Заказ диплома. Заказать реферат. Курсовые на заказ.
Бесплатные рефераты, курсовые и дипломные работы на сайте БИБЛИОФОНД.РУ
Электронная библиотека
 

Тема: Металлургические процессы при сварке низкоуглеродистых, низколегированных и высоколегированных сталей


Вы можете узнать стоимость заказа авторской работы по этой "Металлургические процессы при сварке низкоуглеродистых, низколегированных и высоколегированных сталей..." или схожей теме.

Узнать стоимость работы которую точно примут










КУРСОВАЯ РАБОТА


«Металлургические процессы при сварке низкоуглеродистых, низколегированных и высоколегированных сталей»

Содержание


Ведение

.Низкоуглеродистые и низколегированные стали

.1Состав и свойства сталей

1.2Общие сведения о свариваемости

.3Общие сведения об электродуговой сварке сталей

.4Ручная дуговая сварка

.5Сварка под флюсом

.6Сварка в защитных газах

2.Высоколегированные стали

.1Классификация и их характеристика

2.2Технология сварки

.3Сварка под флюсом

.4Сварка в защитных газах

.5Электродуговая сварка

.6Другие способы сварки

Список литературы

Введение


Сплав железа с углеродом называется сталью, если содержание углерода будет не более 2,14%. Кроме углерода в стали всегда имеются следующие примеси: марганец, кремний, сера и фосфор.

Сталь - основной металлический материал, широко применяемый для изготовления деталей машин, летательных аппаратов, приборов, различных инструментов и строительных конструкций. Широкое использование сталей обусловлено комплексом механических, физико-химических и технологических свойств.

Стали сочетают высокую жесткость с достаточной статической и циклической прочностью. Эти параметры можно менять в широком диапазоне за счет изменения концентрации углерода, легирующих элементов и технологий термической и химико-термической обработки. Изменив химический состав, можно получить, стали с различными свойствами, и использовать их во многих отраслях техники и народного хозяйства.

По химическому составу различают стали: низкоуглеродистую- с содержанием углерода до 0,25%, среднеуглеродистую- с содержанием углерода от 0,25 до 0,6%, высокоуглеродистую - с содержанием углерода свыше 0,6%, легированную (специальную).

От марки и химическому составу стали зависит способ сварки и выбираемое при этом оборудование. Сваркой же называется процесс получения неразъемных соединений посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, или пластическом деформировании, или совместным действием того и другого.

Определение сварки относится к металлам и неметаллическим материалам (сталь, пластмассы, стекло, резина и т. д.).

Свойства материала определяются его внутренним строением - структурой атомов. Все металлы в твердом состоянии являются телами с кристаллической структурой. Для соединений свариваемых частей в одно целое нужно их элементарные частицы (ионы, атомы) сблизить настолько, чтобы между ними начали действовать межатомные связи, что и достигается местным или общим нагревом или пластическим деформированием или тем и другим.

1. Низкоуглеродистые и низколегированные стали


.1 Состав и свойства сталей


Стали этих групп относятся к хорошо сваривающимся практически всеми видами сварки, сталям. Основные требования при их сварке - обеспечение равнопрочности сварного соединения основному металлу, отсутствие дефектов, требуемая форма сварного шва, производительность и экономичность. При сварке плавлением эти требования обеспечиваются выбором и применением типовых сварочных материалов, режимов и технологии выполнения сварки.

Углерод является основным легирующим элементом в углеродистых конструкционных сталях и определяет механические свойства сталей этой группы. Повышение его содержания усложняет технологию сварки и затрудняет возможности получения равнопрочного сварного соединения без дефектов. Для изготовления сварных конструкций в первую очередь применяют низкоуглеродистые стали с содержанием углерода до 0,25%.

Низкоуглеродистые стали обыкновенного качества в соответствии с

ГОСТ 380-71 подразделяют на три группы. Сталь группы А поставляют по механическим свойствам и для производства сварных конструкций не используют (группу А в обозначении стали не указывают). Сталь группы Б поставляют по химическому составу, а группы В по химическому составу и механическим свойствам. Перед обозначением марки этих сталей указывают их группу, например, БСтЗ, ВСтЗ. Выпускаются низкоуглеродистые качественные стали с нормальным (марки 10, 15 и 20) и повышенным (марки 15Г и 20Г) содержанием марганца поставляют в соответствии с ГОСТ 1050-74 и

ГОСТ 4543-71. Она содержит пониженное количество серы. Стали этой группы применяют для изготовления конструкций в горячекатаном состоянии и в меньшем объеме после нормализации или закалки с отпуском (термоупрочнение). Механические свойства этих сталей зависят от термической обработки. Сварные конструкции, изготовленные из этих сталей, для повышения прочностных свойств можно подвергать последующей термической обработке. Эти стали хорошо свариваются всеми способами дуговой сварки. Однако они обладают невысокими механическими характеристиками и их применение связано с увеличением металлоемкости и массы конструкций. Уменьшить удельный расход стали можно, повышая прочностные характеристики. С этой целью в сталь вводят легирующие элементы, которые, образуя твердые растворы и химические соединения, повышают ее свойства. Это повышает механические свойства стали и, в частности, снижает порог хладноломкости. В результате появляется возможность снизить массу конструкций. Сейчас все шире применяют низкоуглеродистые и низколегированные стали с содержанием легирующих элементов до 2,5%. Основными легирующими элементами являются марганец, кремнии, хром и никель. Для повышения коррозионной стойкости стали вводят медь (0,3-0,4%). Такие стали обладают хорошей свариваемостью. Предусмотрен выпуск 28 марок низколегированных сталей, применяемых для сварных конструкций.

К группе низколегированных сталей относятся теплоустойчивые стали перлитного класса, используемые в энергетическом машиностроении (12МХ, 12X1МФ, 20ХМФЛ и др.), в которых содержание легирующих компонентов допускается до 4%.

Для повышения жаропрочности при температурах 450-585 °С их легируют молибденом и вольфрамом. Однако низколегированные стали более чувствительны к тепловому воздействию, чем низкоуглеродистые, особенно при сварке на форсированных режимах металла большой толщины. В зоне термического влияния более заметны явления перегрева, рост зерна и возможно образование закалочных структур, что будет служить причиной образования холодных трещин. Поэтому при сварке низколегированных сталей к параметрам режима сварки предъявляются более жесткие требования, чем при сварке нелегированных низкоуглеродистых сталей. Сварка ограничивается узкими пределами изменения параметров режима, чтобы одновременно обеспечить минимальное возникновение закалочных структур и уменьшить перегрев.


1.2 Общие сведения о свариваемости


Рассматриваемые стали обладают хорошей свариваемостью. Технология их сварки должна обеспечивать определенный комплекс требований, основными из которых являются равнопрочность сварного соединения с основным металлом и отсутствие дефектов в сварном шве. Для этого механические свойства металла шва и околошовной зоны должны быть не ниже нижнего предела механических свойств основного металла. В некоторых случаях конкретные условия работы конструкций допускают снижение отдельных показателей механических свойств сварного соединения. Однако в большинстве случаев, особенно при сварке ответственных конструкций, швы не должны иметь трещин, непроваров, пор, подрезов. Геометрические размеры и форма швов должны соответствовать требуемым. Сварное соединение должно быть стойким против перехода в хрупкое состояние. В отдельных случаях к сварному соединению предъявляют дополнительные требования. Однако во всех случаях технология должна обеспечивать максимальную производительность и экономичность процесса сварки при требуемой надежности и долговечности конструкции.

