Влияние интенсивности освещения на анатомо-морфологическое строение листьев растений

  • Вид работы:
    Дипломная (ВКР)
  • Предмет:
    Биология
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    1,02 Mb
  • Опубликовано:
    2011-12-25
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Влияние интенсивности освещения на анатомо-морфологическое строение листьев растений

Кемеровский государственный сельскохозяйственный институт

Кафедра ботаники и экологии





КУРСОВАЯ РАБОТА

по предмету «Ботаника» на тему:

Влияние интенсивности освещения на анатомо-морфологическое строение листьев растений














Кемерово 2010

Оглавление

Введение

Глава 1. Особенности строения листа.

Глава 2. Сравнительный анализ приспособления листьев растений к различным экологическим условиям.

Глава 3. Влияние интенсивности освещения на анатомию листьев тенелюбивых и светолюбивых растений.

Заключение

Список использованной литературы

Приложения

Введение

Актуальность: Данная проблема была и остаётся актуальной во все времена и в настоящее времена. Лист - орган растения, в котором происходят процессы фотосинтеза, дыхания и транспирации. Свет является одним из основных абиотических факторов, влияющих на жизнедеятельность растений. Только на свету происходит фотосинтез и, следовательно, могут существовать фотосинтезирующие растения. Следует помнить, что в растении непрерывно, вне зависимости от условий освещенности идет процесс дыхания, противоположный ассимиляции. При слабой интенсивности освещения количество энергии, затрачиваемое растением на дыхание, превышает то количество солнечной энергии, которое может быть связано растением в процессе фотосинтеза.

Объект исследования: лист.

Предмет исследования: анатомо-морфологическое строение листьев растений.

Цель: изучение влияния интенсивности освещения на анатомо-морфологическое строение листьев растений.

Задачи:

. Провести сравнительный анализ приспособления листьев растений к различным экологическим условиям.

.Изучать влияние интенсивности освещения на анатомию листьев растений, принадлежащих к одному виду.

Глава 1. Особенности строения листа

 

Морфология листа. Лист - это один из основных органов растения, занимающий боковое положение на стебле и выполняющий функции фотосинтеза, транспирации (испарения воды растением) и газообмена с окружающей средой.

Листья растений весьма разнообразны по форме и внутреннему строению, однако почти всегда в них можно различить листовую пластинку, черешок и основание, которым лист прикрепляется к стеблю.

Листовая пластинка - самая важная часть типичного листа. Ее пластинчатая форма создает наибольшую поверхность на единицу объема тканей, что наилучшим образом способствует выполнению всех указанных функций зеленого листа. Черешок - суженная часть листа между его пластинкой и основанием. Листья, имеющие черешки, называются черешковыми (липа, клен, сирень), листья без черешков -сидячими (василек луговой, алоэ, гвоздика). У основания некоторых листьев образуются мелкие чешуевидные или листовидные структуры, называемые прилистниками. Они развиваются обычно раньше, чем пластинка и черешок, и предохраняют листовую пластинку от повреждения в почке (у березы, липы, черемухи, яблони); при раскрывании почки они опадают. У некоторых видов растений прилистники разрастаются, зеленеют и выполняют те же функции, что и листовая пластинка (у гороха, фиалки, розы, чины). У большинства однодольных растений основание листа расширено в охватывающее стебель влагалище (злаки, осоки, лилейные и др.); оно надежно защищает пазушные почки [10; с 40].

По форме листовая пластинка может быть округлая - ее длина и ширина примерно одинаковые (осина, груша); эллипсовидная - длина примерно в два раза превышает ширину (крушина ломкая, черемуха обыкновенная); яйцевидная - основание шире верхушки (крапива двудомная); линейная - длина более чем в 10 раз превышает ширину (тимофеевка луговая, ежа сборная); игольчатая -длинная и тонкая, твердая и колючая (ель, сосна);ланцетовидная, стреловидная, сердцевидная и т. д.

Форма края листа также разнообразна: лист сирени - цельнокрайний, яблони - зубчатый, осины - выемчатый. Край листовой пластинки может быть пильчатым, двоякопильчатым, городчатым и т. д. (Приложение 1.)

Жилкование. Листовые пластинки в разных направлениях пронизаны многочисленными жилками, которые представляют собой сосудисто-волокнистые пучки. Определенное расположение жилок в листовой пластинке называется жилкованием. По жилкам осуществляется передвижение воды и растворенных в ней минеральных веществ, а также отток ассимилянтов. Жилки, кроме того, служат для придания механической прочности листу.

