Проблема измерений в квантовой механике

  • Вид работы:
    Реферат
  • Предмет:
    Физика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    42,24 kb
  • Опубликовано:
    2011-09-26
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Проблема измерений в квантовой механике

1. Исторические начала квантовой механики

квантовый механика микрочастица волновой

Считается, что квантовая физика, сыгравшая принципиально важную роль в развитии науки и техники, появилась в ХХ столетии. К этому времени классическая физика столкнулась с непреодолимыми трудностями при рассмотрении электромагнитного излучения нагретых тел.

Предположение о том, что изменение энергии излучения происходит непрерывно, привело к теоретическим результатам, противоречащим данным экспериментов в области коротковолнового диапазона излучения. В 1900 году решение этой проблемы предложил Макс Планк, выдвинув принципиально новую гипотезу о том, что энергия излучения осуществляется дискретными порциями - квантами. Основанная на этой гипотезе квантовая теория излучения позволила Планку непротиворечивым образом описать равновесное тепловое излучении во всем диапазоне длин волн. Вместе с тем, сам Планк рассматривал квантование не иначе, как математический прием решения задачи об испускании и поглощении.

Альберт Эйнштейн, развивая гипотезу о квантах, выдвинул корпускулярную теорию, в которой электромагнитное излучение не только порождается, но и существует с промежутках между поглощением и испусканием в виде потока квантов, названных фотонами (1905). Фотонная теория позволила объяснить явления квантовой оптики.

В 1924 году Луи де Бройль выдвинул радикальную гипотезу о волновом характере материи. Он предположил, что электромагнитные волны (фотоны) могут вести себя как частицы, а частицы - как волны. Такая двойственность, получившая название корпускулярно-волнового дуализма, приводит к существенным отличиям в описании движения микрочастиц в квантовой механике по сравнению с классической механикой. В частности, Дж. фон Нейман попытался сблизить квантовую теорию с классической механикой, и составил уравнение, дающее математическое описание материи с помощью терминов волновой функции. Так возникла волновая механика.

Незадолго до этого Вернер Гейзенберг, Макс Борн и Паскуаль Иордан опубликовали вариант квантовой теории, получивший название матричной механики, которая описывала квантовые явления с помощью таблиц наблюдаемых величин. Эти таблицы представляют собой определенным образом упорядоченные математические множества, называемые матрицами, над которыми по известным правилам можно производить различные математические операции. Матричная механика позволяла достичь согласия с наблюдаемыми экспериментальными данными, но в отличие от волновой механики не содержала никаких конкретных ссылок на пространственные координаты или время. Согласно доказательству Шрёдингера, волновая механика и матричная механика математически эквивалентны. Окончательное формирование квантовой механики как последовательной теории связано с работой Вернера Гейзенберга 1927 года, в которой был сформулирован принцип, утверждающий, что любая физическая система не может находиться в состояниях, в которых координаты ее центра инерции и импульс одновременно принимают вполне определенные, точные значения. Этот принцип получил название "соотношение неопределённостей". Известные ныне под общим названием квантовой механики, вышеперечисленные достижения дали долгожданную общую основу описания квантовых явлений.

2. Фундаментальные понятия квантовой механики

.1 Гипотеза де Бройля

И волновые, и корпускулярные свойства частиц нашли очень широкое применение при изучении различных физических явлений. В 1924 г. Луи де Бройль выдвинул гипотезу об универсальности корпускулярно-волнового дуализма. По гипотезе де Бройля каждая материальная частица обладает волновыми свойствами, причем соотношения, связывающие волновые и корпускулярные характеристики частицы, остаются такими же, как и в случае электромагнитного излучения. Таким образом, если частица имеет энергию E и импульс, абсолютное значение которого равно p, то с ней связана волна, распространяющаяся в том же направлении, что и частица, и описывающая ее волновые свойства. Частота этой волны описывается формулой:

 = E / ,

а её длина:

λ = / ,

где  - постоянная Планка. Эта волна и получила название волны де Бройля.

