Проектирование колонн и стропильных балок одноэтажного производственного здания

  • Вид работы:
    Курсовая работа (т)
  • Предмет:
    Строительство
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    799,65 kb
  • Опубликовано:
    2010-04-27
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Проектирование колонн и стропильных балок одноэтажного производственного здания

Министерство образования Российской Федерации

Сибирская государственная автомобильно-дорожная академия

(СибАДИ)

Кафедра "Строительные конструкции"





Пояснительная записка к курсовому проекту:

Проектирование колонн и стропильных балок одноэтажного производственного здания














Омск-2010

Содержание

1. Компоновка поперечника

2. Определение расчетных нагрузок и параметров

3. Определение усилий в стойках

4. Проектирование стоек

5. Расчет сборной железобетонной предварительно-напряженной двутавровой балки покрытия

1.   Компоновка поперечника

 

Поперечная рама состоит из колонн, заделанных в фундамент и стропильной конструкции, свободно опирающейся на колонны.

Определяем размеры колонны

Высота надкрановой части:

, м

где Нкр - крановый габарит здания.


(0,15+hпб) – высота подкрановой балки с рельсом, м

Высота подкрановой части колонн от верха фундамента:

,

где

Н1=Нг.р.+0,15,

где 0,15 – глубина заложения верха фундамента,

,

,

– (кратна модулю 0,6 м для стеновых панелей).

Определяем размеры поперечного сечения колонны

Привязка колонн к разбивочным осям

"0" - при шаге колонн 6 м и кранах с G ≤ 30 тс;

Размеры сечений

bк = 400 мм – при шаге колонн 6 м;

hв = 400 мм – при "0" привязке и кранах G < 20 тс;


с округлением в меньшую сторону с модулем 50 мм.

Глубина заделки колонны в стакан фундамента равна наибольшему из 1,5 bк или hн , и получаем отметку (-)        (Нзад. + 0,15)=1,2+0,15=1,35.

Расстояние от оси кранового пути до внутренней грани подкрановой части колонны поверху: к< 250 мм     при В = 6 м;

При ("привязка" + 750 + к)=0+750+250=1000мм < hн=1200мм , значит

(750+100)+(250+100)=1200мм

Конструирование стен


модуль 0,6 м; высота стеновых панелей и блоков остекления 1,2 м и 1,8 м; δпан=300 мм (принять).

2. Определение расчетных нагрузок и параметров

Постоянные нагрузки

· от покрытия Fп

Fп = ,

где gк=1 кН/м2+1,5 кН/м2=2,5 кН/м2 – расчетная нагрузка от веса 1 м2 кровли и плит покрытия;

В=6м – шаг колонн, м;

L=12м – пролет рамы, м;

Qp=40,2тс- ориентировочный вес стропильной конструкции, кН;

· от собственной массы (бз эксцентриситета)


где γf = 1,1 – коэффициент надежности по нагрузке;

γ = 25 кН/м3 – объемный вес железобетона

· от стен и остекления (бз эксцентриситета)

,

где В – шаг колонн, м;

gст, gост – расчетные нагрузки от веса 1 м2 стеновых панелей и оконных блоков, навешанных на надкрановую или подкрановую части колонны (табл. 5)

hст, hост – высота панелей и остекления, м;

· от массы подкрановой балки с рельсом (бз эксцентриситета)

Fпб = 41,2 кН

Временные нагрузки

· от снега СНиП 2.01.07-85 (5 раздел)

Fсн =  ,

где Sg =1,8 кН/м2 снеговая нагрузка в зависимости от района строительства; μ = 1, Fсн прикладывается так же как и Fп.

· от крана СНиП 2.01.07-85 (4 раздел)

вертикальная

Dmax=287 кН, Dmin=59,6 кН.