Механические свойства металла шва и сварного соединения зависят от его структуры, которая определяется химическим составом, режимом сварки и предыдущей и последующей термической обработкой. Химический состав металла шва зависит от доли участия основного и электродного металлов в образовании шва и взаимодействий между металлом и шлаком и газовой фазой. При сварке рассматриваемых сталей состав металла шва незначительно отличается от состава основного металла. В металле шва меньше углерода для предупреждения образования структур закалочного характера при повышенных скоростях охлаждения. Возможное снижение прочности металла шва, вызванное уменьшением содержания углерода, компенсируется легированием металла через проволоку, покрытие или флюс марганцем и кремнием. При сварке низколегированных сталей необходимое количество легирующих элементов в металле шва обеспечивается также и путем их перехода из основного металла.

Повышенные скорости охлаждения металла шва способствуют увеличению его прочности, однако при этом снижаются пластические свойства и ударная вязкость. Это объясняется изменением количества и строения перлитной фазы. Скорость охлаждения металла шва определяется толщиной свариваемого металла, конструкцией сварного соединения, режимом сварки и начальной температурой изделия. Влияние скорости охлаждения в наибольшей степени проявляется при дуговой сварке однослойных угловых швов и последнего слоя многослойных угловых и стыковых швов при наложении их на холодные, предварительно сваренные швы. Металл многослойных швов, кроме последних слоев, подвергающийся действию повторного термического цикла сварки, имеет более благоприятную мелкозернистую структуру. Поэтому он обладает более низкой критической температурой перехода в хрупкое состояние. Пластическая деформация, возникающая в металле шва под действием сварочных напряжений, также повышает предел текучести металла шва. Свойства сварного соединения зависят не только от свойств металла шва, но и от свойств основного металла в околошовной зоне. Структура, а значит и свойства основного металла в околошовной зоне, зависят от его химического состава и изменяются в зависимости от термического цикла сварки. На рисунке 1 слева схематически показаны кривая распределения температур по поверхности сварного соединения в один из моментов, когда металл шва находится в расплавленном состоянии, и структурные участки зоны термического влияния на низкоуглеродистых и низколегированных сталях при дуговой сварке.


Рисунок 1. Схема строения зоны термического влияния сварного шва при дуговой сварке.


При сварке низкоуглеродистых сталей на участке неполного расплавления металл нагревается в интервале температур между линиями солидуса и ликвидуса, что приводит к частичному расплавлению (оплавлению) зерен металла. Пространство между нерасплавившимися зернами заполняется жидкими прослойками расплавленного металла, который может содержать элементы, вводимые в металл сварочной ванны. Это может привести к тому, что состав металла на этом участке будет отличаться от состава основного металла, а из-за нерасплавившихся зерен основного металла - и от состава наплавляемого металла. Увеличению химической неоднородности металла на этом участке способствует и слоистая ликвация, а также диффузия элементов, которая может происходить как из основного нерасплавившегося металла в жидкий металл, так и наоборот. По существу этот участок и является местом сварки. Несмотря на его небольшую протяженность, свойства металла в нем могут влиять на свойства всего сварного соединения.

На участке перегрева в результате нагрева в интервале температур от

- 1150 0С до температур линии солидуса металл полностью переходит в состояние аустенита. При этом происходит рост зерна, размеры которого увеличиваются тем более, чем выше нагрет металл, выше температуры точки АС3. Даже непродолжительное пребывание металла при температурах свыше 1100 0С приводит к значительному увеличению размера зерен. После охлаждения это может привести к образованию неблагоприятной видманштеттовой структуры. На участке нормализации (полной перекристаллизации) металл нагревается незначительно выше температур точки АС3, и поэтому он имеет мелкозернистую структуру с высокими механическими свойствами. На участке неполной перекристаллизации металл нагревается до температур между точками АС1 и АС3, поэтому этот участок характеризуется почти неизменившимися первоначальными ферритными и перлитными зернами и более мелкими зернами феррита и перлита после перекристаллизации, а также сфероидизацией перлитных участков.

На участке рекристаллизации металл нагревается в интервале температур от 500-550 0С до температуры точки АС1, и поэтому по структуре он незначительно отличается от основного. Если до сварки металл подвергается пластической деформации, то при нагреве в нем происходит сращивание раздробленных зерен основного металла - рекристаллизация. При значительной выдержке при этих температурах может произойти значительный рост зерен. Механические свойства металла этого участка могут несколько снизиться вследствие разупрочнения из-за снятия наклепа.

При нагреве металла в интервале температур от 100 до 500 0С (участок синеломкости) его структура в процессе сварки не претерпевает видимых изменений. Однако металл на этом участке может обладать пониженной пластичностью и несколько повышенной прочностью. У некоторых сталей, содержащих повышенное количество кислорода и азота (обычно кипящих), металл на этом участке имеет резко сниженную ударную вязкость и сопротивляемость разрушению.

При многослойной сварке, ввиду многократного воздействия термического цикла сварки на основной металл в околошовной зоне, строение и структура зоны термического влияния несколько изменяются. При сварке длинными участками после каждого последующего прохода предыдущий шов подвергается своеобразному отпуску. При сварке короткими участками шов и околошовная зона длительное время находятся в нагретом состоянии. Кроме изменения структур, это увеличивает и протяженность зоны термического влияние. Наличие в низколегированных сталях легирующих элементов (которые растворяются в феррите и измельчают перлитную составляющую) тормозит при охлаждении процесс распада аустенита и действует равносильно некоторому увеличению скорости охлаждения. Поэтому при сварке в зоне термического влияния на участках где металл нагревается выше температур точки АС1, (при повышенных скоростях охлаждения), могут образовываться закалочные структуры.

При этом металл нагревающийся до температур значительно выше температуры точки АС3, будет иметь более грубозернистую структуру. При сварке термических упрочненных сталей на участках рекристаллизации и синеломкости может произойти отпуск металла, характеризующийся структурой сорбита отпуска, с понижением его прочностных свойств. Технология изготовления сварных конструкций из низколегированных сталей должна предусматривать минимальную возможность появления в зоне термического влияния закалочных структур, способных привести к холодным трещинам, особенно при сварке металла больших толщин. При сварке термически упрочненных сталей следует принять меры, предупреждающие разупрочнение стали на участке отпуска.

Обеспечение равнопрочности сварного соединения при дуговой сварке низкоуглеродистых и низколегированных нетермоупрочненных сталей обычно не вызывает затруднений. Механические свойства металла околошовной зоны зависят от конкретных условий сварки и от вида термической обработки стали до сварки. При сварке низкоуглеродистых горячекатаных сталей при толщине металла до 15 мм на обычных режимах, обеспечивающих небольшие скорости охлаждения, структуры металла шва и околошовной зоны примерно такие, какие были рассмотрены выше. Повышение скоростей охлаждения при сварке на форсированных режимах металла повышенной толщины, а также однопроходных угловых швов при отрицательных температурах и т. д. может привести к появлению в металле шва и на участках перегрева полной и неполной рекристаллизации в околошовной зоне закалочных структур. Повышение содержания в стали марганца увеличивает эту вероятность.

При этих условиях даже при сварке горячекатаной низкоуглеродистой стали марки ВСтЗ не исключена возможность получения в сварном соединении закалочных структур. Если эта сталь перед сваркой прошла термическое упрочнение - закалку, то в зоне термического влияния шва на участках рекристаллизации и синеломкости будет наблюдаться отпуск металла, т. е. снижение его прочностных свойств. Изменение этих свойств зависит от погонной энергии, типа сварного соединения и условий сварки.