Соотношения, связывающие корпускулярные и волновые свойства частицы,

= ,  =

где  - это импульс частица, а  - волновое число, получили название уравнений де Бройля.

Экспериментальным подтверждением гипотезы де Бройля послужили экспериментальные исследования дифракции электронов на кристаллической решетке. Следует отметить, что т.к. длина волны де Бройля электрона имеет порядок, совпадающий с порядком расстояния между атомными плоскостями в кристалле (около 10-10 м), кристалл может играть роль дифракционной решетки для электронных волн. Наиболее значительными оказались экспериментальные результаты, полученные в ходе исследования дифракции электронов на совершенном кристалле (кристалле, обладающем идеальной кристаллической решеткой). Они показали состоятельность условия Вульфа-Брэгга, а именно появление дифракционного максимума тогда, когда разность хода волн, отраженных от соседних атомных плоскостей, равна целому числу длин волн де Бройля. Именно в этом случае волны усиливают друг друга, т.е. имеет место конструктивная интерференция.

.2 Принцип неопределённостей Гейзенберга

Открытие волновых свойств у микрочастиц показывает, что в физике микромира мы имеем дело с принципиально новым объектом исследований. Отличие микрочастицы от волны состоит в том, что волну, используя, например, зеркало, можно разделить на две части и отдельно исследовать каждую из них. Микрочастица же, например, электрон или нейтрон, во всех опытах проявляется как единое целое. Никому еще не удавалось наблюдать пол-электрона или четверть нейтрона, и т.д.

Рис. 1 - Картина дифракции электронов на щели

Дифракционная картина фиксируется фотопластинкой, расположенной за экраном. Пусть падающие электроны обладают определенным импульсом p. Тогда, согласно квантово-механическим представлениям, этим электронам соответствует плоская волна с волновым вектором , определяемым из уравнений де Бройля. Поскольку волна распределена по всему пространству, каждый электрон до прохождения через щель имеет точно определенный импульс и неопределенную координату x. При прохождении электрона через щель ситуация меняется. Неопределенность координаты x становится равной ширине щели , но при этом появляется неопределенность проекции импульса , обусловленная дифракцией электронов на щели.

Дело в том, что электроны, прошедшие через щель на экране, описываются уже не плоской, а расходящейся волной, интенсивность которой зависит от угла дифракции. Мы приходим к выводу: если мы пытаемся насильно избавить электрон от неопределённости в координате, то мы неизбежно увеличиваем неопределённость в импульсе <#"524013.files/image010.gif">,

И его словесная формулировка такова: Улучшая наше знание о какой-либо одной характеристике частицы, мы ухудшаем наше знание о дополнительных её характеристиках. Наш эксперимент над электроном продемонстрировал неустранимое «квантовое дрожание» (обычно говорят: нулевые колебания <#"524013.files/image011.gif">

Поэтому в эксперименте Штерна-Герлаха <http://ru.wikipedia.org/wiki/%D0%9E%D0%BF%D1%8B%D1%82_%D0%A8%D1%82%D0%B5%D1%80%D0%BD%D0%B0_%E2%80%94_%D0%93%D0%B5%D1%80%D0%BB%D0%B0%D1%85%D0%B0> пучок таких частиц разделится только на два пучка с положительной и отрицательной проекцией спина на направление градиента магнитного поля.

Поскольку квантовая механика - статистическая теория, обработка результатов измерений зачастую требует привлечения мощного аппарата теории вероятности.

Наиболее важным направлением в экспериментальном исследовании квантовых систем являются ансамблевые измерения. Суть состоит в приготовлении и измерении большого числа частиц, находящихся в схожих квантовых состояний. Поскольку точность измерения напрямую зависит от количества приготовленных частиц, существует возможность проведения сверхточных экспериментов в квантовой механике.

