Применение цифровых приборов при экологических исследованиях

  • Вид работы:
    Курсовая работа (т)
  • Предмет:
    Экология
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    2,10 Mb
  • Опубликовано:
    2010-06-25
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Применение цифровых приборов при экологических исследованиях

 «ТЕХНИКА И ПРОГРАММИРОВАНИЕ В ЭКОЛОГИИ»

Стремительный рост общей численности населения планеты совместно с усилением техногенных воздействий на окружающую среду существенно меняют ход глобальных природных процессов на Земле. В настоящее время масштабы естественных и антропогенных процессов стали сопоставимыми, а соотношение между ними продолжает изменяться в сторону возрастания мощности антропогенного воздействия на биосферу.

Термин «экология» был введен в употребление немецким естествоиспытателем Э.Геккелем в 1866г. и в дословном переводе с греческого обозначает науку о доме (ойкос – дом, жилище; логос - учение). В настоящее время смысл термина «экология» существенно трансформировался: экология стала более ориентированной на человека в связи с его исключительно масштабным и специфическим влиянием на среду. Современную экологию можно рассматривать как науку, занимающуюся изучением существования и взаимоотношений живых организмов, в том числе и человека, со средой обитания, определением масштабов и допустимых пределов воздействия человеческого общества на среду, возможностей уменьшения этих воздействий или их полной нейтрализации.

Содержание термина «экология», таким образом, приобрело социально-политический, философский аспект. Экология при этом рассматривается не только как самостоятельная дисциплина, а как мировоззрение, призванное пронизывать все науки, технологические процессы и сферы деятельности людей. Таким образом, не только технический прогресс и деятельность людей влияют на экологию, но и экология в свою очередь использует результаты достижений современных технологий для влияния на мировоззрение людей и дальнейшее развитие технологических процессов.

Рассмотрим, чем может быть полезен технический прогресс с точки зрения экологии, как прикладной науки. На рисунке ниже представлена общая схема глобального техногенного воздействия на биогеохимические циклы экосистемы.


Системный подход к решению экологических проблем в условиях усиленных антропогенных нагрузок предполагает комплексное изучение протекающих в ландшафтно-географической среде процессов. Решение данной задачи невозможно как без привлечения методов прогнозирования, так и без регулярных наблюдений за объектами экосистемы и сбора статистического материала на протяжении длительного периода времени для получения выборки, объем которой позволяется получать вероятностные значения с заданной точностью.

Таким образом в современной экологии использование технических средств и оборудования может рассматриваться с двух точек зрения:

1) при построении машинных имитационных моделей и применении математических методов прогнозирования, и математическое моделирование здесь – один из основных инструментов системного анализа, позволяющий в ряде случаев избежать трудоемких и дорогостоящих натурных элементов;

2) при проведении исследований состояния отдельных объектов окружающее среды для получения информации об уровне их загрязнения, мониторинга изменений экологических факторов, накопления статистического материала в целях наполнения соответствующих баз данных, реализации системы оптимального управления уровнем антропогенного воздействия на объекты экосистемы.

А. Рассмотрим использование аппаратных, технических и программных средств в целях математического моделирования и построения имитационных моделей в экологии:

Проблема адекватности и точности прогноза (как в экологии, так и в других науках) выдвигается в настоящее время на одно из первых мест. С развитием ЭВМ все большее распространение получают математические модели, стремящиеся к максимально адекватному описанию объекта за счет расширения количества описываемых процессов и более детального их описания. Для решения задач, связанных с управлением реально существующими экосистемами строятся машинные (имитационные) модели с использованием программно-аппаратных средств последнего поколения. При разработке таких моделей приходится считаться с тем фактом, что современные ЭВМ являются вычислителями дискретного действия, изначально не предназначенными для решения задач моделирования. Поэтому в процессе создания имитационных моделей приходится разрабатывать для них специальное математическое и программное обеспечение.

В то же время нестационарный и стохастический характер развития экологических систем приводит к значительной априорной неопределенности, которая вызывает серьезные трудности при моделировании.

В настоящее время можно отметить два направления развития имитационного моделирования экологических систем, где предлагаются достаточно конструктивные средства для работы с неопределенностью.

