Физические основы звука

  • Вид работы:
    Реферат
  • Предмет:
    Физика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    11,69 kb
  • Опубликовано:
    2011-11-09
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Физические основы звука

План

Введение

. Природа звука. Физические характеристики

. Звуковые измерения

. Физические основы звуковых методов исследования в клинике

. Ультразвук

.Инфразвук

. Вибрация

Заключение

Введение

Акустика - область физики, исследующая упругие колебания и волны от самых низких частот до предельно высоких. Современная акустика охватывает широкий круг вопросов, в ней выделяют ряд разделов: физическая акустика, которая изучает особенности распространения упругих волн в различных средах, физиологическая акустика, изучающая устройство и работу звуковоспринимающих и звукообразующих органов у человека и животных, и др. В узком смысле слова под акустикой понимают учение о звуке, т. е. об упругих колебаниях и волнах в газах, жидкостях и твердых телах, воспринимаемых человеческим ухом (частоты от 16 до 20000 Гц).

1. Природа звука. Физические характеристики

Звуковые колебания и волны - частный случай механических колебаний и волн. Однако в связи с важностью акустических понятий для оценки слуховых ощущений, а также и в связи с медицинскими приложениями целесообразно некоторые вопросы разобрать специально. Принято различать следующие звуки:

) тоны, или музыкальные звуки;

) шумы;

) звуковые удары.

Тоном называется звук, являющейся периодическим процессом. Если этот процесс гармонический, то тон называется простым или чистым, а соответствующая плоская звуковая волна описывается уравнением. Основной физической характеристикой чистого тона является частота. Ангармоническому колебанию соответствует сложный тон. Простой тон издает, например, камертон, сложный тон создается музыкальными инструментами, аппаратом речи и т. п. Шумом называют звук, отличающейся сложной неповторяющейся временной зависимостью. К шуму относятся звуки от вибрации машин, аплодисменты, шум пламени горелки, шорох, скрип, согласные звуки речи и т. п. Шум можно рассматривать как сочетание беспорядочно изменяющихся сложных тонов. Если попытаться с некоторой степенью условности разложить шум в спектр, то окажется, что этот спектр будет сплошным, например спектр, полученный от шума горения бунзеновской газовой горелки. Звуковой удар - это кратковременной звуковое воздействие: хлопок, взрыв и т. п. Не следует путать звуковой удар с ударной волной. Энергетической характеристикой звука как механической волны является интенсивность, которая может быть выражена также и в виде вектора Умова. На практике для оценки звука удобнее использовать не интенсивность, а звуковое давление, дополнительно возникающее при прохождении звуковых волн в жидкой или газообразной среде. Для плоской волны интенсивность связана со звуковым давлением. Измерение звукового давления в газах производится измерительным микрофоном, который состоит из датчика, преобразующего акустическую величину в электрический сигнал, электронного усилителя и электрического измерительного прибора.

. Звуковые измерения

Звук является объектом слуховых ощущений, поэтому оценивается человеком также и субъективно. Воспринимая тоны, человек различает их по высоте. Высота - субъективная характеристика, обусловленная прежде всего частотой основного тона. Тембр звука почти исключительно определяется спектральным составом. Громкость - еще одна субъективная оценка звука, которая характеризует уровень слухового ощущения. Несмотря на субъективность, громкость может быть оценена количественно путем сравнения слухового ощущения от двух источников. В основе создания шкалы уровней громкости лежит важный психофизический закон Вебера - Фехнера: если увеличивать раздражение в геометрической прогрессии (т.е. в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (т.е. на одинаковую величину). Для отличия от шкалы интенсивности звука в шкале громкости децибелы называют фонами. Громкость на других частотах можно измерить, сравнивая исследуемый звук со звуком частотой 1 кГц. Для этого с помощью звукового генератора создают звук частотой 1 кГц. Изменяют интенсивность звука до тех пор, пока не возникнет слуховое ощущение, аналогичное ощущению громкости исследуемого звука. Интенсивность звука частотой 1 кГц в децибелах, измеренная по прибору, равна громкости этого звука в фонах. Метод измерения остроты слуха называют аудиометрией. При аудиометрии на специальном приборе (аудиометре) определяют порог слухового ощущения на разных частотах; полученная кривая называется аудиограммой. Сравнение аудиограммы больного человека с нормальной кривой порога слухового ощущения помогает диагностировать заболевание органов слуха. Для объективного измерения уровня громкости шума используется шумометр. Свойства шумометра приближаются к свойствам человеческого уха, для этого для разных диапазонов уровней громкости используется корректирующие электрические фильтры.