В зависимости от характера размещения боковых жилок и способов их ветвления отличают четыре основных типа жилкования: перистое - от одной главной жилки под углом отходят боковые, более мелкие (береза, ива, яблоня, груша); пальчатое - от основания листовой пластинки в виде лучей расходятся несколько равноценных жилок (клен); параллельное - многочисленные жилки тянутся от основания листовой пластинки параллельно друг другу и сближаются только на верхушке (злаки); дуговидное - жилки дуговидно изогнуты и сближаются у основания и верхушки листовой пластинки (ландыш, подорожник) (приложение 2).

Пальчатое и перистое жилкование характерно для двудольных растений, а параллельное и дуговидное - преимущественно для однодольных.

Простые и сложные листья. Листья бывают простыми и сложными. Простой лист имеет одну листовую пластинку, которая опадает осенью целиком. Сложный лист состоит из нескольких листовых пластинок, прикрепленных к общему черешку при помощи собственных черешков. Благодаря этому у древесных растений осенью сложный лист опадает частями - вначале поодиночке листочки, потом черешок.

В зависимости от расположения листочков сложные листья делятся на перистосложные - листочки расположены по всей длине общего черешка (у гороха, желтой акации) и палъчатосложные - листочки прикреплены к верхушке общего черешка и расходятся радиально (у конского каштана, люпина, земляники). Пальчатосложный лист, образованный тремя листочками, часто называют тройчатосложным (у клевера).

Перистосложные листья могут быть двух типов: парноперистые (лист заканчивается парой листочков) и непарноперистые (лист заканчивается одним листочком).

В размещении листьев на стебле наблюдается определенная закономерность, благодаря которой достигается равномерная нагрузка в распределении их на растении и в значительной степени исключаются взаимное затенение.

Различают очередное, или спиральное, листорасположение, когда узел несет один лист (у березы, тополя, черемухи); супротивное - от узла отходят два листа, расположенные друг против друга (у клена, сирени, бузины) и мутовчатое - от узла отходит не менее трех листьев (у вороньего глаза, вербейника обыкновенного) [11; с 470].

Анатомия листа. Типичное анатомическое строение листовой пластинки отражает ее приспособленность к выполняемым функциям (приложение 3). С обеих сторон она покрыта эпидермисом, который регулирует газообмен и транспирацию. В клетках кожицы нет хлоропластов, поэтому они беспрепятственно пропускают свет к основным тканям листа. Наружные стенки клетки кожицы, особенно с верхней стороны листа, утолщены и покрыты слоем воска или воскоподобного вещества - кутина, что предохраняет лист от перегрева и излишнего испарения воды. Этому способствует также погружение устьиц вглубь листовой пластинки, формирование волосков, создающих разные виды опушения, и др.

Особенности внутреннего строения листа определяются его главной функцией - фотосинтезом. Поэтому важнейшей тканью листа является хлорофиллоносная паренхима (хлоренхима). Эта ткань образует мякоть листа, или мезофилл, в клетках которого сосредоточены хлоропласты и происходит фотосинтез. Остальные ткани обеспечивают нормальную работу мезофилла. Система разветвленных проводящих пучков, которые пронизывают листовую пластинку во всех направлениях, снабжает лист водой и обеспечивает постоянный отток органических веществ от листа к другим органам растения. Механические ткани (склеренхима, колленхима) совместно с живыми клетками паренхимы (мезофилла) и эпидермиса обеспечивают определенную структуру и высокую прочность листовой пластинки. Поэтому сравнительно тонкие и нежные листовые пластинки способны занимать в пространстве такое положение, при котором создаются наилучшие условия освещения и газообмена.

Мезофилл занимает все пространство между верхним и нижним эпидермисом листа, исключая проводящие пучки и механические ткани. Клетки мезофилла имеют округлую или слегка вытянутую форму, с тонкими и неодревесневшими стенками [12; с 32].