Первое направление оформилось как методика решения задач идентификации и верификации экологических моделей. Под идентификацией экологической модели понимается процесс определения и уточнения численных значений коэффициентов модели при исследовании конкретной экологической ситуации.

Для верификации моделей круговорота биогенных элементов используется методика связности, существенно уменьшающая неопределенность модели с помощью выделения связей, наложенных на параметры (из условий сохранения устойчивости особых точек для нескольких итераций модели).

Верификация существенно уменьшает неопределенность модели, но все же не дает однозначных численных значений для всех параметров системы. Поэтому коэффициенты модели, оставшиеся неопределенными, необходимо идентифицировать по реальным данным.

Второе направление представляет достаточно успешную попытку совместить процесс обнаружения скрытых закономерностей развития экосистемы и их интеграцию в математическую модель. В качестве методологической основы для данного подхода используется общая теория систем и теория статистических решений. Уточнение и конкретизация структуры модели осуществляется за счет сужения множества гипотез. Под структурой модели в данном контексте понимается алгоритм, определяющий вычисление выходных переменных системы через значения переменных на входе.

Говоря об имитационном моделировании, нельзя не отметить тот факт, что качественный анализ экологических моделей развит достаточно глубоко только для моделей малой размерности. Поэтому даже при наличии имитационной модели, обладающей всеми возможными достоинствами, дать оценку общего состояния экосистемы по 15-20 различным графиком представляется весьма затруднительно.

Рассмотрим информационную систему и систему поддержки мониторинга на следующих примерах:

I. Информационная система TerraNorte, призванная осуществлять систематизированное хранение и обновление географических баз данных мониторинга наземных экосистем Северной Евразии и обеспечивать удаленный доступ пользователей к информации на основе Интернет-технологий.

Система TerraNorte является одним из ключевых структурных элементов системы спутникового мониторинга наземных экосистем Северной Евразии, функциональная схема которого в обобщенном виде представлена на рис. 1 и включает в себя следующие основные компоненты:

1. Подсистема сбора и предварительной обработки спутниковых данных;

2. Подсистема тематического анализа спутниковых данных;

3. Подсистема анализа данных и моделирования;

4. Информационная система TerraNorte.

Ниже рассмотрено содержание указанных компонентов системы спутникового мониторинга наземных экосистем Северной Евразии.

Подсистема сбора и предварительной обработки спутниковых данных предназначена для формирования архивов данных спутниковых наблюдений и получения улучшенных, т.е. очищенных от влияния факторов, ограничивающих их использование (облака, тени, аппаратные помехи и т.д.), а также при необходимости скорректированных за влияние атмосферы, угловых условий освещения и наблюдения, продуктов данных.

Классифицируя доступные в настоящее время и активно используемые для мониторинга наземных экосистем Северной Евразии спутниковые системы оптического диапазона длин волн по уровню пространственного разрешения, можно выделить следующие основные группы:

Данные низкого пространственного разрешения (~ 1 км), имеющие, как правило, наиболее высокую периодичность наблюдений и способные не реже чем ежесуточно обеспечивать глобальное покрытие Земли (в бореальной зоне до 2-3 раз в зависимости от широты местности). К спутниковым инструментам этого уровня разрешения относятся системы NOAA-AVHRR, SPOT-Vegetation и Terra/Aqua-MODIS, обеспечивающие получение данных измерений в широком диапазоне длин волн оптического спектра.

Данные среднего пространственного разрешения (~ 250-500 м), к числу которых относятся наблюдения, проводимые спутниковыми системами Terra/Aqua-MODIS и Envisat-MERIS. Эти системы, как правило, способны обеспечить глобальное покрытие в течение 1-3 дней и также проводят измерения в широком диапазоне длин волн.

Данные высокого пространственного разрешения (~ 20-50 м), обеспечивающие, как правило, частоту наблюдений одной территории не чаще чем один раз в две недели. К спутниковым системам этого класса, в частности относятся Landsat-TM/ETM+, SPOT-HRV/HRVIR, Terra-ASTER, Метеор-3М/МСУ-Э.