горизонтальная

Т=10,3 кН

· ветровая СНиП 2.01.07-85 (6 раздел, п. 6.3)

Wmi =Wо*k,

где Wо – 0,3 кН/м2

k - табл. 6(СНиП 2.01.07-85)

Фактическая ветровая эпюра приводится к эквивалентной по моменту в защемлении с ординатой

до

5 м

0,75

10 м

1

20 м

1,25

40 м

1,5


Wm5=W0*k=0,3*0,75=0,225 кН/м2

Wm10=W0*k=0,3*0,71=0,3 кН/м2

Wm20=W0*k=0,3*1,25=0,375 кН/м2

Wm21.6=W0*k=0,3*1,27=0,381 кН/м2

Wm23.4=W0*k=0,3*1,29=0,387 кН/м2

 на высоте Н:

;



Сосредоточенная сила в уровне верха колонны:

WН =

Wотс. =

где с = 0,8 – с наветренной и с = 0,6 – с заветренной сторон

γf = 1,4 – коэффициент надежности по нагрузке;

Равномерно распределенная погонная нагрузка:


 

Расчетная схема (статически неопределимая)


Ригель считается абсолютно жестким.

Основная система метода перемещений (одно неизвестное).

3. Определение усилий в стойках

 

;

Постоянной – нагрузка от собственного веса, стен и подкрановых балок – приложена по оси колонны.

От покрытия Fп (симметричное воздействие)

y=0*HB;

Сила Fп приложена на расстоянии 150 мм от разбивочной оси, поэтому эксцентриситет приложения силы относительно оси надкрановой части колонны:

e = hн/2 – hв/2=1,2/2-0,4/2=0,4м;

Rв← (+); →(-);


K1=2,152 ,K1=1,314 [3, тб.16.1]

при привязке "0", аВ= 50 мм – при вк= 40 см от покрытия

МI =

МII =

NI = NII=Fп=110,1 кН

От стен, собственного веса, подкрановых балок

МI = МII =0

NI =

NII =

От постоянной нагрузки суммарная

МI =∑ МI=2.34+0=2,34кН*м

МII =∑ МII=-3,44+0=-3,44кН*м

NI =∑ NI=110,1+45,08=155,18 кН

NII =∑ NII=110,1+477,18=587,28 кН

Временная нагрузка

Снеговая Fсн – изгибающие усилия от покрытия умножаются на коэффициент

Fсн / Fп =64,8/110,1=0,59

МI =2,34*0,59=1,38 кН*м

NI = NII=Fсн=64,8 кН

МII =-3,44*0,59=-2,03 кН*м

Крановая вертикальная Dmax ; (y = 1*Hн ,)


ан = "привязка" + 750 – hн/2=0+850-1200/2=250мм

ан = hн/2 - "привязка" - 750=1200/2-0-850=-250мм

K2=1,304 [3,тб.16.2]


- со своими знаками,

R11 – реакция в дополнительной связи от перемещения

,

;

Стойка А

Стойка Б

NI = 0

NII =Dmax=287 кН

NI = 0

NII =Dmin=59,6 кН

Крановая горизонтальная ТА, ТБ



K3=0,775 [3, тб.16.3]


Стойка А

Стойка Б

NI = 0

NII =0

NI = 0

NII =0


Ветровая (слева)


K7=0,363 [3, тб.16.7]

;

;

;

;

;

Стойка А

Стойка Б

NI = 0

NII =0

NI = 0

NII =0


4. Проектирование стоек

 

Материал

Бетон В25

γв2 = 1,1 (табл. 15 [1])

Rв =14,5МПа*1,1=15,95МПа (табл. 13 [1] с учетом γв2)

Eв =27,0*103МПа (табл. 18 [1])

Арматура А-III (Ø10 ÷ 40)

Rs =Rsc =365МПа (табл. 2.2 [1])

Es =200*103МПа (табл. 29 [1])

 - коэффициент приведения

;

;

где

ω=α – 0,008

Rв=0,85-0,008*15,95=0,722 (п. 3.12 [1])