Клетки палисадной паренхимы вытянуты перпендикулярно к поверхности листа и расположены в один или несколько слоев. Они содержат примерно 75-80% всех хлоропластов листа и выполняют основную работу по ассимиляции углекислого газа. Поэтому палисадная ткань располагается в наилучших условиях освещения, непосредственно под верхней эпидермой. Благодаря тому что ее клетки вытянуты перпендикулярно к поверхности листа, у них имеется возможность регулировать направление и расположение хлоропластов таким образом, чтобы избежать повреждающего действия прямой солнечной радиации на фото синтезирующий аппарат, На сильном свету хлоропласты занимают в клетке пристенное положение и становятся ребром к направлению лучей, в результате чего большая часть светового потока проходит мимо хлоропластов или скользит по их поверхности, не разрушая хлорофилл. При слабом освещении, наоборот, хлоропласты распределяются в клетке диффузно или скапливаются в нижней ее части, что способствует лучшему освещению каждого из них. В округлых клетках, характерных для губчатой паренхимы, такое регулирование расположения хлоропластов при разной освещенности (особенно на сильном свету) практически невозможно.

Под столбчатой паренхимой находится рыхлая паренхима, клетки которой имеют округлую или продолговатую форму, содержат меньше хлоропластов и расположены рыхло, поскольку между ними развиваются крупные межклетники, заполненные воздухом.

В губчатой ткани интенсивность фотосинтеза ниже, чем в столбчатой, но зато здесь активно идут процессы транспирации и газообмена. Углекислый газ из воздуха через устьица, расположенные главным образом в нижнем эпидермисе, проникает в большие межклетники и по ним поступает ко всем ассимилирующим клеткам листа. Парообразная влага, кислород и углекислый газ, образующиеся при фотосинтезе и дыхании клеток мезофилла, передвигаются в обратном направлении и через устьица выделяются наружу. Таким образом, оба вида ассимиляционной ткани (палисадной и рыхлой) тесно связаны между собой не только в структурном, но и в функциональном плане.

Расположение устьиц преимущественно на нижней стороне листа имеет важное экологическое значение. Во-первых, нижняя сторона листа меньше нагревается на свету, чем верхняя, поэтому потеря воды листом в процессе транспирации происходит медленнее через устьица, расположенные в нижнем, а не в верхнем эпидермисе. Во-вторых, главным источником углекислого газа в атмосфере является «почвенное дыхание», т. е. выделение его в результате жизнедеятельности почвенных микроорганизмов (бактерий, цианобактерий, грибов и др.) и дыхания корней высших растений. Поэтому припочвенный слой воздуха обычно обогащен углекислым газом, который по градиенту концентрации диффундирует вверх и легко проникает через устьица в ткани листьев.

В центре листа находится крупный проводящий пучок, а сбоку более мелкие пучки. В составе пучка ксилема повернута к верхней, а флоэма - к нижней стороне листа. Проводящие пучки с окружающими их тканями называют жилками. Они образуют в листе непрерывную систему, связанную с проводящей системой стебля.

Старение листьев и листопад. Высокая функциональная активность листьев на протяжении всего вегетационного периода приводит к их старению, затем к отмиранию и опадению. Массовое опадение листьев называется листопадом.

В процессе старения листья становятся красными, желтыми, оранжевыми, что связано с разрушением хлорофилла и выявлением каротиноидов и пигментов клеточного сока. Снижается интенсивность фотосинтеза, дыхания, транспирации, разрушаются органеллы клетки, накапливаются ненужные растению продукты метаболизма (например, кристаллы щавелевокислого кальция). С возрастом в листьях начинают преобладать процессы распада, что сопровождается оттоком органических веществ (углеводов, аминокислот и др.) в запасающие органы (плоды, клубни, луковицы, корневища), а также к вновь закладывающимся почкам [14; с 100].

Листопад - это важное приспособление растений к уменьшению поверхности надземных органов, что сокращает потерю влаги в засушливый или холодный зимний период и предотвращает поломку ветвей под тяжестью снега. Он способствует также выведению из растений продуктов жизнедеятельности. Кроме того, опавшие листья защищают семена и корни деревьев и кустарников от вымерзания, служат органическим удобрением.

Механизм листопада связан с образованием у основания листа отделительного слоя, состоящего из легко расслаивающейся таренхимы. По отделительному слою лист отрывается от стебля, а на месте отделения остается листовой рубец, который покрывается слоем пробки. На листовом рубце хорошо видны листовые следы - окончания проводящих пучков.