Изменение свойств металла шва и околошовной зоны при сварке низколегированных сталей проявляется более значительно. Сварка горячекатаной стали способствует появлению закалочных структур на участках перегрева и нормализации. Механические свойства металла изменяются больше, чем при сварке низкоуглеродистых сталей. Термическая обработка низколегированных сталей - чаще всего закалка (термоупрочнение) с целью повышения их прочности при сохранении высокой пластичности, усложняет технологию их сварки. На участках рекристаллизации и синеломкости происходит разупрочнение стали под действием высокого отпуска с образованием структур преимущественно троостита или сорбита отпуска. Это разупрочнение тем больше, чем выше прочность основного металла в результате закалки. В этих процессах решающее значение имеет скорость охлаждения металла шва и в первую очередь погонная энергия при сварке. Повышение погонной энергии сварки сопровождается снижением твердости и расширением разупрочненной зоны. Околошовная зона, где наиболее резко выражены явления перегрева и закалки, служит вероятным местом образования холодных трещин при сварке низколегированных сталей.

Таким образом, получение при сварке низколегированных сталей, особенно термоупрочненных, равнопрочного сварного соединения вызывает некоторые трудности и поэтому требует применения определенных технологических приемов (сварка короткими участками нетермоупрочненных сталей и длинными участками термоупрочненных и др.). Протяженность участков зоны термического влияния, где произошло изменение свойств основного металла под действием термического цикла сварки (разупрочнение или закалка), зависит от способа и режима сварки, состава и толщины металла, конструкции сварного соединения и др.

В процессе изготовления конструкций из низкоуглеродистых и низколегированных сталей на заготовительных операциях и при сварке в зонах, удаленных от высокотемпературной области, возникает холодная пластическая деформация. Попадая при наложении последующих швов под сварочный нагрев до температур около 300 0С, эти зоны становятся участками деформационного старения, приводящего к снижению пластических и повышению прочностных свойств металла и возможному возникновению холодных трещин, особенно при низких температурах или в местах концентрации напряжений. Высокий отпуск при 600- 650 0С в этих случаях является эффективным средством восстановления свойств металла. Высокий отпуск применяют и для снятия сварочных напряжений. Нормализации подвергают сварные конструкции для улучшения структуры отдельных участков сварного соединения и выравнивания их свойств. Термическая обработка, кроме закалки сварных соединений в тех участках соединения, которые охлаждались с повышенными скоростями, приведшими к образованию в них неравновесных структур закалочного характера (угловые однослойные швы, последние проходы, выполненные на полностью остывших предыдущих), снижает прочностные и повышает пластические свойства металла в этих участках. При сварке короткими участками по горячим, предварительно наложенным швам замедленная скорость охлаждения металла шва и околошовной зоны способствует получению равновесных структур. Влияние термической обработки в этом случае сказывается незначительно. При электрошлаковой сварке последующая термическая обработка мало изменяет механические свойства металла рассматриваемых зон. Однако нормализация приводит к резкому возрастанию ударной вязкости.

Швы, сваренные на низкоуглеродистых сталях всеми способами сварки, обладают удовлетворительной стойкостью против образования кристаллизационных трещин. Это обусловлено низким содержанием в них углерода. Однако при сварке на низкоуглеродистых сталях, содержащих углерод по верхнему пределу (свыше 0,20%), угловых швов и первого корневого шва в многослойных швах, особенно с повышенным зазором, возможно образование в металле шва кристаллизационных трещин, что связано в основном с неблагоприятной формой провара (узкой, глубокой). Легирующие добавки в низколегированных сталях могут повышать вероятность образования кристаллизационных трещин. Все низкоуглеродистые и низколегированные стали хорошо свариваются всеми способами сварки плавлением. Обычно не имеется затруднений, связанных с возможностью образования холодных трещин, вызванных образованием в шве или околошовной зоне закалочных структур. Однако в сталях, содержащих углерод по верхнему пределу и повышенное содержание марганца и хрома, вероятность образования холодных трещин в указанных зонах повышается, особенно с ростом скорости охлаждения (повышение толщины металла, сварка при отрицательных температурах, сварка швами малого сечения и др.). В этих условиях предупреждение трещин достигается предварительным подогревом до 120-200 0С. Предварительная и последующая термическая обработка сталей, использующихся в ответственных конструкциях, служит для этой цели, а также позволяет получить необходимые механические свойства сварных соединений (высокую прочность или пластичность, или их необходимое сочетание).

Подготовку кромок и сборку соединения под сварку производят в зависимости от толщины металла, типа соединения и способа сварки согласно соответствующим ГОСТам или техническим условиям. Свариваемые детали для фиксации положения кромок относительно друг друга и выдерживания необходимых зазоров перед сваркой собирают в универсальных или специальных сборочных приспособлениях или с помощью прихваток. Длина прихватки зависит от толщины металла и изменяется в пределах 20-120 мм при расстоянии между ними 500- 800 мм. Сечение прихваток равно примерно 1/3 сечения шва, но не более 25-30 мм2. Прихватки выполняют покрытыми электродами или на полуавтоматах в углекислом газе. При сварке прихватки следует переплавлять полностью, так как в них могут образовываться трещины из-за высокой скорости теплоотвода. Перед сваркой прихватки тщательно зачищают и осматривают. При наличии в прихватке трещины ее вырубают или удаляют другим способом. При электрошлаковой сварке детали, как правило, устанавливают с зазором, расширяющимся к концу шва. Фиксацию взаимного положения деталей производят скобами, установленными на расстоянии 500-1000 мм друг от друга, удаляемыми по мере наложения шва. При автоматических способах дуговой и электрошлаковой сварки в начале и конце шва устанавливают заходные и выходные планки.

Сварка стыковых швов вручную или полуавтоматами в защитных газах и порошковыми проволоками выполняется на весу. При автоматической сварке требуются приемы, обеспечивающие предупреждение прожогов и качественный провар корня шва. Это достигается применением остающихся или съемных подкладок, ручной или полуавтоматической в среде защитных газов подварки корня шва, флюсовой подушки и других приемов. Для предупреждения образования в швах пор, трещин, непроваров и других дефектов свариваемые кромки перед сваркой тщательно зачищают от шлака, оставшегося после термической резки, ржавчины, масла и других загрязнений. Дуговую сварку ответственных конструкций лучше производить с двух сторон. Выбор способа заполнения разделки при многослойной сварке зависит от толщины металла и термической обработки стали перед сваркой. При появлении в швах дефектов (пор, трещин, непроваров, подрезов и т. д.) металл в месте дефекта удаляют механическим путем или воздушно-дуговой или плазменной резкой и после зачистки подваривают. При сварке низколегированных и низкоуглеродистых сталей от выбора техники и режима сварки (при изменении формы провара и доли участия основного металла в формировании шва) зависят состав и свойства металла шва.


1.3 Общие сведения об электродуговой сварке сталей


Электродуговая технология сварки была изобретена в России в 1882 г. Н. Н. Берандосом (сварка угольным электродом) и в 1888-1890 гг. Н. Г. Славяновым (сварка металлическим электродом). Дуговая сварка успешно применяется для восстановления как стальных, так и чугунных деталей. Она выполняется чаще всего путем расплавления электрода и металла свариваемого изделия теплом электрической дуги, температура которой достигает 6000 °С. Таким образом, в месте сварки создается ванночка с жидким металлом, который, охлаждаясь, соединяет воедино края свариваемых поверхностей. При подготовке свариваемых деталей или при подготовке к заварке трещин необходимо выполнить так называемую разделку. Схемы подготовки кромок к сварке приведены на рис. 1.