Данные сверхвысокого пространственного разрешения (~ 1-3 м), применяемые, как правило, для выборочных наблюдений на нерегулярной основе. К их числу, в частности, относятся спутниковые системы IKОNOS, Quick Bird и SPOT-HRG.

Комбинированное использование спутниковых данных указанных выше групп, в совокупности с наличием соответствующих алгоритмов анализа данных и методов пространственного моделирования, позволяет спроектировать систему мониторинга наземных экосистем Северной Евразии, обеспечивающую квазинепрерывность наблюдений при субконтинентальном охвате территории и получении в ряде случаев детальных характеристик ключевых объектов и явлений.

В настоящее время спутниковые данные и результаты их обработки поступают в систему из центра приема ИКИ РАН и центров сбора и обработки данных различных российских институтов (ИСЗФ СО РАН, ИОА СО РАН, ИКФИА СО РАН и др.). В систему также поступают данные из специализированных Российских и международных центров приема, обработки и распространения спутниковых данных. При этом комплекс работ по созданию TerraNorte не предусматривает разработки новых технических и программных средств сбора и предварительной обработки спутниковых данных, а реализация соответствующей подсистемы основывается на тесной интеграции TerraNorte с комплексом разработанных в ИКИ РАН автоматических технологий обработки различных типов спутниковых данных.

Подсистема анализа данных и моделирования процессов в наземных экосистемах предназначена для создания производных информационных продуктов высокого уровня на основе банка данных TerraNorte с использованием специализированных алгоритмов тематического анализа и математических моделей и включает в себя, в частности, следующие типы моделей:

1. модели продукционных процессов в наземных экосистемах;

2. модели сукцессонной динамики растительности;

3. модели взаимодействия наземных экосистем и климата;

4. модели оценки компонентов цикла углерода и других биогеохимических циклов;

5. модели циклов энергии и воды.

Структура информационной системы TerraNorte включает в себя ряд рассмотренных ниже компонентов, а именно:

1. Банк данных

2. Геоинформационная система

3. Подсистема удаленного доступа к данным

Банк данных является ядром информационной системы TerraNorte. Геоинформационная система предназначена для осуществления двух основных функций, а именно для обеспечения доступа локальных пользователей к банку данных TerraNorte, а также для проведения пространственного анализа и моделирования с целью получения производных информационных продуктов второго и более высокого уровней на основе различных пространственных данных. Подсистема удаленного доступа к данным на основе Интернет-технологий обеспечивает пользователям возможность получения как собственно информационных продуктов из банка данных, так и данных в виде табличных и графических документов, синтезируемых в соответствии с запросами пользователей. В настоящее время пользователи могут получить доступ к информационной системе TerraNorte через web-сайт по адресу #"485602.files/image002.jpg" alt="#">

Комбинация параметров помогает отличить различные виды загрязнений, и обеспечивает более точную картину их присутствия. Концентрация CO2, кислорода, и уровни температуры указывают на подповерхностную активность бактерий Измерение давления дает информацию о процессах микровентиляции Графики, показывающие последовательности измеренных величин (на предыдущей странице), отражают структуру почвы и ее пористость

Пояснение

На корреляционных графиках справа представлены протяженные загрязнения, с интервалом 20-40 м. Масштабная активность бактерий (вырабатывающих метан) видна на графике для метана. ТР канал измеряет содержание углеводородов нефти, включая метан. На графике ТР протяженные загрязнения видны большей частью как метан. Канал ФИД показывает загрязнения в форме летучих органических соединений (за исключением метана). Последние загрязнения расположены с интервалом 70-80 м. Концентрация слишком высока, чтобы измерять ее с помощью ФИД. Активность бактерий еще не началась. На графике метана нет указаний не его присутствие. График ТР показывает, что в последнем загрязнении присутствуют соединения углеводородов

