстана результативными, отмеченными чередой новых открытий. Продолжаются интенсивные поиски в различных районах Прикаспийской впадины, на Устюрте, Бозащах и Арыскумском прогибе Южно-Торгайской впадины. На северном борту Прикаспия выявлен ряд небольших по запасам нефтегазоконденсатных месторождений: Тепловское, Токаревское, Чинаревское, Каменское, Дарьинское и др. Эти объекты явились прелюдией к открытию в 1979 г. крупнейшего Карачаганакского нефтегазоконденсатного месторождения. Открытие этого месторождения стало большим достижением, достойно увенчавшим труд большого коллектива разведчиков недр.

Примечательно, что на Мангыстау продуктивными оказались триасовые отложения, из которых получены фонтанные притоки нефти на Южном и Восточном Жетыбае, что значительно расширило перспективы увеличения добычи. Помимо этого, в эти же годы были выявлены такие месторождения, как Кансу, Каракудук, Аламурын Южный, Ракушечное, Бектурлы на Южном Мангыстау, Кенбай, Орысказган, Кисимбай, Ровное и другие в Прикаспийской впадине. Открытие названных месторождений, запасы которых сравнительно невелики, но, тем не менее, значительно укрепили сырьевую базу нефтедобывающей промышленности Казахстана.

Как отмечалось, крупные открытия произошли в 70-х гг. на полуострове Бозащи, где за короткое время были обнаружены и подготовлены к разработке месторождения Каражанбас, Северное Бозащи, Каламкас, Жалгизтобе и другие.

За счет открытия этих месторождений, запасы которых относятся к категории крупных, особенно Каламкаса, сырьевая база Мангыстау заметно расширилась и укрепилась.

В начале 70-х гг. в Южном Казахстане выявлен газоносный бассейн - Шу-Сарысуский. На юге Торгайского прогиба в 1984 г. было открыто крупное газонефтяное месторождение Кумколь, а также целый ряд месторождений нефти и газа.

2 Стадии геологоразведочных работ

Первые сведения о геологическом строении района опубликованы в работе Е. К. Ковалевского и А. Гарнгроссе, которые в 1840 году изучали обнажения по рекам Темир, Эмба, Атжаксы.

И в дальнейшем исследования района носили маршрутный и рекогносцировочный характер. Более детальное и планомерное изучение территории начинается с 1944 года. Так, в 1944-1946 годах Каспийско - Аральской партией под руководством А. Л. Нишина и Г. П. Водорезова проводилась геологическая съемка листа M-40 в масштабе 1:1000000. В результате работ была составлена геологическая карта и объяснительная записка к листу, в которой освещены основные вопросы стратиграфии и тектоники территории. Эти работы до сих пор не утратили своей ценности.

В 1949 году Б. И. Самодуров и Н. В. Иванова провели геологическую съемку масштаба 1:200000 листа М-40-ХХХIV, куда входит и Жанажол. Авторы дали подробное описание геологического строения района. В 1952 году площадь была покрыта гравиметрической съемкой того же масштаба (Л. Н. Тушканов).

В 1953-1954 годах на этой площади проведена геологическая съемка масштаба 1:50000 с применением нормативочного бурения (Л. С. Зингер).

Поднятие Жанажол, было выявлено в 1960 году (Добровскнй Н. П. и Мойссюк Н. К.) и подготовлено к бурению в 1961 году сейсмическими работами МОВ Актюбинской геофизической экспедиции (АГЭ). В 1975 и в 1980 годах его строение было уточнено исследованиями МОГТ (Мойссюк Н. К., Жуйков О. А., Кузнецов Е. Н.).

Глубокое поисковое бурение на площади начато в 1961 году при Мугоджарской экспедиции глубокого бурения треста «Актюбнефтеразведка». Начиная с 1976 года, поисковые работы велись Актюбинской нефтеразведочной экспедицией (Губкин Н. А., Булекбаев З. К.), а с 1978 года и Кенкиякской нефтеразведочной экспедицией объединения „Казнефтегазгеология”.

Месторождение было открыто в 1978 году. В результате глубокого бурения Жанажолской структуры Актюбинской нефтеразведочной экспедицией 31 июля 1978 года из скважины № 4 был получен мощный приток из подсолевых отложений с глубины 2800-2894 м. Поисково-разведочные работы проводились на Жанажоле до 1986 года.

В 1981 года на месторождении начато бурение разведочных и первых эксплуатационных скважин вновь созданным объединением „Актюбинскнефть” Миннефтепром СССР, которому поручена его разработка.