Рис. 1. Схемы подготовки кромок к сварке


Поверхности свариваемых краев должны быть предварительно очищены от грязи, наплывов и коррозии до металлического блеска. Трещину необходимо предварительно «ограничить» сверлением. Образовавшиеся в результате разделки кромок к полости заполняются при сварке металлом электрода.

Дуговая технология сварки обеспечивает прочное соединение, но приводит к деформации свариваемых деталей. Это необходимо учитывать при выборе этого метода восстановления. Сварка может вестись как переменным током, так и постоянным. Обычно для сварки используют аппараты переменного тока: СТШ-260, СТШ-300, СТШ-500, СТШ-500-80 и др. Аппарат СТШ-500-80 наиболее универсальный, а поэтому и наиболее подходящий для ремонтных работ. Для сварки постоянным током используются генераторы ПСО-300, ПСО-500 и выпрямители - селеновый ВСС-300 и кремниевый ВКС-500 и др.

В результате заварки деталь испытывает напряжения, которые, как правило, должны быть сняты. Если можно, свариваемую деталь следует предварительно подогреть, что уменьшает разность температур у места сварки и остальной детали и улучшает качество сварки. Если конструкция такова, что сварка вызывает в ней большие внутренние напряжения, деталь следует отжечь путем нагрева ее до 600-650°С и последующего медленного охлаждения вместе с печью. Дуговой сваркой могут быть восстановлены детали из углеродистых и легированных сталей. Для каждого случая сварки должны быть подобраны соответствующие электроды и режимы ведения процесса. На свойства металла при сварке плохо влияет кислород воздуха, окисляющий металл, и азот. Поэтому принимаются меры для защиты жидкого металла от окисления путем введения в жидкий металл присадок, влияющих на качество шва. Шлак, образующийся при сварке, должен своевременно удаляться. Качество сварного шва зависит от металла электрода и обмазки, соединяющей в себе присадки и среду, обеспечивающую защиту жидкого металла от влияния атмосферного воздуха.


1.4 Ручная дуговая сварка


Электроды выбирают в зависимости от назначения конструкций и типа стали, а режим сварки - в зависимости от толщины металла, типа сварного соединения и пространственного положения сварки.

Силу сварочного тока определяют по формуле:

св=?dэ2*j/4


где dэ - диаметр электрода (электродного стержня), мм; - допускаемая плотность тока, А/мм2.

Рекомендуемые для электрода данной марки значения сварочного тока, его род и полярность выбирают согласно паспорту электрода, в котором приводят его сварочно-технологические свойства, типичный химический состав шва и механические свойства. При сварке рассматриваемых сталей обеспечиваются высокие механические свойства сварного соединения и поэтому в большинстве случаев не требуются специальные меры, направленные на предотвращение образования в нем закалочных структур.

При приближённых подсчётах величина сварочного тока может быть определена по одной из следующих формул:

св=k*dэ Iсв=k1*dэ*1,5 св=dэ*(k2+?*dэ)


где dэ - диаметр электрода (электродного стержня), мм; 1, k2, ? - коэффициенты, определённые опытным путём:

1=20…25; k2=20; ?=6.


Техника заполнения швов и определяемый ею термический цикл сварки зависят от предварительной термической обработки стали. Сварка толстого металла каскадом и горкой, замедляя скорость охлаждения металла шва и околошовной зоны, предупреждает образование в них закалочных структур. Это же достигается при предварительном подогреве до 150-200 0С. Поэтому эти способы дают благоприятные результаты на нетермоупрочненных сталях. При сварке термоупрочненных сталей для уменьшения разупрочнения стали в околошовной зоне рекомендуется сварка длинными швами по охлажденным предыдущим швам. Следует выбирать режимы сварки с малой погонной энергией. При этом достигается и уменьшение протяженности зоны разупрочненного металла в околошовной зоне. При исправлении дефектов в сварных швах на низколегированных и низкоуглеродистых сталях повышенной толщины швами малого сечения вследствие значительной скорости остывания металл подварочного шва и его околошовная зона обладают пониженными пластическими свойствами. Поэтому подварку дефектных участков следует производить швами нормального сечения длиной не менее 100 мм или предварительно подогревать их до 150-200 0С.

Ручную дуговую сварку покрытыми электродами низкоуглеродистых сталей выполняют электродами типа Э38, Э42, Э46 со всеми типами покрытий (кислыми, целлюлозными и основными) марок МР-3, СМ-5, АНО-2, ОЗС-3, УОНИ-13/45 и др.

Низколегированные и низкоуглеродистые стали сваривают электродами типов Э42, Э50 с основным покрытием марок УОНИ-13/45 , СМ-11, УОНИ-13/55 и др.

Теплоустойчивые стали чувствительны к термическому циклу при сварке, следствием которого являются появление холодных трещин, процессы старения, разупрочнения и опасность трещин при эксплуатации. Основными мерами борьбы с этими процессами являются применение основного металла с минимальным содержанием примесей и пониженным содержанием углерода, сварка с предварительным подогревом для сталей 12ХМ, 15ХМ (200-250°С), для сталей 20ХМФ, 15Х1М1Ф (350-450°С), выбор оптимального режима сварки, термообработка после сварки. Сварку производят ручной дуговой покрытыми электродами с фтористокальциевым покрытием типа Э-МХ,

Э-ХМФ на постоянном токе обратной полярности. Применяют также сварку в углекислом газе и под флюсом с использованием сварочных проволок, легированных элементами, входящими в состав свариваемых сталей.


1.5 Сварка под флюсом


Автоматическую сварку выполняют электродной проволокой диаметром 3-5 мм, полуавтоматическую - диаметром 1,2-2 мм. Равнопрочность соединения достигается подбором флюсов и сварочных проволок и выбором режимов и техники сварки. При сварке низкоуглеродистых сталей в большинстве случаев применяют марганцевые высококремнистые флюсы (ОСЦ-45, АН-348) и низкоуглеродистые сварочные проволоки Св-08, Св-08А.

При сварке ответственных конструкций, а также ржавого металла рекомендуется использовать электродную проволоку Св-08ГА. Использование указанных материалов позволяет получить металл шва с механическими свойствами, равными или превышающими механические свойства основного металла. При сварке низколегированных сталей используют те же флюсы и электродные проволоки Св-08ГА, Св-10Г2, Св-08ХН, Св-08ХМФА и др. Легирование металла шва марганцем из проволок и кремнием при проваре основного металла, при подборе соответствующего термического цикла (погонной энергии) позволяет получить металл шва с требуемыми механическими свойствами.

Использованием указанных материалов достигается высокая стойкость металла швов против образования пор и кристаллизационных трещин. При сварке без разделки кромок увеличение доли основного металла в металле шва и поэтому некоторое повышение в нем углерода может повысить прочностные свойства и понизить пластические свойства металла шва.


1.6 Сварка в защитных газах


При сварке низкоуглеродистых и низколегированных сталей для защиты расплавленного электродного металла и металла сварочной ванны используют углекислый газ. В качестве защитных находят применение и смеси углекислого газа с аргоном или кислородом до 30%. В качестве сварочных проволок, в этом случае, применяют проволоки марок Св-08ГС, Св-08Г2С и др., для повышения коррозионной стойкости используют проволоку марки Св-08ХГ2С. Аргон и гелий в качестве защитных газов применяют только при сварке конструкций ответственного назначения. Сварку в углекислом газе выполняют плавящимся электродом. В некоторых случаях для сварки используют неплавящийся угольный или графитовый электрод.