4. Парадоксы квантовой теории

.1 Парадокс ЭПР

В 1935 г. Эйнштейн, Подольский и Розен предложили мысленный эксперимент, из которого, по их мнению, следовало, что для описания физических объектов волновой функции недостаточно. Тем самым, утверждалось, что квантовая механика неполна. Эйнштейн, Подольский и Розен рассмотрели систему двух коррелированных частиц, т.е. таких частиц, свойства которых связаны, не будучи точно заданными. Например, частицы А и Б рождаются в одной точке, а затем разлетаются в разные стороны. В момент рождения ни у одной из них не заданы координата и импульс, но в силу закона сохранения импульса сумма их импульсов, как и сумма их координат, всегда равна нулю. Теперь, если мы проведем измерение над частицей А, например, измерим ее координату, то ее волновая функция "схлопнется" в соответствующей точке. Но в то же время "схлопнется" и волновая функция частицы Б, поскольку ее координата после такого измерения тоже станет известной точно. Если волновая функция полностью характеризует частицу, то значит, с частицей Б действительно что-то произойдет, а ведь измерение проводилось над частицей А, которая могла быть в этот момент очень далеко от частицы Б. А если изменится только волновая функция частицы Б, а сама частица останется точно такой же, значит, волновая функция - плохая характеристика квантовой частицы. В этом и заключается парадокс Эйнштейна-Подольского-Розена или, сокращенно, парадокс ЭПР.

Разрешение парадокса состоит в следующем. В действительности, рассуждение, предложенное Эйнштейном, Подольским и Розеном, нисколько не опровергает квантовую механику и даже концепцию волновой функции. Дело в том, что, как стало ясно уже после выхода статьи ЭПР, коррелированные частицы характеризуются лишь одной общей волновой функцией; каждой же из двух частиц определенную волновую функцию приписать нельзя. Поэтому в момент измерения над одной частицей действительно меняется как общая волновая функция обеих частиц, так и соответствующий квантовый объект - две коррелированные частицы.

Парадокс ЭПР имел большое значение для развития квантовой теории. Прежде всего, он стимулировал развитие ряда новых понятий и вызвал интерес к коррелированным состояниям квантовых частиц. Когда такие состояния были обнаружены экспериментально для фотонов, началось бурное развитие новой области в физике - квантовой оптики. Кроме того, эксперименты с коррелированными парами квантовых частиц (их также называют ЭПР-парами) позволили проверить, действительно ли вероятностное поведение характерно для отдельной квантовой частицы или это свойство совокупности частиц.

4.2 Редукция фон Неймана. Кот Шрёдингера

Для того, чтобы увидеть, как на самом деле изменяются параметры рассматриваемой квантовомеханической системы (например, электрон - прибор), нам понадобилась характеризующая ее волновая функция, или функция состояния. Когда мы начали измерять характеристику квантовой частицы, функция мгновенно изменилась. Этот эффект носит название редукции фон Неймана. В 1971 году Джон фон Нейман развил свою идею о том, что в каждом квантовомеханическом измерении наличествует неанализируемый элемент. Он постулировал, что волновая функция, помимо непрерывного изменения, при измерении претерпевает мгновенное изменение, обусловленное вмешательством наблюдателя, его воздействием на объект. С коллапсом волновой функции, а также неполнотой квантовой механики при переходе от субатомных систем к макроскопическим, непосредственно связан мысленный эксперимент, предложенный Эрвином Шрёдингером. Суть его такова:

В закрытый ящик помещён кот <http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%88%D0%BA%D0%B0>. В ящике имеется механизм, содержащий радиоактивное <http://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D0%BE%D0%B0%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D1%8C> ядро <http://ru.wikipedia.org/wiki/%D0%90%D1%82%D0%BE%D0%BC%D0%BD%D0%BE%D0%B5_%D1%8F%D0%B4%D1%80%D0%BE> и ёмкость с ядовитым газом <http://ru.wikipedia.org/wiki/%D0%93%D0%B0%D0%B7>. Параметры эксперимента подобраны так, что вероятность <http://ru.wikipedia.org/wiki/%D0%92%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82%D1%8C> того, что ядро распадётся <http://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D0%BE%D0%B0%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D1%8B%D0%B9_%D1%80%D0%B0%D1%81%D0%BF%D0%B0%D0%B4> за 1 час, составляет 50 %. Если ядро распадается, оно приводит механизм в действие, он открывает ёмкость с газом, и кот умирает. Согласно квантовой механике, если над ядром не производится наблюдения, то его состояние описывается суперпозицией <http://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%B0%D1%8F_%D1%81%D1%83%D0%BF%D0%B5%D1%80%D0%BF%D0%BE%D0%B7%D0%B8%D1%86%D0%B8%D1%8F> (смешением) двух состояний - распавшегося ядра и нераспавшегося ядра, следовательно, кот, сидящий в ящике, и жив, и мёртв одновременно. Если же ящик открыть, то экспериментатор может увидеть только какое-нибудь одно конкретное состояние - «ядро распалось, кот мёртв» или «ядро не распалось, кот жив».

Вопрос стоит так: когда система перестаёт существовать как смешение двух состояний и выбирает одно конкретное? Цель эксперимента - показать, что квантовая механика неполна без некоторых правил, которые указывают, при каких условиях происходит коллапс волновой функции <http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BB%D0%BB%D0%B0%D0%BF%D1%81_%D0%B2%D0%BE%D0%BB%D0%BD%D0%BE%D0%B2%D0%BE%D0%B9_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8>, и кот либо становится мёртвым, либо остаётся живым, но перестаёт быть смешением того и другого. Надо заметить, что парадокс возникает не из-за того, что мир вокруг нас таков, а из-за формализма, подхода к описанию. Специфика современного математического аппарата квантовой физики такова, что он всегда описывает что-то среднестатистическое.

Заключение

В классической физике Ньютона, Галилея и даже Эйнштейна было одно общее свойство - все физические величины можно было не только измерить, но и с любой степенью точности вычислить их последующие изменения во времени. Поведение любой, сколь угодно сложной, системы и движение тел любой массы и размера были в принципе предсказуемы. Квантовая механика предложила принципиально иную систему законов, управляющих миром. Первые изученные ею микрообъекты - атомы, электроны и фотоны, категорически не желавшие вести себя как классические, заставили физиков кардинально изменить методы описания природных явлений. В классическом естествознании возникли большие трудности с объяснением целого ряда явлений. Понимание того, что микромир живет по особым законам, формировалось постепенно и происходило с большим трудом, поскольку очень уж необычными были эти законы. Проблемы измерений в квантовой механике перестают быть проблемами тогда, когда мы понимаем, что мир не обязан описываться в рамках единого универсального подхода. А это значит, что, двигаясь по пути, указанному квантовой механикой, можно постичь все удивительное богатство и уникальность устройства окружающего мира.

Использованные источники

1.  Гейзенберг В., Шредингер Э., Дирак П.А.М., Современная квантовая механика. Три нобелевских доклада, М.: Гостехиздат, 1934.

.        Смирнов Е.В., Мартинсон Л.К. Квантовая физика, М.: МГТУ им. Н.Э.Баумана, 2009.

.        Паули В. Труды по квантовой теории. Квантовая теория. Общие принципы волновой механики. Статьи 1920-1928. М.: Наука, 1975.

.        Фейнман Р., Лейтон Р., Сэндс М., Фейнмановские лекции по физике, том: Квантовая механика часть 1, М.: Мир, 1966.

.        http://ru.science.wikia.com/wiki/Квантовая_механика

.        http://nrc.edu.ru/est/r2/1.html

Похожие работы на - Проблема измерений в квантовой механике

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!