С целью освоения крупнейшего в Актюбинской области Жанажолского месторождения и подготовки его к промышленной разработке приказом министра нефтяной промышленности № 157 от 10 марта 1981 года было создано нефтегазодобывающее управление „Октябрьскнефть”, в составе его на самостоятельном балансе - управление технологического транспорта, строительно-монтажное управление, жилищно-коммунальная контора.

Рисунок 2.1 - Степень геологической изученности и промышленного освоение минерально-сырьевой базы нефтегазовой промышленности

Нефтегазоконденсатное месторождение Жанажол вступило в эксплуатацию фонтанным способом в 1983 году по проекту, составленному институтом „Гипровостокнефть” вводом в разработку северного купола пачки В+В'.

Разработка месторождения началась с разбуривания объектов первой карбонатной толщи (пачки А, Б, В'), залегающие в интервале глубин 2550 -2900 м.

В 1982 году разведка залежей КТ-I была закончена, произведен расчет и утверждение ГКЗ СССР запасов нефти, газа, конденсата и попутных компонентов.

Продуктивность второй карбонатной толщи (КТ-II) была установлена в декабре 1980 года скважиной № 23, заложенной на КТ-I и впоследствии углубленной.

В 1985 году были подсчитаны и утверждены запасы нефти, газа, конденсата и попутных компонентов по второй карбонатной толще КТ-II, после чего с 1986 года началась эксплуатация второй карбонатной толщи с вводом в разработку пачки Дн-I южного купола. В 1988 году был введен в разработку северный купол второй карбонатной толщи эксплуатацией пачек Д-III и Гн-III. Пачка Гв-III вступила в разработку в 1989 году.

Техническое обустройство месторождения осуществлялось трестом „Оренбургнефтегазстрой”, работы которого активизировались с сентября 1983 года. В дальнейшем генеральным подрядчиком по оснащению нефтяных месторождений выступал трест „Актюбнефтегазстрой”.

В освоении Жанажолского месторождения нефти и газа участвовал коллектив Октябрьской экспедиции глубокого эксплуатационного бурения (ОЭГЭБ) Степновского УБРНО „Саратовнефтегаз”, начавший работу вахтенно-экспедиционным методом с 1981 года в составе трех бригад. В 1982 году была создана база производственного обслуживания в поселке Жанажол, и были организованы вулканизационный и аккумуляторный цеха [1].

В 1983-1984 годах в поселке Жанажол был введен в эксплуатацию механоремонтный участок НГДУ „Октябрьскнефть” площадью 450 м для восстановления бурового нефтепромыслового и транспортного оборудования. В 1983 году началось строительство дороги Эмба - Жанажол. Большое значение для современной транспортировки необходимого оборудования имело строительство дороги от Жанажолского месторождения до Кенкиякского. С целью улучшения использования рабочих кадров и сокращения времени доставки рабочих к месту работы было начато также в 1982-1983 годах строительство взлетно-посадочной полосы в районе Жанажолского месторождения и в 1983-1984 годах в городе Кандыагаш.

Таким образом, были созданы оптимальные условия для того, чтобы в апреле 1984 года месторождение Жанажол можно было ввести в опытно-промышленную эксплуатацию.

В связи со специфическими особенностями физико-химических свойств нефти месторождения Жанажол - высокое содержание сероводорода и углекислого газа в попутном газе, - потребовалось создание специальной системы сбора, подготовки нефти, газа, воды, установок по производству серы в коррозионностойком состоянии. Исходя из такой потребности, в 1984 году был введен в эксплуатацию Жанажолский газоперерабатывающий завод (ЖГПЗ), впервые сооруженный в бывшем СССР на отечественном оборудовании, который является опытно-промышленном предприятием. К этому времени уже был построен нефтепровод Жанажол - Кенкияк протяженностью 50 км.

В 1986 году началась закачка воды в пласт по различным объектам, с целью поддержания пластового давления (ППД).

С самого начала разработки месторождения использовался только один способ эксплуатации - фонтанный. Этот метод применяется до сих пор. Кроме этого метода на месторождении имеется опыт работы с механизированным способом эксплуатации, который был начат в июне 1990 года, переводом скважины № 724 с фонтанного способа эксплуатации на глубинно-насосный .

В течении 1995-1998 годов проведен комплекс мероприятий по расширению системы ППД - введены блочные кустовые насосные станции (БКНС), 28 нагнетательных, 7 водозаборных скважин.