Типичный (полный) лист состоит из пластинки, черешка и основания (часто с прилистниками). У некоторых (неполных) листьев может не быть черешка, прилистников и даже пластинки. Листья с черешком называют черешковыми, без него - сидячими. У ряда растений (напр., у злаков) основание листа охватывает стебель. Такое разросшееся основание называют влагалищем листа. Если у листа одна пластинка и между нею и черешком нет сочленения, лист называют простым. Лист, состоящий из пластинок (листочков), сочленённых с общим черешком, называют сложным. Сложные листья бывают однолисточковые, трёхлисточковые, пальчатые, непарноперистые, перистые. (Рис.1)

У травянистых растений различие между простыми и сложными листьями выражено нечётко. Нередко простой лист с рассечённой пластинкой принимают за сложный, не обращая внимания на отсутствие сочленения с черешком каждой части (сегмента) рассечённой листовой пластинки. Степень расчленённости листовой пластинки различна - от совершенно цельнокрайней (напр., у иван-чая) до сложно расчленённой (у тысячелистника, некоторых видов сем. зонтичных.). У простых листьев пластинки отмирают вместе с черешком (одновременно). У сложных (напр., у конского каштана) многочисленные листочки, имеющие особое сочленение с общим черешком, опадают раздельно (поодиночке) [5; с 500].

Рис 1. Простые листья: 1-игольчатый; 2-линейный; 3-яйцевидный; 4-сердцевидно- яйцевидный; 5-обратнояйцевидный; 6-почковидный; 7-лоптчатый; 8-ланцетный; 9-стреловидный; 10-копьевидный; 11-округлый; 12-овальный; 13-продолговатый; 14-ромбический. Сложные листья: 1-перистосложный; 2-тройчатый; 3-пальчатосложный.

Глава 2. Сравнительный анализ приспособления листьев растений к различным экологическим условиям

 

Среда обитания. Часть природы (совокупность конкретных абиотических и биотических условий), непосредственно окружающая живые организмы и оказывающая прямое или косвенное влияние на их состояние, рост, развитие, размножение, выживаемость и т. п., - это и есть среда обитания. На нашей планете организмы освоили четыре основные среды обитания: водную, наземную (воздушную), почвенную и тело другого организма, используемое паразитами и полу паразитами.

От понятия «среда обитания» следует отличать понятие «условия существования» - совокупность жизненно необходимых факторов среды, без которых живые организмы не могут существовать (свет, тепло, влага, воздух, почва). В отличие от них другие факторы среды хотя и оказывают существенное влияние на организмы, но не являются для них жизненно необходимыми (например, ветер, естественное и искусственное ионизирующее излучение, атмосферное электричество и др.) [4; с 250].

Экологические факторы. Элементы окружающей среды, которые вызывают у живых организмов и их сообществ приспособительные реакции (адаптации), называются экологическими факторами.

По происхождению и характеру действия экологические факторы подразделяются на абиотические (элементы неорганической, или неживой, природы), биотические (формы воздействия живых существ друг на друга) и антропогенные (все формы деятельности человека, оказывающие влияние на живую природу).

Абиотические факторы делят на физические, или климатические (свет, температура воздуха и воды, влажность воздуха и почвы, ветер), эдафические, или почвенно-грунтовые (механический состав почв, их химические и физические свойства), топографические, или орографические (особенности рельефа местности), химические (соленость воды, газовый состав воды и воздуха, рН почвы и воды и др.).

Антропогенные (антропические) факторы - это все формы деятельности человеческого общества, изменяющие природу как среду обитания живых организмов или непосредственно влияющие на их жизнь. Выделение антропогенных факторов в отдельную группу обусловлено тем, что в настоящее время судьба растительного покрова Земли и всех ныне существующих видов организмов практически находится в руках человеческого общества.

Большинство экологических факторов -температура, влажность, ветер, наличие пищи, хищники, паразиты, конкуренты и т. д. - отличаются значительной изменчивостью во времени и пространстве. Степень изменчивости каждого из этих факторов зависит от особенностей среды обитания. Например, температура сильно варьирует на поверхности суши, но почти постоянна на дне океана или в глубине пещер. Паразиты млекопитающих живут в условиях избытка пищи, тогда как для большинства хищников ее запасы меняются в соответствии с изменением численности жертв. Изменение факторов среды наблюдается в течение года и суток, в зависимости от приливов и отливов в океане, при бурях, ливнях, обвалах, при похолодании или потеплении климата, зарастании водоемов, постоянном выпасе скота на одном и том же участке и т. д.