Регистрация данных и компьютерная оценка результатов измерений

Прибор ECOPROBE 5 обеспечивает стандартную регистрацию данных, и дополнительную регистрацию GPS. Обе функции предоставляют свободу перемещения к любой точке измерения в данном месте. Все данные сохраняются на диске прибора ,в соответствии с координатами Х и Y, или GPS. Такая система регистрации данных предоставляет мощный и разносторонний инструмент для быстрого получения результатов интерпретации. Коммуникационное программное обеспечение ECOPROBE PLUS для Windows9x/NT обеспечивает передачу данных от прибора к компьютеру, и предоставляет основную информацию для интерпретации. Карты изолиний (при использовании, например, программ Grapher, Surfer, или Rockware) готовы примерно через 10 минут

Прибор для экспресс анализа токсичности «Биотокс-10М»

Назначение и область применения

Настоящий документ устанавливает методику быстрого и количественного контроля степени интегральной химической токсичности водных вытяжек из почвы в лабораторных условиях с использованием в качестве тест-объекта препаратов лиофилизированных бактерий «Эколюм»; и измерительного прибора серии «Биотокс». Тест-система реагирует на токсические соединения разнообразной химической природы и смеси веществ.

Документ предназначен для учреждений Государственной санитарно-эпидемиологической службы Российской Федерации и специальных служб федеральных органов исполнительной власти, осуществляющих ведомственный санитарно-эпидемиологический надзор.

Опасность загрязнения почв определяется уровнем ее возможного отрицательного влияния на контактирующие среды (вода, воздух), пищевые продукты и прямо или косвенно на человека.

Результаты обследования почв учитывают при определении и прогнозе степени их опасности для здоровья и условий проживания населения в населенных пунктах, разработке мероприятий по их рекультивации, технических решений по реабилитации и охране водосборных территорий, оценке эффективности санитарно-экологических мероприятий и текущего санитарного контроля за объектами, воздействующими на окружающую среду населенного пункта.

Принцип методики

Методика основана на определении изменения интенсивности биолюминесценции генно-инженерного штамма бактерий при воздействии токсических веществ, присутствующих в анализируемой пробе, по сравнению с контролем. Люминесцентные бактерии оптимальным образом сочетают в себе различные типы чувствительных структур, ответственных за генерацию биоповреждений (клеточная мембрана, цепи метаболического обмена, генетический аппарат), с экспрессностью, объективным и количественным характером отклика целостной системы на интегральное воздействие токсикантов. Это обеспечивается тем, что люминесцентные бактерии содержат фермент люциферазу, осуществляющую эффективную трансформацию энергии химических связей жизненно важных метаболитов в световой сигнал на уровне, доступном для экспрессных и количественных измерений.

Критерием токсического действия является изменение интенсивности биолюминесценции тест-объекта в исследуемой пробе по сравнению с контролем. Уменьшение интенсивности биолюминесценции пропорционально токсическому эффекту.

Острое токсическое действие исследуемой пробы на бактерии определяется по ингибированию их биолюминесценции за 30-ти минутный (в экспрессном варианте - 5 минут) период экспозиции. Количественная оценка параметра тест-реакции выражается в виде безразмерной величины - индекса токсичности «Т», равной отношению Т=100(1о-1)Ло, где 1о и I соответственно интенсивность свечения контроля и опыта при фиксированном времени экспозиции исследуемого раствора с тест-объектом.

Методика допускает три пороговых уровня индекса токсичности:

1. допустимая степень токсичности: индекс токсичности Т меньше 20;

2. образец токсичен: индекс Т равен или больше 20 и меньше 50;

3. образец сильно токсичен: индекс токсичности Т равен или более 50.

Характеристики погрешности

Метрологические характеристики биотеста в соответствии с аттестацией 4/7-93, проведенной органами Госстандарта: сходимость результатов определения тест-параметра - 5%, воспроизводимость результатов определения тест-параметра - 5%.

Характеристика прибора «Биотокс-10М»

Специализированный люминометр «Биотокс-10М» является измерительным прибором, предназначенным для проведения токсиколого-гигиенического мониторинга объектов окружающей среды, с использованием микробных биолюминесцентных сенсоров серии «Эколюм». Сочетание биохимического датчика с современной электронной аппаратурой позволяет обнаруживать с высокой достоверностью чрезвычайно малые количества токсических соединений и их смесей. В приборе используется простая и надежная технология отбора и предъявления проб, которая безопасна при проведении экологической экспертизы, как в лабораторных, так и полевых условиях.