В 1997 году начался этап сотрудничества акционерного общества „Актобемунайгаз” с Китайской Национальной Нефтегазовой Корпорацией, которая приобрела 60,3 % контрольного пакета акций.

В 1999 году Синьцзяньским нефтегазовым научно-исследовательским институтом при нефтяном управлении Синьцзянь-Уйгурской Автономной Республики КНР был выполнен „Отрегулированный проект по разработке нефтегазоконденсатного месторождения Жанажол”.

На данный момент месторождение находится на второй стадии разработки: доразведка, разбуривание, стабилизация добычи нефти.

3 Подсчет запасов

Достоверность используемых запасов газа предопределяет точность прогнозируемых показателей разработки. Достоверность запасов газа зависит от стадии изученности залежи. На ранней стадии изученности месторождения запасы определяют объемным методом по данным ограниченного числа разведочных скважин. В большинстве случаев по этим запасам составляют технико-экономическое обоснование (ТЭО) целесообразности разработки залежи или «Технологическую схему разработки» месторождения на 1-3 года. За это время бурят дополнительное число разведочных и эксплуатационных скважин, позволяющих доразведовать залежь и подготовить необходимый объем информации для проектирования разработки залежи. Однако существующие методы подсчета запасов газа, газовых, газоконденсатных и газонефтяных месторождений даже по истечении периода опытно-промышленной эксплуатации не позволяют с нужной точностью определить извлекаемые запасы газа. К наиболее часто встречаемым факторам, влияющим на точность определения запасов газа, относятся: неоднородность залежи по разрезу и по площади; анизотропия пластов, наличие литологических экранов, положение контакта газ - вода или газ - нефть при наличии нефтяной оторочки, конфигурация контура газоносности, эффективная газонасыщенная толщина, насыщенность пористой среды газом, водой, нефтью; порог подвижности флюидов и т.д.

В принципе достаточно высокую точность оценки запасов газа существующими методами можно гарантировать только для высокопористого, однородного высокопроницаемого пласта с известными контуром газоносности и положением газоводяного (газонефтяного) контакта. Таких месторождений в мире практически нет. Поэтому из-за неточности множества параметров, используемых при подсчете запасов газа на любом газовом, газоконденсатном и газонефтяном месторождении, подсчет запасов производится неоднократно по мере накопления новых данных, указывающих на неточность принятых в проекте запасов газа.

Такие ошибки естественны (независимо от объема накопленного материала) в процессах доразведки и разработки месторождений.

Учет же параметров - фильтрационных свойств каждого пропластка (параметр анизотропии; порог подвижности газа и жидкости в каждом пропластке; фазовые проницаемости; запасы высоко- и низкопористых и высоко- и низко- проницаемых пропластков, капиллярные и гравитационные силы; темпы отбора газа из залежи; вскрытие пласта; последовательность залегания пропластков и т.д.) повысит точность определяемых запасов.

При подсчете запасов газа объемным методом не учитывается возможность подключения в разработку низкопроницаемых пропластков по мере достижения в процессе разработки предельной величины депрессии между истощенными высокопроницаемыми и не вступившими в разработку низкопроницаемыми пропластками.

Таким образом, одной из основных задач проектировщика при прогнозирования показателей разработки является детальное изучение по всем параметрам представленного подсчета запасов, для учета влияния этих параметров при проектировании. Проектировщик обязан проверить и при необходимости пересчитать параметры, которые усредняются при подсчете запасов объемным методом. К этим параметрам относятся: пористость, газоводонасыщенность, толщина газонефтеносных пластов, давление, температура, состав газа, положение ГВК по площади (газонефтяного контакта при наличии оторочки), а также параметры двухфазной зоны.

На месторождениях, введенных в разработку, кроме объемного метода используют и метод падения пластового давления, за теоретическую основу которого принято уравнение материального баланса. Этот метод позволяет оценить текущие извлекаемые запасы газа на момент его применения в зоне, вовлеченной в разработку, и, в первую очередь, из высокопроницаемых пропластков. Вовлечение в разработку низкопроницаемых пропластков по этой методике учитывается в неявной форме. Поэтому по методу падения пластового давления определяются запасы, когда неизвестно, из каких пропластков эти запасы, с какими фильтрационными и емкостными параметрами и когда включились или включатся в разработку эти пропластки. Определяемые методом падения пластового давления запасы в целом зависят от:

·  геометрии (размеров) дренируемой зоны;

·        фильтрационных и емкостных параметров пропластков;

·        параметра анизотропии;

·        запасов упругих сил водоносного бассейна;

·        темпа отбора газа из месторождения;

·        размещения и числа скважин и др.