Один и тот же фактор среды имеет разное значение в жизни совместно обитающих организмов. Например, солевой режим почвы играет первостепенную роль при минеральном питании растений, но безразличен для большинства наземных животных. Интенсивность освещения и спектральный состав света исключительно важны в жизни фототрофных растений, а в жизни гетеротрофных организмов (грибов и водных животных) свет не оказывает заметного влияния на их жизнедеятельность.

Экологические факторы действуют на организмы по-разному. Они могут выступать как раздражители, вызывающие приспособительные изменения физиологических функций; как ограничители, обусловливающие невозможность существования тех или иных организмов в данных условиях; как модификаторы, определяющие морфологические и анатомические изменения организмов [7; с 28].

Экологические факторы роста растений и микроклимат помещений.

Экология - наука, изучающая взаимоотношения организмов со средой, т. е. с условиями их естественного обитания. Среда накладывает определенный отпечаток на растительный организм и включает в себя совокупность всех факторов, действующих на растение. Наиболее существенные из них: климатический (состав воздуха, свет, температура и влажность) и эдафический (греч. эдафон - почва), т. е. почвенно-грунтовые условия. При перенесении растений из природной обстановки в искусственно созданные режимы, например в оранжереи или в жилые и служебные помещения, происходит акклиматизация, т. е. приспособление растений к новым условиям обитания. Акклиматизированными считаются растения, которые приспособились к существованию в новых условиях, успешно растут и размножаются.

Растительные организмы пластичны. Каждый цветовод знает, как сильно меняется внешний вид растения при перемещении его из светлого места в темное и наоборот. В природе можно обнаружить ряд особей одного и того же вида, выросших в различных внешних условиях и настолько непохожих друг на друга, что их можно принять за разные виды, однако это результат различных воздействий окружающей среды. Тем не менее, как ни велика пластичность растительных организмов, наилучшие результаты акклиматизации получаются при максимальном приближении условий искусственного содержания к природным. Вот почему прежде чем вносить растения в интерьер, необходимо изучить микроклимат помещения, а потом грамотно подобрать соответствующий ассортимент растений [6; с 50].

Свет - главный экологический фактор, определяющий основу жизнедеятельности растительного организма - фотосинтез, процесс превращения зелеными растениями лучистой энергии солнца в энергию химических связей органических веществ. Этот процесс происходит с поглощением углекислого газа и выделением свободного кислорода. При участии поглощающих свет пигментов - хлорофилла и некоторых других - углекислый газ и вода, вступая в реакцию, образуют основную пищу растений - углеводы. В зависимости от смены дня и ночи интенсивность физиологических процессов колеблется. Реакция растений на соотношение светлого и темного периодов суток называется фотопериодизмом. Она четко проявляется у так называемых длиннодневных и короткодневных растений, рост и период цветения которых зависят от различной продолжительности дня и ночи. Под влиянием источника света растения способны испытывать ростовые движения органов, т. е. поворачиваться к источнику света. Эта реакция называется фототропизмом, о ней надо помнить при расстановке растений в интерьере.

При естественном боковом освещении оконные проемы, обращенные на юг, открыты солнцу в течение 6- 9 часов и пропускают максимум солнечного света. Свет, поступающий в помещения через восточные и западные окна, менее интенсивен и проникает в первую или вторую половину дня (соответственно) на 3-4 часа. Северные окна пропускают ровный почти неизменной интенсивности свет в течение всего дня. В зависимости от времени года, географической широты места и времени суток условия освещения изменяются.

Для успешного культивирования растений в помещении важно и соотношение температуры и влажности. В осенний период суточная температура в интерьерах колеблется в пределах 13-18°, зимой с включением отопления она повышается от 15 до 22°. В летнее время средняя температура составляет 22-28°. Эти пределы температур вполне удовлетворительны для нормального хода фотосинтеза. Однако при расстановке растений желательно обеспечить оптимальный режим для каждого вида и необходимо помнить о том, что в разных точках помещения показания температуры варьируют: у балконной двери они ниже на 3-4°, у ребристого радиатора, где создается завеса теплого воздуха,- на 3° выше, а иногда и более.

Влажность воздуха также влияет на фотосинтез. Оптимальная величина относительной влажности, необходимой для фотосинтеза, 50-80%, что вполне соответствует ситуации в интерьерах, за исключением отдельных производственных помещений, где влажность опускается до 25-30%. Однако и при такой низкой влажности можно культивировать растения, например засухоустойчивые кактусы и другие суккуленты.