Этот способ применяют при сварке бортовых соединений из низкоуглеродистых сталей толщиной 0,3-2,0 мм (например, канистр, корпусов конденсаторов и т. д.). Так как сварку выполняют без присадки, содержание кремния и марганца в металле шва невелико. В результате прочность соединения составляет 50-70% прочности основного металла.

При автоматической и полуавтоматической сварке плавящимся электродом швов, расположенных в различных пространственных положениях, используют электродную проволоку диаметром до 1,2 мм, а при сварке швов, расположенных в нижнем положении - проволоку диаметром 1,2-3,0 мм.

Структура и свойства металла швов и околошовной зоны на низкоуглеродистых и низколегированных сталях зависят от использованной электродной проволоки, состава и свойств основного металла и режима сварки (термического цикла сварки, доли участия основного металла в формировании шва и формы шва). Влияние этих условий и технологические рекомендации примерно такие же, как и при ручной дуговой сварке и сварке под флюсом.

На свойства металла шва влияет качество углекислого газа. При повышенном содержании азота и водорода, а также влаги в газе в швах могут образовываться поры. При сварке в углекислом газе влияние ржавчины незначительно. Увеличение напряжения дуги, повышая, угар легирующих элементов, ухудшает механические свойства шва.

Сварка порошковой проволокой и проволокой сплошного сечения без дополнительной защиты

Одним из преимуществ сварки открытой дугой порошковой проволокой по сравнению со сваркой в углекислом газе является отсутствие необходимости в газовой аппаратуре и возможность сварки на сквозняках, при которых наблюдается сдувание защитной струи углекислого газа. При правильно выбранном режиме сварки обеспечивается устойчивое горение дуги и хорошее формирование шва. В качестве источников тока можно использовать выпрямители и преобразователи с крутопадающими внешними вольтамперными характеристиками. Недостатком этого способа сварки является возможность сварки только в нижнем и вертикальном положениях из-за повышенного диаметра выпускаемых промышленностью проволок и повышенной чувствительности процесса сварки к образованию в швах пор при изменениях вылета электрода и напряжения дуги. Особенностью порошковых проволок является также и малая глубина проплавления основного металла.

При использовании проволоки ПП-1ДСК для соединений с повышенным зазором между кромками в швах могут образовываться поры. Проволока ЭПС-15/2 для получения швов без пор требует соблюдения режимов в узком диапазоне. Большие рабочие токи ограничивают применение этой проволоки для сварки металла малых толщин. Проволоки ПП-АН7 и ПП-2ДСК имеют хорошие сварочно-технологические свойства в широком диапазоне режимов. Для сварки ответственных конструкций из низкоуглеродистых и низколегированных сталей рекомендуется использовать проволоки ПП-2ДСК, и ПП-АН4, обеспечивающие получение шва с хорошими показателями хладноломкости.

металлургический сталь сварка низколегированный низкоуглеродистый

2.Высоколегированные стали


2.1 Классификация и их характеристика


К высоколегированным сталям относят сплавы, содержащие более 45% железа, суммарное количество легирующих элементов в которых составляет не менее 10% при содержании одного из элементов не менее 8%.

В зависимости от основных свойств и назначения высоколегированные стали подразделяют на следующие группы: коррозионно-стойкие, обладающие стойкостью против электрохимической коррозии (влажной атмосферной, почвенной, щелочной, кислотной, солевой, морской и др.), в том числе против межкристаллитной коррозии под напряжением, питтинговой (точечной) коррозии и др.; жаростойкие (окалиностойкие), обладающие стойкостью против химического разрушения (коррозии) их поверхности в газовых средах (в том числе в сухой воздушной атмосфере) при температурах выше 550 °С, работающие в ненагруженном или слабонагруженном состоянии; жаропрочные, работающие в нагруженном состоянии при высоких температурах в течение определенного гарантированного времени и обладающие при этом достаточной окалиностойкостью.

Все эти стали, как правило, коррозионностойки в атмосферных условиях, поэтому их часто называют общим названием - нержавеющие.

Самостоятельную группу, хотя и не предусмотренную стандартом, составляют хладостойкие высоколегированные стали и сплавы, сохраняющие на протяжении ограниченно или неограниченно длительного времени под напряжением достаточную пластичность и вязкость при температурах ниже 100 °С* (* по ГОСТ 9867-61 единица измерения температуры 1К)

вплоть до - 269 °С.

B зависимости от структуры, определяемой химическим составом, получаемой при охлаждении на воздухе после высокотемпературного нагрева, высоколегированные стали подразделяют на следующие классы: мартенситный - стали с основной структурой мартенсита;

мартенситно-ферритный - стали, содержащие в структуре, кроме мартенсита, не менее 5% феррита; ферритный - стали, имеющие структуру феррита, не претерпевающие ? (?) ?-превращений;

аустенитно-мартенситный - стали, имеющие смешанную структуру аустенита и мартенсита, количество которых можно изменять в широких пределах; аустенитно-ферритный (или ферритно-аустенитный) - стали, имеющие смешанную структуру аустенита и феррита, количество последнего в которых составляет более 10%; аустенитный - стали, имеющие преимущественно однофазную аустенитную структуру.

Группу собственно нержавеющих в атмосферных условиях составляют стали, содержащие свыше 10% хрома. К коррозионностойким в различных агрессивных средах относятся стали, содержащие 15% и более хрома.

Жаростойкими до температуры 900 °С являются нержавеющие стали марок 12X17, 08Х17Т, 15Х18СЮ; до температуры 1100 °С - 15Х25Т, 15X28, 20Х25Н20С2 и другие; до температуры 1300°С - 15Х25Ю5 и др.

Жаропрочными при температурах до 565-610 °С являются стали с содержанием 11-12,5% хрома, легированные молибденом, вольфрамом, ванадием; при температурах до 650 °С -хромоникелевые стали типа 18-9 и 18-10, стабилизированные титаном; до 800 °С - хромоникельмолибденовые аустенитные стали, сталь 15Х14Н14В2М и др.

Весьма перспективными коррозионностойкими и хладостойкими являются стали с низким содержанием углерода и дополнительно легированные азотом. Последний целесообразно использовать как для частичной замены никеля, так и для повышения прочностных характеристик стали. Перспективность сталей с низким содержанием углерода и наличием азота основана на лучшей свариваемости и более высокой коррозионной стойкости.

По составу различают стали хромистые, хромоникелевые, хромомарганцевые, хромоникельмарганцевые и стали, дополнительно легированные азотом, а также с добавками специальных легирующих элементов (молибдена, вольфрама и др.) и карбидообразующих (титана, ниобия, тантала), играющих роль стабилизаторов структуры и свойств.


2.2 Технология сварки


Высоколегированные стали и сплавы, как правило, обладают увеличенным до 1,5 раза коэффициентом линейного расширения при нагревании и пониженным в 1,5-2 раза коэффициентом теплопроводности по сравнению с низкоуглеродистыми сталями.

Большинство этих сталей склонно к образованию горячих или холодных трещин при сварке, что усложняет процесс обеспечения качества сварных соединений с требуемыми свойствами. При дуговой сварке высоколегированных сталей следует предохранять поверхности металла от попадания на него брызг металла и шлака, так как они, повреждая поверхность, могут быть причиной коррозии или концентрации напряжений, ослабляющих конструкцию. Для предохранения от приваривания брызг на поверхность металла, прилегающую к шву, наносят защитное покрытие (кремнийорганический лак, грунт ВЛ-02, ВЛ-023 и др.).