Рисунок 3.1 - Структура извлекаемых запасов разрабатываемых месторождений в % в 2003 г.

При подсчете запасов газа методом падения пластового давления усредняется практически только один параметр - пластовое давление по площади и при значительной толщине залежи - и по толщине. Очень существенно влияют на запасы газа по этому методу вторжение воды в залежь (не на начальной стадии разработки), перетоки газа и ввод новых скважин или группы скважин в разработку в зоне, уже вовлеченной в разработку.

Метод в одинаковой степени применим для отдельных скважин, кустов, УКПГ, но с одновременным по всем скважинам, кустам и УКПГ измерением давления и отбором газа с последующим суммированием полученных удельных запасов газа по залежи.

Отмеченные выше недостатки методов подсчета запасов могут быть устранены принципиально новым подходом к оценке запасов газа, каким является использование геолого-математических моделей месторождений или их фрагментов массивного и пластового типов, учитывающих как емкостные, так и фильтрационные свойства каждого пропластка многослойного неоднородного пласта.

Заключение

Газоконденсатнонефтяное месторождение Жанажол. Находится в Мугоджарском районе Актюбинской области, в 240 км к югу от г. Актюбинска. Поднятие выявлено сейсморазведочными работами в 1960 г. Поисковое бурение начато в 1961 г. Первый промышленный приток нефти был получен в скв. 4 в 1978 г. из карбонатных отложений среднего карбона. Продуктивной толще был присвоен индекс КТ-1. Разведочные работы по этой толще проводились с 1978, по 1984 г. В 1981 г; при бурении разведочной скв.23 установлена продуктивность нижней карбонатной толщи (КТ-Н).

Стратиграфически продуктивная толща отнесена к каширскому горизонту московского яруса среднего карбона и верхней части нижнего карбона. Продуктивные толщи КТ-1 и КТ-П разделены терригенно-карбонатными осадками толщиной от 216 до 417 м.

Месторождение приурочено к брахиантиклинальной складке субмеридионального простирания с углами падения крыльев от 4 до 12°.

Складка осложнена двумя сводами - северным и южным, и тектоническими нарушениями, одно из которых проходит по западному крылу, а два других - через центральную часть поднятия.

Структура разделена на три блока - южный, центральный и северный. Амплитуда нарушения в пределах западного крыла 100- -150 м, в центральной части складки - 40-50 м. Размеры структуры в пределах замкнутых изогипс -3350 и -3550 м 29x8 км. Амплитуда южного купола 200 м, северного - 400 м. Выявленные залежи относятся к массивно-пластовым сводовым с элементами тектонического экранирования.

Продуктивная толща КТ-П сложена известняками с маломощными прослоями доломитов. В ее пределах выделены продуктивные пачки Г и Д.

Коллекторы поровые с открытой пористостью 9,5- -12,6 %, проницаемостью 0,061-0,395 мкм, коэффициентами нефтенасыщенности 0,82-0,89, коэффициентами газонасыщенности 0,78-0,83. Нефтенасыщенная толщина 7,7-54 м, газонасыщенная 29,1-52,5 м. Высота залежей 50-350 м. Начальные пластовые давление и температура в пачках Г и Д составляют соответственно 37,5-39,6 МПа и 77-81°С. Дебиты нефти от 2,5 до 116 м3/сут в пачке Д и от 2 до 281 м3/сут в пачке Г. Дебиты газа достигают 219 тыс.м3/сут.

Нефть легкая, плотностью 809-827 кг/м , маловязкая, сернистая (0,7-1,11%), парафинистая (4,9-7,1 %). Содержание силикагелевых смол 4,23-6,8%, асфальтенов 0,43- -1,78 %. Выход светлых фракций до 300°С составляет 50,7 %.

Газонасыщенность пластовой нефти находится в пределах 168,2 -1319,5 м3/м3.

Газ, растворенный в нефти пачек Г и Д, тяжелый, этансодержащий. Характерно высокое содержание тяжелых УВ - - 33,75-35,57 %, метан составляет 48,7 %. Отмечается повышенная концентрация сероводорода (до 5,97 %), в небольших количествах присутствуют азот, углекислый газ, гелий.

Газ газовых шапок тяжелый, этансодержащий, доля тяжелых УВ в нем достигает 18,5 %, содержание метана 73,24 %, сероводорода 2,94 %, азота до 1,93%.