Изучению микроклимата современных общественных зданий в связи с жизнедеятельностью растений посвящены работы Г. Н. Шапенковой (1971) и Е. Н. Кутас (1984). По данным Г. Н. Шапенковой, в условиях Москвы в помещениях с сильным или значительным влиянием естественной освещенности (ориентированных на юг, восток или запад) растения сохраняют декоративные качества в следующих пределах по отношению к источнику света: светолюбивые - в зоне от 1 до 3 м (освещенность свыше 5000 люкс в течение нескольких часов), теневыносливые - в зоне от 3 до 6 м от окна (освещенность свыше 1000 люкс в течение нескольких часов). За пределами указанных зон размещать растения допустимо только при применении искусственного освещения (минимальная интенсивность 100-300 Вт/м 2 в течение 10-12 часов). Досвечивание производится с помощью декоративных светильников, панелей и т. п. В отношении температуры Г. Н. Шапенкова указывает два эксплуатационных режима: прохладный (от 10 до 15°) и теплый (от 18 до 22 °). В прохладных помещениях относительная влажность воздуха не снижается ниже 60%, что благоприятно и для большинства используемых растений. В помещениях с кондиционированным воздухом влажность держится на уровне 50-60%, также благоприятном для многих тропических видов. Г. Н. Шапенкова приводит классификацию помещений, составленную из 8 категорий микроклиматического режима, и рекомендует ассортимент растений, включающий как устойчивые по всем характеристикам виды, так и более редкие, отличающиеся высокими требованиями к условиям содержания.

Е. Н. Кутас (1984) провела аналогичные исследования в Ленинграде. Она подтвердила, что свет является лимитирующим фактором для развития растений в интерьере в осенне-зимний период, а температура и влажность воздуха близки к оптимальным для их жизнедеятельности. Ритм роста зависит от светового режима и связан с экологической природой растений (светолюбием и теневыносливостью). Теневыносливые виды вегетируют при освещенности около 700 -1000 люкс, светолюбивые - при 1500-5000 люкс. Период покоя у теневыносливых видов наступает при снижении интенсивности освещения до 140 люкс, а у светолюбивых - до 700 люкс.

На основании изучения типа пигментной системы листа Е. Н. Кутас выделила два типа растений: фотолабильный и фотостабильный. Фотостабильные растения более стойкие к действию света различной интенсивности (с точки зрения сохранения их декоративных качеств), фотолабильные - менее стойки. На этом основании фотостабильные растения можно размещать в интерьере без учета степени их светолюбия или теневыносливости, а растения фотолабильного типа - с обязательным учетом этих особенностей. Полученные Е. Н. Кутас результаты представляют несомненный интерес для дальнейшей разработки научных основ интерьерного озеленения [8; с 118].

Жизненная форма растений - группа родственных в систематическом отношении растений (обычно из близких отрядов или семейств) <#"530098.files/image002.gif">

Различные формы листьев: 1 - игольчатый; 2-мечевидный; 3-линейный; 4 -ланцетовидный; 5-яйцевидный; 6-овальный; 7 - округлый; 8 - обратнояйцевидный; 9 - сердцевидный; 10 - почковидный; 11 - щитовидный; 12 - стреловидный; 13 - копьевидный; 14 - неравнобокий; 15 - перистолопастный; 16 - тройчатолопастный; 17 - пятилапастный; 18-перистораэдельный; 19-пальчатолопаст-ный; 20 - перисторассеченный (лировидный); 21 - прерывистоперис-торассеченный; 22 - пальчаторассеченный; 23 - двоякоперисторассе-ченный; 24 - тройчатосложный; 25 - пальчатосложный; 26 - непарноперисгпосложный;

 

Приложение 2

Жилкование листьев: а - параллельное; б, в - дуговидное; г - перистое

Приложение 3

 

Анатомическое строение листа георгины (поперечный срез): 1 - кутикула; 2 - эпидермис; 3 -- колленхима; 4 - палисадная паренхима; 5-устьице; 6 - губчатая паренхима; 7 - флоэма; 8 - прово дящий пучок; 9 - склеренхима; 10 - ксилема. 27 - двоякоперистосложный.

Похожие работы на - Влияние интенсивности освещения на анатомо-морфологическое строение листьев растений

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!