α=0,85 – для тяжелого бетона

σSR=Rs=365МПа

σSc,U=400 МПа, т.к. γв2 >1,0

Надкрановая часть (армирование симметричное)

Исходные данные

Нв

370

см

40

см

вк

40

см

J

213333

см4

lo

2,5Нв=925

см

i

0,289hв=11,56

см


Если λ=lo/I=925/11,56=80 >14, то учитываем выгиб колонны

Определение зависимости "NcrAs"

,

если

 и φр = 1 (ф. 58)

где

Eв = МПа ·100 = Н/см2 ;

As и A’s – см2 ;

lo, ho, a’ – см ;

J – см4 ; Ncr – H ;

После преобразования формулы Ncr , получаем

;

;

;

Таблица 1

Показатели

Сочетание усилий

Мmax=23,06 кНм

Мmin=-49,13 кНм

N=220 кН

N=155,18 кН

1.

М , Нсм

2306000

-4913000

2.

N , Н

220000

155180

3.

, см

10,48

31,66

4.

Мдл , Нсм

234000

234000

5.

Nдл , Н

155180

155180

6.

0,5-0,01*925/40-

0,01*15,95=0,11

0,5-0,01*925/40-

0,01*15,95=0,11

7.

, (п. 3.6)

Принимаем δе

0,26

0,79

8.

9.

10.

где β = 1 (т.36)

11.

12.

13.

29321,3(41,08+(Аs+A’s))

29321,3(25,85+(Аs+A’s))

1) АSmin= А’Sminminвкho=0,002*40*34=2,72 см2

2) АSmin= А’Smin =4,02 см2 ( 2 Ø16)

Принимаем по наибольшему n, Ø с ASmin = A’Smin =4,02 см2 (2Ø16)

Конструктивный расчет по наиневыгоднейшему сочетанию (армирование симметричное)

 

Таблица 2

Показатели

Вычисления по сочетанию

М=-4913000Нсм;

Nсоотв= 155180Н.

1.


2.

Принимаем АS1 = A’S1= АSMIN

4,02см2

3.

Ncr (табл. 1)

Astot = AS1+ A’S1=4,02+4,02=8,04 см2

Ncr=29321,3,(25,85+

8,04)=993699 Н

4.

 (ф. 19)

5.

,см

6.

7.


Проверка прочности по другому, сочетанию, армирование АS = AS=4,02см2 (табл. 2)

 

Таблица 3

Показатели

Вычисления

 

М=2306000 Н*см

 

N=220000 Н

 

1.

x = ξho (см)

 

2.

Ncr (табл. 1 и 2), Н

1440262

 

3.

4.

 

5.

N·e (ф. 36 п. 3.20)

 

6.

 

7.

Если п.5 ≤ п.6, то прочность обеспечена

 5385600<11114956

Прочность обеспечена

 


Подкрановая часть

Исходные данные

Нн=

1805

см

hн=

120

см

вк=

40

см

J=

5760000

см4

lo=

2707,5

см (табл.32)

i=

34,68

см


λ=lo/i=2707,5/34,68=78 >14,

то учитываем выгиб колонны.

1)АSmin= А’Sminminвкho=0,002*40*114=9,12 см2

2) АSmin= А’Smin 4,02 , см2 ( 2 Ø16)

Принимаем по наибольшему n, Ø с ASmin = A’Smin =9,82 см2 (2Ø25)

Таблица 4

Показатели

Сочетание усилий

Мmax=594,2 кНм

Мmin=-596,08 кНм

N=587,28 кН

N=652,08 кН

1.

М , Нсм

59420000

-59608000

2.

N , Н

587280

652080

3.

, см

4.

Мдл , Нсм

-344000

-34000

5.

Nдл , Н

587280

587280

6.