Портативный прибор «Биотокс-10М» может осуществлять следующие функции в автоматическом режиме: определение интенсивности биолюминесценции тест-объекта, индекса токсичности пробы, усредненной величины индекса токсичности, вычисление стандартного отклонения показателя токсичности, определения величин ЕС20 и ЕС50 - пороговых значений допустимой степени и острой степени токсичности образца, исследование динамики процесса взаимодействия токсикантов с тест-объектом, компьютерная обработка данных, наличие сигнала для оператора в случае превышения пробой допустимого уровня токсичности.

Биотестирование проводится в нормальных лабораторных условиях в соответствии с ГОСТ 15150. Помещение не должно содержать токсичных паров и газов.

Температура окружающего воздуха в лаборатории от +18 до +25°С. Относительная влажность воздуха 80±5%. Атмосферное давление 84-106кПа (630-800 мм рт.ст.).

При использовании электроприборов частота переменного тока 50±1 Гц. Напряжение сети 220±10 В. Освещение помещения естественное или искусственное, не ограничивается особыми требованиями.

Обработка, оценка и оформление результатов

Оценку токсичности пробы проводят по относительному различию в интенсивности биолюминесценции контрольной и опытной проб и вычислению индекса токсичности «Т» (прибор «Биотокс» позволяет автоматически вычислять индекс токсичности). Абсолютная величина интенсивности биолюминесценции контроля не имеет принципиального значения в диапазоне допустимых значений прибора «Биотокс».

Индекс токсичности «Т» есть величина безразмерная, и определяется по формуле Т = 100 (1о-1)/1о, где 1о и I соответственно интенсивность свечения контроля и опыта при фиксированном времени экспозиции исследуемого раствора с тест-объектом. Обработку результатов измерений токсичности выполняют путем расчета среднеарифметического значения величины индекса токсичности «Т» по формуле Т=(Т1+Т2+ТЗ)/3. Величины Т1, Т2 и ТЗ получают из трех параллельных измерений контроль-опыт в короткий промежуток времени или при измерении в последовательности контроль, и затем серия опытного образца (до 10 повторностей).

В случае определения токсичности пробы (Т равно или больше 20) можно определить насколько это связано со значениями рН исследуемой пробы. Для этого измеряют рН пробы и, если величина рН находится за пределами 6.5-8.0, приводят рН до значений 7.0-7.4 и повторяют измерение токсичности. В ряде случаев возможен вариант, когда интенсивность биолюминесценции в анализируемой пробе больше, чем в контроле. В таком случае независимо от величины отрицательного значения «Т» делается вывод об отсутствии токсичности образца, и индекс токсичности принимает нулевое значение.

По величине индекса токсичности анализируемой пробы классифицируются на три группы

Группы

Значение «Т»

Вывод о степени токсичности пробы

1

меньше 20

допустимая степень токсичности

2

от 20 до 50

образец токсичен

3

равно или больше 50

образец сильно токсичен


Прибор серии «Биотокс» обеспечивает в автоматическом режиме вычисление усредненного значения индекса токсичности, погрешности измерения индекса токсичности и гамма-функции исследуемой пробы (токсикологических характеристик - ЕС20 и ЕС50).

Анализатор газортутный экологический ЭГРА-01

Анализатор газортутный экологический ЭГРА-01 предназначен для измерения содержания ртути в атмосферном и почвенном воздухе.Назначение: Санитарно-гигиенический контроль воздушной среды производственных и коммунальных объектов, поиск скрытых источников паров ртути, химико-аналитическое сопровождение демеркуризационных работ.

Отличительные особенности анализатора ртути ЭГРА-01: Автоматический выбор объема пробы и блокировка измерительного режима при обнаружении высоких уровней загрязнения.

Анализатор газортутный экологический ЭГРА-01

Достоинства:

·   Высокая чувствительность; получение результатов анализов непосредственно на месте их выполнения

·   Быстрое обнаружение зон и локализация точек, загрязненных ртутью

·   Портативность; микропроцессорное управление

·   Автоматический выбор объема пробы и блокировка измерительного режима при обнаружении высоких уровней загрязнения

Обеспечен утвержденными методиками измерений (применимы все методики для АГП-01), обеспечивает определение содержания паров ртути на уровне ПДК атмосферного воздуха (0,0003 мг/м3) и ниже.