. Физические основы звуковых методов исследования в клинике

звук волна колебание

4. Ультразвук и его применение в медицине

Ультразвуком называют механические колебания и волны, частоты которых более 20 кГц. Верхним пределом ультразвуковых частот условно можно считать  Гц. Этот предел определяется межмолекулярными расстояниями и поэтому зависит от агрегатного состояния вещества, в котором распространяется ультразвуковая волна. Для генерирования ультразвука используются устройства, называемые ультразвуковыми - излучателями. Наибольшее распространение получили электромеханические излучатели, основанные на явлении обратного пьезоэлектрического эффекта. Обратный пьезоэффект заключается в механической деформации тел под действием электрического поля. Основной частью излучателя является пластина или стержень из вещества с хорошо выраженными пьезоэлектрическими свойствами (кварц, сегнетова соль, керамический материал на основе титана бария и др.). На поверхность пластины в виде проводящих слоев нанесены электроды. Если к электродам приложить переменное электрическое напряжение от генератора; то пластина благодаря обратному пьезоэффекту начнет вибрировать, излучая механическую волну соответствующей частоты. Наибольший эффект излучения механической волны возникает при выполнении условия резонанса. Так, для пластин толщиной 1 мм резонанс возникает для кварца на частоте 2,87 МГц, сегнетовой соли 1,5 МГц и титаната бария 2,75 МГц.

Применение ультразвука в медицине связано с особенностями его распространения и характерными свойствами. По физической природе ультразвук, как и звук, является механической волной. Однако длина волны ультразвука существенно меньше длины звуковой волны. Так, например, в воде длины волн равны 1,4 м (1кГц, звук), 1,4 мм (1МГц, УЗ) и 1,4 мкм (1ГГц, УЗ). Дифракции волн существенно зависит от соотношения длины волн и размеров тел, на которых волна дифрагирует. «Непрозрачное» тело размером 1 м не будет препятствием для звуковой длины с длиной 1,4 м, но станет преградой для УЗ-волны с длинной 1,4 мм, возникнет «УЗ-тень». Это позволяет в некоторых случаях не учитывать дифракцию УЗ-волн, рассматривая при преломлении и отражении эти волны как лучи ( аналогично преломлению и отражению световых лучей). Отражение УЗ на границе двух сред зависит от соотношения их волновых сопротивлений. Так, УЗ хорошо отражается на границах мышца - надкостница - кость, на поверхности полых органов и т.д. Поэтому можно определить расположение и размер неоднородных включений, полостей, внутренних органов и т.п. При УЗ-локации используют как непрерывное, так и импульсное излучение. В первом случае исследуется стоячая волна, возникающая при интерференции падающей и отраженной волн от границы раздела. Во втором случае наблюдают отраженный импульс и измеряют время распространения ультразвука, определяют глубину залегания объекта. Волновое сопротивление биологических сред в 3000 раз больше волнового сопротивления воздуха. Поэтому если УЗ-излучатель приложить к телу человека, то УЗ не проникнет внутрь, а будет отражаться из-за тонкого слоя воздуха между излучателем и биологическим объектом. Чтобы исключить воздушный слой, поверхность УЗ-излучателя покрывают слоем масла. Скорость распространения ультразвуковых волн и их поглощение существенно зависят от состояния среды; на этом основано использование ультразвука для изучения молекулярных вещества. Исследования такого рода являются предметом молекулярной акустики. Интенсивность волны пропорциональна квадрату круговой частоты, поэтому можно получить УЗ значительной интенсивности даже при сравнительно небольшой амплитуде колебаний. Ускорение частиц, колеблющихся в УЗ-волне, также может быть большим, что говорит о наличии существенных сил, действующих на частицы в биологических тканях при облучении УЗ. Сжатия и разрежения, создаваемые ультразвуком, приводят к образованию разрывов сплошности жидкости - кавитаций. Кавитации существуют недолго и быстро захлопываются, при этом в небольших объемах выделяется значительная энергия, происходит разогревание вещества, а также ионизация и диссоциация молекул. Физические процессы, обусловленные воздействием УЗ, вызывают в биологических объектах следующие основные эффекты:

микровибрация на клеточном и субклеточном уровне;

разрушение биомакромолекул;

перестройку и повреждение биологических мембран, изменение проницаемости мембран;

тепловое действие;

разрушение клеток и микроорганизмов.