Высокохромистые мартенситные стали (20X13, 14Х17Н2 и др.), мартенситно-ферритные (12X13, 14Х12Н2МФ и др.)- это закаливающиеся стали, склонные к образованию холодных трещин. В меньшей степени к ним относятся стали ферритного класса (12X17, 08Х17Т, 08Х18Т1 и др.). Для предотвращения трещинообразования применяют предварительный или сопутствующий подогрев, особенно необходимый с увеличением содержания в стали углерода и ее толщины. После сварки мартенситные, мартенситно-ферритные, а иногда и ферритные стали подвергают высокому отпуску при температуре 680-720 °С, а жаропрочные (20X13, 12X13 и др.) - при температуре 730-750 °С. Отпуск улучшает структуру, механические свойства и коррозионную стойкость.

Следует учитывать, что коррозионная стойкость сталей, не содержащих титана или ниобия, при нагревании более 500 °С постепенно падает, поэтому в сталь вводят эти элементы и дополнительно легируют молибденом, ванадием и другими добавками, например мартенситная сталь 18X1ШНФБ; мартенситно-ферритная 18Х12ВМБФР; ферритная 15Х25Т и др. Для сварки мартенситных, мартенситно-ферритных и ферритных сталей применяют электроды, стержни и покрытия которых обеспечивают получение наплавленного металла, близкого по химическому составу к основному металлу, например мартенситную сталь марки 15X11 ВМФ сваривают электродами Э12Х11НВМФ марки КТИ-10; мартенситно-ферритную сталь марки 12X13 -электродами Э12Х13 марки УОНИИ-13/ШЗ и т.д. Если конструкции из стали этого класса работают на статическую нагрузку и к швам не предъявляются требования высокой прочности, сварку можно выполнить аустенитными или аустенитно-ферритными электродами, например ферритную сталь 15Х25Т сваривают электродами Э02Х20Н14Г2М2 марки ОЗЛ-20, при этом отпуск после сварки можно не проводить.

Для сварки используют режим с малой погонной энергией для предотвращения роста зерна и охрупчивания зоны термического влияния.

В покрытии электродов, применяемых для сварки высокохромистых сталей, не должно быть газообразующих органических соединений, а газовая защита должна осуществляться за счет диссоциации карбонатов и выделяемой при этом СО (окиси углерода). Как и при сварке среднелегированных сталей, требования к качеству сборки и очистки металла перед сваркой остаются такими же и еще более ужесточаются.

Высокохромистые стали рассмотренных классов свариваются также в среде аргона вольфрамовым электродом. Этим способом рекомендуется соединять детали толщиной до 5-6 мм с подогревом, последующая термообработка не требуется. Целесообразно сваривать вольфрамовым электродом корневые швы более толстой стали, что обеспечивает хорошее формирование обратного валика, остальные слои шва выполняют электродуговой ручной сваркой или другим способом.

К высоколегированным хромоникелевым сталям относятся стали аустенитного, аустенитно-мартенситового и аустенитно-ферритного классов. Высоколегированные аустенитные сплавы на железоникелевой или никелевой основе являются устойчиво аустенитными и не меняют структуры при нагревании и охлаждении на воздухе. Эти стали и сплавы широко применяются в различных конструкциях, работающих в тяжелых условиях высоких и низких температур. Жаропрочные стали, легированные элементами-упрочнителями - вольфрамом и молибденом, способны длительно выдерживать большие нагрузки в условиях высоких температур. Жаростойкие стали устойчивы против химического разрушения поверхности в газовых агрессивных средах при температурах 1100-1150 °С. Эти стали и сплавы содержат мало вредных примесей, поэтому основными задачами при сварке являются хорошая защита расплавленного металла от воздуха и применение электродов со стержнем аустенитной структуры и покрытием основного типа.

Аустенитные хромоникелевые стали особенно чувствительны к увеличению углерода и серы, а также других элементов, образующих легкоплавкие эвтектики.

Для борьбы с горячими трещинами стремятся уменьшить содержание в стали и наплавленном металле С, S, и других элементов или подавить их другими добавками, связывающими S, как, например, Мn, а также уменьшить влияние термических напряжений путем применения благоприятных режимов сварки и предварительного и сопутствующего подогрева. Хромомарганцевые стали 15Х17АГ14 и хромоникельмарганцевые стали 12Х17Г2АН4 менее склонны к образованию горячих трещин, чем хромоникелевые.

В хромоникелевых сталях может развиваться межкристаллитная коррозия при замедленном охлаждении в интервале 500-800 °С в связи с тем, что по границам зерен происходит выделение карбидов хрома за счет обеднения хромом участков, прилегающих к границам зерен. В результате этого содержание Сr в приграничных участках падает ниже 12%, что под действием агрессивных сред приводит к коррозии. Так как аустенит представляет собой твердый раствор Cr, Ni, Мn, С и других элементов в железе, а растворимость С в Fe не превышает 0,02-0,03 %, то в интервале указанных температур лишний углерод выделяется из твердого раствора и образует карбид хрома. Чем больше в стали углерода, тем больше ее склонность к межкристаллитной коррозии. Увеличение процента хрома тормозит этот процесс.

Ферритная составляющая в аустенитно-ферритной стали должна быть в пределах 3-5 % феррита. Для предупреждения межкристаллитной коррозии необходимо применять сварку на низких режимах (на уменьшенных токах, малой погонной энергии и электродами диаметром не более 4-5 мм), особенно для многослойных швов.

Одним из дефектов аустенитно-мартенситных и аустенитно-ферритных сталей является склонность их при сварке к перегреву и охрупчиванию зоны влияния. Это вызывается ростом зерна в связи с перегревом ферритной фазы, образующейся вблизи зоны сплавления. Охрупчиванию способствует также превращение обогащенного углеродом аустенита (при высокой температуре аустенит переобогащается углеродом) в мартенсит с охлаждением шва. Снижение аустенитной фазы ниже 20 % повышает склонность их к межкристаллитной коррозии. Для предупреждения этого дефекта стремятся снизить содержание углерода в швах. Иногда назначают полную термообработку для восстановления коррозионных свойств.

Сварка аустенитных сталей не вызывает особых затруднений. Надо иметь в виду, что в сварных соединениях аустенитно-ферритных и аустенитно-мартенситных сталей возможно выделение водорода по границам зерен. Для предупреждения этого сварное соединение подвергают отпуску в течение 1-2 ч при температуре 150 °С.

Высокоуглеродистые аустенитные стали хорошо свариваются в атмосфере аргона с применением присадочной проволоки того же состава, что и основной металл, но с меньшим содержанием углерода; сварка рекомендуется для стали толщиной до 5-7 мм.

В целях экономии высоколегированной стали для изготовления сосудов, аппаратов и трубопроводов, работающих под давлением в агрессивных средах, применяют двухслойную сталь, основной слой которой состоит из низкоуглеродистой или низколегированной стали толщиной 4-60 мм, а плакирующий (облицовочный) - из высоколегированной стали или сплава толщиной 0,7-6 мм. При ручной дуговой сварке такой стали делают двухстороннюю разделку и сперва заваривают основной слой электродами УОНИИ-13/45 или УОНИИ-13/55, при этом стараются не задеть плакирующий слой. После зачистки корня шва со стороны плакирующего слоя заваривают первый слой электродами с повышенным запасом аустенитности, например марки К-ЗМ, а затем заваривают плакирующий слой электродами НЖ-13, СЛ-28 или им аналогичными.

Некоторые данные о режимах и выборе электродов для ручной дуговой сварке приведены в табл.1.