Со специальным почвенным зондом анализатор позволяет производить измерение содержания паров ртути в почвенном воздухе. Данный метод применяется при экологических исследованиях (картирование загрязненных ртутью участков почв и грунтов), геохимических методах поисков месторождений полезных ископаемых (ртути, золота, полиметаллических месторождений).

Основные технические характеристики анализатора ЭГРА-01:

Диапазон измерения, мг/м3

режим ИЗМЕРЕНИЕ режим ПОИСК

0,00002 - 0,1

0,001 - 0,3

Относительная погрешность, не более %

25

Время проведения одного измерения, сек

6; 30; 60; 300

Габаритные размеры, мм

396*221*144

Масса анализатора с автономным источником питания, кг

4,6


Основной комплект поставки

·   Анализатор ртути ЭГРА (базовый блок со встроенным аккумуляторным источником питания)

·   Воздухозаборник

·   Зарядное устройство / внешний источник питания от сети 220 В 50 Гц

·   Комплект ЗИП

·   Документация

·   Упаковка

Прибор рекомендуется для центров госсанэпиднадзора (отделы промышленной гигиены, коммунальной гигиены.

Ранцевая лаборатория изучения почвы "РПЛ-почва" базовый комплект

Ранцевая полевая лаборатория "РПЛ-почва" предназначена для определения параметров и химического состава почвенных вытяжек, а также сигнального контроля загрязненности почв водо-растворимыми загрязнителями. непосредственно в полевых условиях.

Измерения выполняются количественными и полуколичественными гидрохимическими методами. При сигнальном экспресс-контроле с применением тест-систем используются индикационные визуально-колориметрические методы. Ранцевая лаборатория может применяться неспециалистами, прошедшими краткий курс обучения. Лаборатория сформирована по модульному принципу. Каждый модуль позволяет проводить измерения по одному показателю, имея в составе все необходимое для работы, включая готовые к применению растворы для химического анализа. Производительность по расходным материалам всех модулей - на 100 анализов по каждому компоненту.

Стандартизованные методы анализа почв, на основе которых сформирована РПЛ-почва:

ГОСТ 26204-91.  Почвы. Определение подвижности соединений фосфора и калия по методу Чирикова в модификации ЦИНАО

ГОСТ 26423-85.  Почвы. Методы определения удельной электрической проводимости, рН и плотности остатка водной вытяжки

ГОСТ 26424-85.  Почвы. Метод определения карбоната и бикарбоната в водной вытяжке

ГОСТ 26425-85.  Почвы. Методы определения иона хлорида в водной вытяжке

ГОСТ 26426-85.  Почвы. Методы определения иона сульфата в водной вытяжке

ГОСТ 26428-85.  Почвы. Методы определения кальция и магния в водной вытяжке 

ГОСТ 26483-85.  Почвы. Приготовление солевой вытяжки и определениеее рН по методу ЦИНАО

ГОСТ 26484-85.  Почвы. Метод определения обменной кислотности

ГОСТ 26487-85.  Почвы. Определение обменного кальция и обменного (подвижного) магния методами ЦИНАО

ГОСТ 26488-85.  Почвы. Определение нитратов по методу ЦИНАО

ГОСТ 26489-85.  Почвы. Определение обменного аммония по методу ЦИНАО

Технические характеристики:

Методы анализа: визуальный, органолептический, визуально-колориметрический, титриметрический, турбидиметрический. Методы приняты при оценке химических показателей почвы. При экспресс-контроле с применением тест-систем используются индикационные визуально-колориметрические методы. Продолжительность экспресс-анализа – не более 15 минут.

Ресурс по расходным материалам - не менее 100 анализов по каждому показателю.

Лаборатория не требует электро и водоснабжения.

Объем ранца – 70 л, количество мест (ячеек) – 10, в том числе в ячейках основной секции – 8. Конструктивно ранец-укладка лаборатории выполнен с учетом особенностей полевых работ и экспедиционных условий.