0,5-0,01*2707,5/120-

0,01*15,95=0,11

0,5-0,01*2707,5/120-

0,01*15,95=0,11

7.

, (п. 3.6)

Принимаем δе

0,84

0,76

8.

 

9.

10.

б где β = 1 (т.36)

11.

12.

13.

50916,7(31,61+(Аs+A’s))

50916,7(45,36+(Аs+A’s))


Конструктивный расчет подкрановой части (армирование несимметричное)

Таблица 5

Показатели

Вычисления по сочетанию

Mmax=59420000 Н*см , Nсоотв=587280 Н

1.

А’S1= АSmin

9,82см2

2.

АS1= 2АSmin

10,33см2

3.

50916,7(31,61+(9,82+10,33))=2635448

4.

5.

6.

7.

Если А’S2 ≤ А’S1, то А’S2 = А’S1=9,82см

9.

10.

11.

12.

13.

 ≤ 5%,


Принимаем 2Ø28, с Аs=12,32 см2.

Принимаем 2Ø25, с Аs=9,82 см2.

Таблица 6

Показатели

Вычисления по сочетанию

Mmin=-59608000 Н*см , Nсоотв=652080 Н

1.

А’S1= АSmin

9,82 см2

2.

АS1= 2АSmin

10,33 см2

3.

50916,7(45,36+(9,82+10,33))=3335553

4.

5.

6.

7.

Т.к. А’S2 ≤ А’S1, то А’S2 = А’S1=9,82см

9.

10.

11.

12.

13.

 ≤ 5%,


Принимаем 2Ø25, с Аs= Аs =9,82 см2.

Окончательное конструирование продольной арматуры (п. 5.18)

Окончательное армирование

Принимаем правую арматуру 2Ø28, с Аs=12,32 см2, левую 2Ø25, с Аs= 9,82 см2.

 

Проверка на ЭВМ

Показатели

Сочетание 1

Сочетание 2

Мmax=594,2 кНм

Мmin=-596,08 кНм

N=587,28 кН

N=652,08 кН

1.

Уточнение

;

2.

3.

4.

, см


Расчет сборной железобетонной предварительно-напряженной двутавровой балки покрытия.

1. Конструктивная схема покрытия

Покрытие представлено ребристыми плитами шириной 3м, опирающимися продольными ребрами на двускатные стропильные балки.

2. Предварительное конструирование балки

 

hmax=890+1/12(0,5L-25)=890+1/12(0,5*12000-25)=1388 мм

hx=890+1/12(x+125)=890+1/12(4329+125)=1260 мм

3. Расчетная схема балки


l0=11,7м; x=4,329м.

Qmax=q*l0/2=32,22*11,7/2=188,5 кН

Сбор нагрузок на балку

Вид нагрузки

Нормат. кН/м2

γf

Расчетн кН/м2

Шаг колонн, В, м

Нормат. кН/м

Расчетн кН/м

I. Постоянные







1. Стяжка, пароизоляция, ковер

0,6

1,3

0,78

6

3,6

4,68

2. Утеплитель (для отапливаемых)

0,4

1,3

0,52

2,4

3,12

3. Плиты покрытия

1,5

1,1

1,65

9

9,9

4. Балка

0,56

1,1

0,62

6

3,36

3,72






gн =18,36

g =21,42

II. Временные







1. Длительно-действующая

0,63

1,43

0,9

6

3,78

5,4

2. Кратковременно-действующая.

0,63

1,43

0,9

6

3,78

5,4






pн=27

p=37,8






qн=68,748

q=86,604

В том числе


Нагрузка от собственной массы балки:

Вес балки нормативный, кН –

Gб = 40,2кН,

где

Нормативная нагрузка на 1 м2 покрытия:


4. Расчет прочности нормального сечения балки покрытия


Расчетное опасное сечение находится на расстоянии равном приблизительно 0,37 lo.