Таблица 1. Некоторые марки электродов для сварки высоколегированных сталей и сплавов.

Марка сталиМарка электродовТип электродов по ГОСТ 10052-75Структура наплавленного металлаКоррозионно-стойкие стали08Н18Н10,08Х18Н10Т, 12Х18Н10Т, 08Х18Н12Т, 08Х18Н12Б, 08Х22Н6Т и подобные, работающие в агрессивных средах: к металлу шва предъявляются требования по стойкости к МКК к металлу шва предъявляются жесткие требования по стойкости к МККЦЛ-11, ОЗЛ-7, ОЗЛ-8, ОЗЛ-22, ОЗЛ-36Э-04Х20Н9 Э-07Х20Н9 Э-08Х19Н10Г2БАустенитно-ферритная с 2,5... 7% ?-фазыОЗЛ-7, АНВ-13Э-08Х20Н9Г2БАустенитно-ферритная с 5,0... 10% ?-фазыТе же стали, работающие при температурах до 600 °С в жидких агрессивных средах; к металлу шва предъявляются требования по стойкости к МККЛ-38МЭ-02Х19Н9БАустенитно-ферритная с 3,0... 5,0% ?-фазы10Х17Н13М2Т, 10Х17Н13МЗТ, 08Х18Н12Б, 08X2IH6M2T и подобные, работающие при температурах до 700 °С: к металлу шва предъявляются требования по стойкости к МКК к металлу шва предъявляются жесткие требования по стойкости к МККСЛ-28, ОЗЛ-20, ОЗЛ-41Э-8Х19Н10Г2МБ, Э-09Х19Н10Г2М2БАустенитно-ферритная с 4,0... 5,0% ?-фазыНЖ-13Э-09Х19Н10Г2М2БАустенитно-ферритная с 4,0... 8,0% ?-фазыЖаропрочные стали12Х18Н9,12Х18Н10Т, 08Х18Н12Т, работающие при температурах до 800 °СЦТ-15, ЦТ-26ЭА-1М2 Э-08Х16Н8М2 Э-08Н17Н8М2Аустенитно-ферритная с 2,0... 4,0% феррита10Х23Н18 и подобные, работающие при температурах выше 850 °СОЗЛ-4 ОЗЛ-6Э-10Х25Н13Г2Аустенитно-ферритная с содержанием феррита не менее 2,5 %Жаростойкие сталиХ20Н14С2,20Х20Н14С2, 20Х25Н20С2, работающие при температурах 900 ... 1100°СОЗЛ-6 ОЗЛ-31МЭ-12Х24Н14С2Аустенитно-ферритная с 3 ... 10% ?-фазы20Х25Н20С2, 4Х18Н25С2, работающие при температурах до 1050 °С; к металлу шва предъявляются требования жаростойкости и жаропрочностиОЗЛ-5 ОЗЛ-9-1Э-28Х24Н16Г6Аустенитно-карбидная

2.3 Сварка под флюсом


Этот один из основных способов сварки высоколегированных сталей толщиной 3 ... 50 мм имеет большое преимущество перед ручной дуговой сваркой покрытыми электродами ввиду стабильности состава и свойств металла по всей длине шва при сварке с разделкой и без разделки кромок. Это достигается отсутствием частых кратеров, образующихся при смене электродов, равномерностью плавления электродной проволоки и основного металла по длине шва (при ручной сварке меньшая скорость плавления электрода вначале его использования и большая в конце изменяет долю основного металла в шве, а значит, и его состав), более надежной защитой зоны сварки от окисления легирующих компонентов кислородом воздуха и др. Хорошее формирование поверхности швов с мелкой чешуйчатостью и плавным переходом к основному металлу, отсутствие брызг на поверхности изделия заметно повышают коррозионную стойкость сварных соединений. При этом способе уменьшается трудоемкость подготовительных работ, так как разделку кромок выполняют на металле толщиной свыше 12 мм (при ручной сварке свыше 3 ... 5 мм). Возможна сварка с повышенным зазором и без разделки кромок стали толщиной до 30 ... 40 мм. Уменьшение потерь на угар, разбрызгивание и огарки электродов на 10 ... 20 % снижает расход дорогостоящей сварочной проволоки. Однако при сварке под флюсом некоторых марок жаропрочных сталей требование обеспечения в металле шва регламентированного количества ферритной фазы не всегда может быть достигнуто. Это объясняется трудностью получения необходимого состава металла шва за счет выбора только сварочных флюсов и проволок (последние имеют значительные колебания химического состава в пределах стали одной марки) при сварке металла различной толщины (различная форма разделки и, значит, доля участия основного металла в формировании шва).

При сварке используют безокислительные низкокремнистые фторидные и высокоосновные флюсы, создающие в зоне сварки безокислительные или малоокислительные среды, способствующие минимальному угару легирующих элементов. Остатки шлака и флюса на поверхности швов, которые могут служить очагами коррозии сварных соединений на коррозионно- и жаростойких сталях, необходимо тщательно удалять. Тип флюсов предопределяет преимущественное использование для сварки постоянного тока обратной полярности. При этом достигается и повышенная глубина проплавления.


2.4 Сварка в защитных газах


В качестве защитных используют инертные (аргон, гелий) и активные (углекислый) газы, а также различные смеси инертных или активных газов и инертных с активными. Этот способ сварки имеет ряд существенных преимуществ. Его можно использовать для соединения металлов широкого диапазона толщин - от десятых долей до десятков миллиметров.

Применение инертных газов существенно повышает стабильность дуги. Значительное различие теплофизических свойств защитных газов и применение их смесей, изменяя тепловую эффективность дуги и условия ввода теплоты в свариваемые кромки, значительно расширяют технологические возможности дуги. При сварке в инертных газах наблюдается минимальный угар легирующих элементов, что важно при сварке высоколегированных сталей. При сварке в защитных газах возможности изменения химического состава металла шва более ограничены по сравнению с другими способами сварки и возможны за счет изменения состава сварочной (присадочной) проволоки или изменения доли участия основного металла в образовании металла шва (режим сварки), когда составы основного и электродного металлов значительно различаются.

Сварку в защитных газах можно выполнять неплавящимся вольфрамовым или плавящимся электродом.

Для сварки высоколегированных сталей используют аргон высшего или 1-го сортов по ГОСТ 10157-79. Сварку ведут на постоянном токе прямой полярности. Исключение составляют стали и сплавы с повышенным содержанием алюминия, когда для разрушения поверхностной пленки окислов, богатой алюминием, следует применять переменный ток.

Сварку можно выполнять непрерывно горящей или импульсной дугой. Импульсная дуга благодаря особенностям ее теплового воздействия позволяет уменьшить протяженность околошовной зоны и коробление свариваемых кромок, а также сваривать металл малой толщины при хорошем формировании шва. Особенности кристаллизации металла сварочной ванны при этом способе сварки способствуют дезориентации структуры, уменьшая вероятность образования горячих трещин. Однако эта же особенность может способствовать образованию околошовных надрывов при сварке высоколегированных сталей. Для улучшения формирования корня шва используют поддув газа, а при сварке корневых швов на металле повышенных толщин - специальные расплавляющиеся вставки.


2.5 Электродуговая сварка


Современные высоколегированные стали, даже не подвергнутые специальному металлургическому улучшению-вакуумному, электрошлаковому, плазменно-дуговому переплавам,- отличаются хорошей раскисленностью и высокой чистотой по кислороду и вредным примесям.