Конструкция ранца:

Полужесткий каркас, изменяемая внутренняя планировка.  Откидывающаяся передняя панель образует столик, открывающий доступ к находящимся в ячейках модулям лаборатории, причем каждый модуль может выниматься и использоваться самостоятельно; Конструкция ранца позволяет использовать типовое дополнительное снаряжение - наружные навесные элементы для крупных и мелких предметов и снаряжения, крепящиеся к поясу, лямкам, основному корпусу ранца Анатомичная конструкция спины и лямок, поясной ремень, грудная стяжка, водозащищенный чехол (защита от сильного дождя и снега, но не от погружения в воду). Также имеются отдельно защищенные от дождя и грязи отсеки для укладки письменных принадлежностей, руководства, методической документации, мелкого экспедиционного снаряжения; небольшие отсеки для личных вещей;

Содержимое лаборатории защищено от механических повреждений

Масса – не более 17 кг.

Размер:

Габаритные размеры ранцевой укладки – не более 480х260х900 мм.

Комплектация:

·   Тест-комплекты (9 наименований), с готовыми к применению реактивами и растворами, компактной посудой и средствами дозировки реагентов, принадлежностями, стойкой-штативом, контрольными шкалами образцов окраски водозащищенными.

·   Реактивы для приготовления кислотной и солевой вытяжек.

·   Комплект тест-систем (8 наименований).

·   Весы аптечные с разновесами.

·   Кондуктометр и полевой колориметр (дополнительная оплата, в состав РПЛ-почва не входят).

·   Иллюстрированное методическое руководство.

·   Ранец-укладка.

Мониторинг экосистем базируется на определении устойчивости. Оценке устойчивости геосистем к антропогенным нагрузкам в последние годы уделяется большое внимание в связи с расширением геоэкологических исследований. Устойчивость – фундаментальное понятие в теории геосистем широко используется для оценки предельно допустимого уровня вмешательства человека в природную среду. Под устойчивостью экосистемы понимается ее способность при воздействии внешнего фактора пребывать в одном из своих состояний и возвращаться в него в силу инертности и восстанавливаемости.

Интерес обусловлен качественно новым подходом к решению проблем охраны окружающей среды. Одним из таких подходов является постановка техники на вооружении экологии. Использование научно-технического прогресса для сохранения и нормализации экосистемы Земли.

Список литературы:

1)   ФЕДЕРАЛЬНЫЙ ЗАКОН "ОБ ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ" от 10.01.2002 N 7-ФЗ;

2)   ФЕДЕРАЛЬНЫЙ ЗАКОН «ОБ ЭКОЛОГИЧЕСКОЙ ЭКСПЕРТИЗЕ» от 23.11.1995 N 174-ФЗ;

3)   ФЕДЕРАЛЬНЫЙ ЗАКОН "О ТЕХНИЧЕСКОМ РЕГУЛИРОВАНИИ" от 27.12.2002 N 184-ФЗ;

4)   Л.Ф. Сердюцкая, А.В. Яцишин «Техногенная экология. Математико-картографическое моделирование», Книжный дом «ЛИБРОКОМ», Москва, 2008 год;

5)   А.Ю. Опекунов «Экологическое нормирование и оценка воздействия на окружающую среду», С.-Петергбурский университет, Санкт-Петербург, 2006 год;

6)   Планета Земля: Будущее, АМФОРА, Санкт-Петербург, 2008 год;

7)   С.А. Барталев, М.А. Бурцев, Е.А. Лупян, А.А. Прошин, И.А. Уваров «РАЗРАБОТКА ИНФОРМАЦИОННОЙ СИСТЕМЫ ПОДДЕРЖКИ МОНИТОРИНГА СОСТОЯНИЯ И ДИНАМИКИ НАЗЕМНЫХ ЭКОСИСТЕМ СЕВЕРНОЙ ЕВРАЗИИ ПО ДАННЫМ СПУТНИКОВЫХ НАБЛЮДЕНИЙ», Институт космических исследований РАН, Портал Департамента природопользования и охраны окружающей среды г. Москвы  

Похожие работы на - Применение цифровых приборов при экологических исследованиях

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!