Принимаем а’=3 см; аsp=8 см;

Бетон В25, арматура АIII, преднапрягаемая арматура АV

Определение площади сечения напрягаемой арматуры

Определяем граничное значение относительной высоты сжатой зоны бетона ξR (см. ф. 25 п.3,12). В этой формуле

γв2=0,9; σsp=(0,6÷0,8)Rs,ser=0,7*785=550 МПа ;

для упрощения

∆σsp=0.

sSR=RS+400-sSsp-Dssp=680+400-550-0=530 МПа

w=a-0,008*Rb=0,85-0,008*13,05=0,75

Кроме этого определяем


Определяем необходимость постановки арматуры в сжатой зоне А’S по расчету (из предельного условия ξ=ξR ):

Т.к.A’Sтреб.< A’Smin , то A’Sтреб.=A’Smin=4,52 см2 (4 Ø12 АIII);.

Принимаем

A’S факт=4,52 см2 (4 Ø12 АIII)        

Определяем положение нейтральной оси в расчетном сечении : если


то нейтральная ось находится в ребре, тогда

0,22≤ aR=0,4 à x=


Коэффициент γs6 определяется по п. 3,13. (формула 27), принимаем


Фактическое значение Аsp принимают по сортаменту .

Aspфакт7,64см2 (4 Ø 18 А-V)

Арматуру размещают в нижней полке балки с учетом конструктивных требований п.5.5 и 5.12., и назначают размеры нижнего пояса балки. При этом без перерасчета уточняют значения a и ho .

Проверка прочности балки по нормальному сечению

Нейтральная ось проходит в полке, если

,

тогда высота сжатой зоны бетона определяется

,

Несущая способность сечения (Нсм)


прочность сечения обеспечена.

5. Расчет прочности наклонного сечения балки покрытия

 

Задаемся Ø 10 АIII, S1=150 мм;     n=2;

 

- учитывает влияние сжатых полок

 


 - учитывает влияние продольных сил

, кроме этого (1+φf + φn) ≤ 1,5

С=bпл-0,15=3-0,15=2,85 м

; ; ;

;


Проверка прочности наклонной полосы

 


Где

, β=0,01; Rв в МПа

; ;

Расчет балок покрытия по II группе предельных состояний

1.   Назначение величины предварительного напряжения арматуры

Исходные данные:       способ натяжения; длина натягиваемого стержня (l=12,25м) в метрах нормативное сопротивление арматуры Rsp,ser=785 МПа.

Назначаемая величина предварительного напряжения арматуры σsp=550 МПа должна удовлетворять двум условиям (см. п. 1.23 СНиПа)


2.   Вычисление геометрических характеристик сечения

 

Исходные данные: размеры поперечного сечения балки в наиболее напряженном месте в (см);

As=2,26 см2 ,

Asp=7,64 см2 , A’s=4,52см2, a=3см, asp=8 см , a’=3см, Es=200000 МПа ,

Esp=190000 МПа ,

E’s=200000 МПа ,

Eв=27000 МПа ;

Коэффициенты приведения арматуры к бетону:


Приведенная к бетону площадь сечения:

Статический момент приведенного сечения относительно оси проходящей по нижней грани:


Расстояние от нижней грани сечения до его центра тяжести:


Момент инерции приведенного сечения:


Момент сопротивления сечения на уровне сжатой грани:


Момент сопротивления сечения на уровне сжатой арматуры:

Момент сопротивления сечения на уровне растянутой напряженной арматуры:


Момент сопротивления сечения на уровне растянутой грани:


Упругопластический момент сопротивления по нижней грани сечения:


Упругопластический момент сопротивления по верхней грани сечения:


здесь γ=1,5 – коэффициент упругопластичности для двутаврового сечения.

3.   Определение потерь предварительного напряжения арматуры.