Содержание стабильного конденсата в газе 614 г/м3. Плотность его 770 кг/м3. В составе конденсата присутствуют, %: парафин до 3,6, сера 0,41 и силикагелевые смолы 0,55. Выход фракций до 300°С достигает 74,6 %. 11о углеводородному составу конденсат имеет парафиновую основу. Общее содержание парафиново-нафтеновых УВ превышает 86 %. Дебит конденсата в пачке Г северного купола составляет 13,4 м7сут на 5-м м штуцере.

Подземные воды продуктивной толщи KT-II хлоридно-кальциевого типа с минерализацией 68,4-85,5 г/л. Помимо микроэлементов бора и брома в водах присутствуют значительные концентрации лития и стронция.

Верхняя продуктивная толща КТ-1 сложена органогенно-обломочными известняками, доломитами и их переходнёыми разностями. Встречаются редкие прослои глин. Толща включает четыре продуктивных пачки: А, Б, В и В г Первые три пачки развиты по всей площади структуры, пачка В/ ограничена распространением в сводовой части северного купола (блок 111),

Строение и характер насыщения продуктивных пачек в целом по толще КТ-1 позволяют объединить их в единую массивно-пластовую залежь с едиными ГНК (-2560 м) и ВПК (-2663:2650 м). Коллекторы толщи КТ-1 поровокаверновые пористостью 11-14 % и проницаемостью 0,080-0,170 мкм . Высота нефтяной части залежи достигает 100 м, газоконденсатной 200 м. Покрышкой являются глинистые породы нижней перми и галогенная толща кунгура.

Эффективная толщина коллекторов в продуктивных пачках варьирует в пределах 7,4-38 м, нефтенасыщенная - 7,4-18 м, газонасыщенная - 11-26 м. Коэффициент нефтенасыщенности 0,80-0,87, коэффициент газонасыщенности 0,79-0,82.

Качественная характеристика и физические свойства нефтей продуктивной толщи КТ-1 близки. Они легкие (833-836 кг/м1), сернистые (0,4-0,9 %), парафинистые (3,95 %), содержание смол и асфальтенов 4,6-5,6 %. Выход фракций до 200 °С достигает 32 %, до 300 0 С - около 55 %. По групповому составу нефти метаново-нафтеновые. Ароматические УВ имеют подчиненное значение.

Газонасыщенность пластовой нефти не превышает 263,3 м /м . Начальное пластовое давление изменяется в пределах 28,7 (пачка А) - 29,64 МПа (пач-ки В, Вг), пластовая температура 57-62 °С. Добиты нефти от 13,47 до 148 m3/сут, газа - от 93 до 148 тыс.м3/сут.

Газ, растворенный в нефти и газоконденсатной части залежи, по составу легкий и тяжелый, этансодержащий; доля тяжелых УВ в нем изменяется от 8,5 до 19,6 %, метана - от 68,2 до 87,3 %. Содержание сероводорода 2,04-3,49 %, азота 1,02-2,19 %, углекислого газа 0,57- 1,08%, присутствует гелий в количестве 0,01-0,014%.

Содержание стабильного конденсата в газе 283 г/м . Плотность его 711-746 кг/м , содержание в нем серы 0,64%. В групповом составе содержится до 70 % метановых, 20 % нафтеновых и 10% ароматических У В. Дебит конденсата 34-162 м3/сут.

Пластовые воды толщи КТ-1 хлоридно-калыдиевого типа, плотностью 1,067-1,091 г/см и минерализацией 93,5-133,7 г/л.

Режим работы залежей нижней карбонатной толщи водонапорный и упруговодонапорный, верхней карбонатной толщи - сочетание водонапорного и газового.

Месторождение находится в разработке.

Список используемой литературы

1. В.Я. Горфинкель. Экономика предприятия. Учебник. М."ЮНИТИ" 96Г

2. "Панорама", 17 июля 1998 года, № 28 (294)

3. "Пресс-релиз" Нефтегазовая вертикаль. N1 2000г

4. "Жидкое золото манит нас" Марат НУРГОЖИН “Казахстанская правда”, 1998 г

5. "Нефтяной Клондайк на грани социального взрыва" Н.ФОМИН, “ЦАБ” “Центральноазиатский бюллетень”, 1999 г, №7

6. "Панорама", 7 августа 1998 года, № 30

7. Абдулин А. А., Геология Казахстана, А. Наука, 1981

8. Абдулин А. А., Месторождения нефти и газа Казахстана, М. Недра, 1993

Похожие работы на - Биосфера как область взаимодействия общества и природы

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!