Медико-биологические приложения ультразвука можно в основном разделить на два направления: методы диагностики и исследования и методы воздействия.

К первому направлению относятся локационные методы и использованием главным образом импульсного излучения. Это эхоэнцефалография - определение опухолей и отека головного мозга; ультразвуковая кардиография - измерение размеров сердца в динамике; в офтальмологии - ультразвуковая локация для определения размеров глазных сред. С помощью ультразвукового эффекта Доплера изучается характер движения сердечных клапанов и измеряют скорость кровотока. С диагностической целью по скорости ультразвука находят плотность сросшейся или поврежденной кости.

Ко второму направлению относится ультразвуковая физиотерапия. Для этих целей используют аппарат УТП-3М. Воздействие ультразвуком на пациента производят с помощью специальной излучательной головки аппарата. Обычно для терапевтических целей применяют ультразвук частотой 800 кГц, средняя его интенсивность около 1 Вт/см2 и меньше.

Первичным механизмом ультразвуковой терапии являются механическое и тепловое действия на ткань. При операциях ультразвук применяют как «ультразвуковой скальпель», способный рассекать и мягкие, и костные ткани. Способность ультразвука дробить тела, помещенные в жидкость, и создавать эмульсии используется в фармацевтической промышленности при изготовлении лекарств. При лечении таких заболеваний, как туберкулез, бронхиальная астма, катар верхних дыхательных путей, применяют аэрозоли различных лекарственных веществ, полученные с помощью ультразвука. В настоящее время разработан новый метод «сваривания» поврежденных или трансплантируемых костных тканей с помощью ультразвука (ультразвуковой остеосинтез). Губительное воздействие ультразвука на микроорганизмы используются для стерилизации. Интересно применение для слепых. Благодаря ультразвуковой локации с помощью портативного прибора «Ориентир» можно обнаружить предметы и определять их характер на расстоянии до 10 м.

5. Инфразвук

Инфразвуком называют волны с частотами, меньшими тех, которые воспринимает ухо человека (20Гц). Источниками инфразвука могут быть как естественные объекты (море, землетрясение, грозовые разряды и др.), так и искусственные (взрывы, автомашины, станки и др.).

Инфразвук часто сопровождается слышимым шумом, например в автомашине, поэтому возникают трудности при измерении и исследовании собственно инфразвуковых колебаний. Для инфразвука характерно слабое поглощение разными средами, поэтому он распространяется на значительное расстояние. Это позволяет по распространению инфразвука в земной коре обнаруживать взрыв на большом удалении его от источника, по измеренным инфразвуковым волнам прогнозировать цунами и т.д. Так как длина волны лучше дифрагируют и проникают в помещении, обходя преграды.

Инфразвук оказывает неблагоприятные влияние на функциональное состояние ряда систем организма: усталость, головная боль, сонливость, раздражение и др. Предполагается, что первичный механизм действия на организм имеет резонансную природу. Резонанс наступает при близких значениях частоты вынуждающей силы и частоты собственных колебаний. Частота собственных колебаний тела человека в положении лежа (3-4 Гц), стоя (5-12Гц), частота собственных колебаний грудной клетки (5-8 Гц), брюшной полости (3-4 Гц) и т.д. соответствует частоте инфразвуков. Снижение уровня интенсивных инфразвуков в жилых, производственных и транспортных помещениях - одна из задач гигиены.

6. Вибрации

В технике механические колебания различных конструкций и машин получили название вибраций. Они оказывают воздействие на человека, который соприкасается с вибрирующими объектами. Это воздействие может быть как вредным и приводящим в определенных условиях к вибрационной болезни, так и полезным, лечебным (вибротерапия и вибромассаж). Основные физические характеристики вибраций совпадают с характеристиками механических колебаний тел, это:

частота колебаний или гармонический спектр ангармонического колебания;

энергия и средняя мощность колебаний.

Кроме того, для понимания действия вибраций на биологический объект важно представлять себе распространение и затухание колебаний теле. При исследовании этого вопроса используют модели, состоящие из инерционных масс, упругих и вязких элементов.

Вибрации являются источником слышимых звуков, ультразвуков и инфразвуков.

Заключение

Перечисленные примеры не исчерпывают всех медико-биологических применений ультразвука, инфразвука и вибраций, перспектива расширения этих приложений поистине огромна. Так, можно ожидать, например, появления принципиально новых методов диагностики с внедрением в медицину ультразвуковой голографии

Похожие работы на - Физические основы звука

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!