Исходные данные: тип арматуры (стержневая); способ натяжения (механический); σsp=550 МПа, Rsp,ser785 МПа, передаточная прочность бетона Rвр=к·В=0,8*25=20 МПа, где В – класс бетона, к – коэффициент предаточной прочности (например, при 80% предаточной прочностик=0,8); Asp=7,64 см2; Ared=1673см2; Ws=54494,6 см3; yн=70 см; asp=8 см; Mсв н5360000 Нсм – нормативный изгибающий момент в расчетном сечении от собственного веса балки.

При механическом способе натяжения дополнительно

Ø (мм)=18мм - диаметр преднапряженной арматуры;

L (мм)=13000мм - длина натягиваемого стержня;

Esp190000 МПа.

А. Первые потери

 

σ1=0,1* σsp-20=0,1*550-20=35 МПа – потери от релаксации напряжений арматуры (см. п. 1.26, табл. 5 СНиПа );

σ2=1,25*Δt=1,25*65=81,25 МПа – потери от температурного перепада (см. п. 1.26, табл. 5 СНиПа );

σ3= МПа –

потери деформации анкеров, расположенных у натяжных устройств;

(см. п. 1.26, табл. 5 СНиПа );

σ4=0 – потери от трения арматуры, принимаются равным 0;

σ5=30 МПа – потери от деформации стальной формы

(см. п. 1.26, табл. 5 СНиПа );

Определяем усилие обжатия в бетоне при обжатии в уровне центра тяжести преднапряженной арматуры:


– потери от быстронатекающей ползучести бетона (см. п. 1.26, табл. 5 СНиПа );

Б. Вторые потери

σ7=0 – потери от релаксации напряжений арматуры, принимаются равным

σ8=35 МПа – потери от усадки бетона

(см. п. 1.26, табл. 5 СНиПа );

Определяем усилие обжатия с учетом первых потерь:


Определяем напряженияв бетоне от усилия обжатия:


– потери от ползучести бетона (см. п. 1.26, табл. 5 СНиПа );

Определяем сумму всех потерь и усилие обжатия:

Σσi – σ1+ σ2+ σ3+ σ4+ σ5+ σ6+ σ7+ σ8+ σ9=35+81,25+66,76+0+30+8,16+0+

+35+25,31=236,37 ≥ 100 (МПа);

,

4.   Оценка трещиностойкости верхней зоны балки при отпуске арматуры

Исходные данные:

P1=285690,2 (H); Мснв=5360000 (Нсм);

W’red =60333,3 (см3); W’pl =90500 (см3); yн=70 (см);

H=126 (см); asp=8 (см); k=0,8; Rвр,ser=k Rв,ser =14,8 (МПа);

Rвtр,ser=k Rвt,ser =1,28 (МПа);

Ared =1673 (см2); Ired=3378662,2 (см4).

Для возможной корректировки жесткости конструкции и прогибов необходимо выполнить оценку трещиностойкости верхней зоны балки при отпуске арматуры. Условие возникновения верхних трещин оценивается по условию:

Где

,


- при неблагоприятном влиянии преднапряжения

При механическом способе натяжения

,

 (см)

r’ – расстояние от центра тяжести приведенного сечения до ядровой точки, наиболее удаленной от растянутой зоны:

, (см)

где

;


 -верхних трещин нет, l1=0

5.   Оценка трещинообразования нижней зоны балки в стадии эксплуатации

Исходные данные:

P2=239613,3 (H); h=126 (см); yн =70 (см);

asp =8 (см); Ared 1673 (см2);

Ired =3378662,2 (см4); Wred =48266,6 (см3); Wpl =72400 (см3); As =2,26 (см2); Asp= 7,64 (см2); A’s =4,52 (см2);

Rв,ser =18,5 (МПа); Rвt,ser 1,6 (МПа); М н=41350000 (Нсм);

К трещиностойкости балки предъявляют требования 3-ей категории (п. 1.16 СНиПа). Расчет по образованию трещин производят на действие полных нормативных нагрузок. Расчет заключается в проверке условия:


- при благоприятном влиянии преднапряжения

 - см. п. 4

еор - см. п. 4

 

41350000<31175984,2 – нижние трещины.