Практически все защитные среды, применяемые для наиболее распространенных методов электродуговой сварки сталей, не являются абсолютно нейтральными по отношению к жидкому металлу. Не только активные или защитные газы - двуокись углерода, смеси аргона и гелия с кислородом или углекислым газом - либо активные флюсы - шлаки, но и обычно поставляемые промышленностью газы - аргон и гелий, а также фторидные (так называемые бескислородные) флюсы или основные покрытия электродов содержат: защитные газы - небольшое количество кислорода, водорода, азота, а флюсы - активные окислы, примеси серы, фосфора и водород.

Естественно, что при использовании этих защитных сред, особенно аргона, гелия и фторидных флюсов, насыщение жидкого металла кислородом и азотом несравнимо меньше, чем при сварке незащищенной дугой или с защитой активными газами и шлаками. Однако, за исключением сварки в вакууме, при электродуговой сварке различных сталей происходят в большей или в меньшей степени активные металлургические процессы взаимодействия жидкого металла с защитной средой.

В зависимости от вида и режима электродуговой сварки, качества и состава защитной среды, химического состава основного и присадочного металлов в сварочной зоне могут происходить реакции прямого окисления элементов металла и его раскисления, окислительно-восстановительные реакции и связанные с ними выгорание некоторых элементов и соответственное снижение количества их в шве по сравнению с содержанием в свариваемом (основном) и присадочном (электродном) металлах либо переход их из флюса (шлака) или расплавленного электродного покрытия в шов. При этом может происходить увеличение или, наоборот, уменьшение количества в шве кислорода, азота, водорода, серы и фосфора, а также рафинирование металла при введении элементов, связывающих вредные примеси в нерастворимые в жидком металле соединения или измельчающих структуру последнего при его затвердевании.

Процессы взаимодействия жидкого металла с газовой фазой и шлаком при электродуговой сварке происходят как на стадии образования капель электродного металла и перехода их через дуговой промежуток в сварочную ванну, так и на стадии существования жидкого металла в ванне до его затвердевания, причем наиболее интенсивно эти реакции протекают на первой стадии.

Для обеспечения требуемого состава металла шва, а следовательно, хотя бы ориентировочного учета степени окисления (выгорания) элементов присадочного и свариваемого (основного) металлов или, наоборот, легирования ими металла шва за счет флюса, покрытия электродов или защитного газа, а также возможного рафинирования жидкого металла и требуемого в связи со всем этим состава электрода необходимо знать направление и примерную степень развития окислительно-восстановительных реакций в сварочной зоне. Это, как известно, зависит от концентрации, температуры, удельной поверхности и продолжительности контактирования реагирующих веществ, а также от химического сродства к кислороду различных элементов, содержащихся в металле электродных капель и сварочной ванны. Чем больше концентрация, удельная поверхность и продолжительность контактирования жидкого металла с газовой фазой и компонентами шлака в зоне сварки, тем полнее протекают реакции их взаимодействия.

Температура капель в зоне дуги составляет 2150-2350 °С,

а газа - 2900 °С, в то время как температура металла в сварочной ванне равна в среднем 1750° С, а газа в месте соприкосновения с ванной - 2300 °С.

Естественно, что температура металла в ванне под дугой значительно выше, чем в средней ее части, а по мере удаления от дуги снижается до температуры кристаллизации металла.

Из данных некоторых опытов следует, что температура капель электродного металла может изменяться в зависимости от защитной среды (наличия и количества в зоне дуги ионизирующих веществ и деионизаторов), рода сварочного тока и его полярности, а также от режима сварки.

Полнота завершения химических реакций при взаимодействии металла с защитной средой в дуге в значительной степени зависит также от величины поверхности контактирования взаимодействующих веществ (металла капель с газом или шлаком) и продолжительности их контактирования, т. е. от размера капель, количества их образования в единицу времени и скорости перехода с электрода через дуговой промежуток в ванну, Это в свою очередь зависит от режима сварки - силы сварочного тока и напряжения дуги.

Многочисленными опытами установлено, что с повышением сварочного тока средний размер капель электродного металла уменьшается, количество же расплавляемого металла в единицу времени (коэффициент расплавления) и удельная поверхность (отношение поверхности капли к ее объему) возрастают. Следовательно, общая продолжительность образования капли на конце электрода и ее перелета через дуговой промежуток в сварочную ванну с увеличением тока значительно уменьшается. С повышением же напряжения дуги, наоборот, размер капель увеличивается, количество их в единицу времени уменьшается, средняя удельная поверхность капли также уменьшается, а продолжительность образования и перелета капли с электрода в ванну возрастает.


2.6 Другие способы сварки


Сварку угольным электродом применяют очень редко - при изготовлении тонкостенных неответственных конструкций. Это объясняется опасностью науглероживания шва и повышенным короблением изделий ввиду малой концентрированности угольной дуги как источника теплоты.
Перспективно для сварки высоколегированных сталей использование электронного луча. Возможность за один проход сварить без разделки кромок металл большой толщины с минимальной протяженностью околошовной зоны - важное технологическое преимущество этого способа. Однако и при этом способе возможно образование в шве и околошовной зоне горячих трещин и локальных разрушений. Наличие вакуума, способствуя удалению вредных примесей и газов, увеличивает испарение и полезных легирующих элементов. При глубоком и узком проваре часть газов может задержаться растущими кристаллами в шве и образовать поры. Сварка металла большой толщины затруднена из-за непостоянства глубины проплавления. Сложность и дороговизна аппаратуры и процесса определяют возможность применения электронно-лучевой сварки только при изготовлении ответственных конструкций.
Список литературы


1.Фролов В.В. «Теория сварочных процессов». Москва. Высшая школа. 1988г.

2.Лившиц Л.С. «Металловедение для сварщиков (сварка сталей)». Москва. Машиностроение. 1979г.

.Петров Г.Л., Тумарев А.С. «Теория сварочных процессов (с основами физической химии)». Москва. Высшая школа. 1977г.

.Геворгян Г.В. «Основы сварочного дела». Москва. Высшая школа. 1991г.

.Соколов И.И. «Газовая сварка и резка металлов». Москва. Высшая школа. 1978г.


Похожие работы

Металлургические процессы при сварке
...из составляющих разнородное сварное соединение . Общие сведения о металлургических процессах при сварке в инертных газах .
...для упрочнения средне и высоколегированных сталей . Низкоуглеродистые низколегированные стали , особенно кипящие...
Сварочное пламя
Окисление металла при сварке . Металл окисляется преимущественно газами пламени горелки или при...
Нормальное пламя используют для сварки малоуглеродистых, низколегированных и высоколегированных сталей , а также меди, магниевых сплавов, алюминия...
Качественные электроды для ручной дуговой сварки и их производство
при сварке в условиях низких температур) Для закрепления покрытия на стержне используют связывающие.
2.1 Электроды для сварки конструкционных. и низколегированных сталей . . . . . . . . . . . . . . 3.
Качественные электроды для ручной дуговой сварки и их производство
при сварке в условиях низких температур) Для закрепления покрытия на стержне используют связывающие.
2.1 Электроды для сварки конструкционных. и низколегированных сталей . . . . . . . . . . . . . . 3.
Металлические сварочные материалы
Это позволяет увеличить производительность процесса . При ручной дуговой сварке плавящимся электродом...
-для сварки углеродистых и низколегированных сталей с временным сопротивлением разрыву до 60 кгс/мм2 (600 МПа), с условным обозначением - У
Благотворительность

Загружая свои работы, Вы помогаете не только студентам, но и людям, которым Ваша помощь действительно нужна. Чем именно это помогает? Читать дальше…..