6.   Определение раскрытия трещин в нижней зоне

Исходные данные:

b=8 (см); вf=20 (см); в’f =35 (см);

h0 =118 (см); hf =13 (см);

h’f =15 (см);

а=3 (см); аsp =8 (см); а’ =3 (см);

Esp =190000 (МПа);

Es =200000 (МПа);

E’s =200000 (МПа);

Asp =7,64 (см); As =2,26 (см);

A’s =4,52 (см);

Rв,ser =18,5 (МПа); P2 =239613,3 (H);

γsp1 = 0,9;

Выполняют расчеты по непродолжительному раскрытию трещин на действие полных нормативных нагрузок и по продолжительному раскрытию на действие постоянных и временных нормативных нагрузок (п. 4.14 СНиПа).

Расчет сводится к проверке условий трещиностойкости:


Здесь  - приращение ширины раскрытия от действия кратковременных нагрузок;

 - ширина продолжительного раскрытия трещин.

Предельно допустимые значения , , указаны в табл. 2 СНиПа.

Параметры , , и , рассчитывают по следующему алгоритму:

При определении  принимают М=М н ; φе=1; ν=0,45.

При определении  принимают М=Мдлн ; φе=1; ν=0,45.

При определении  принимают М=Мдлн ; φе=1,6-15; ν=0,15.

;

;

 ;

;

;

;

;

Плечо внутренней пары сил ф-ла (166,)[1]


Напряжения в растянутой арматуре ф-ла (147), [1]


Вычисляем ширину раскрытия трещин: [1, п.4.14]

 (ф. 144)

;

;

 ;

;

;

;

;

Плечо внутренней пары сил ф-ла (166,)[1]


Напряжения в растянутой арматуре ф-ла (147), [1]


Вычисляем ширину раскрытия трещин: [1, п.4.14]

 (ф. 144)

;

;

;

;

;

;

;

Плечо внутренней пары сил ф-ла (166,)[1]


Напряжения в растянутой арматуре ф-ла (147), [1]


Вычисляем ширину раскрытия трещин: [1, п.4.14]

 (ф. 144)

7.   Мероприятия по обеспечению прочности и трещиностойкости опорного участка

Согласно п. 5.58 СНиПа у торцов балки предусматривают дополнительную ненапрягаемую арматуру, т. к. напрягаемая продольная арматура сосредоточена у нижней грани. Площадь сечения одного стержня поперечной арматуры класса А-III равна:

,

где n – число стержней (4 или 6), надежно закрепленных приваркой к опорным деталям.

Принимаем стержень Ø10мм, Аs=0,785см2.

У концов балки устанавливают дополнительную косвенную арматуру (сетки или хомуты с шагом 5 – 10 см, охватывающие все напрягаемые продольные стержни) на длине участка не менее 0,6 lp=21,6см и 20 см (п. 5.61).

0,6*lp =0,6*25,4=15,2<20 см, то Принимаем длину участка равной 20см.

8.   Армирование балки

Ребро балки армируют двумя вертикальными каркасами из расчетных поперечных стержней (п. 5.27), объединенных продольными стержнями .

Верхнюю полку армируют горизонтальным каркасом, состоящим из двух продольных стержней Ø12 А-III и гнутых поперечных стержней Ø5 Вр-I, расположенных с шагом 20 см.

Нижнюю полку армируют замкнутыми хомутами Ø5 Вр-I, с шагом не менее 2 hf Хомуты связаны в пространственные каркасы продольной арматурой Ø5 Вр-I.

Балка имеет закладные детали для крепления плит покрытия. Подъем балки осуществляют с помощью специальных захватов, для чего в ней предусмотрены монтажные отверстия.

Литература

1.   СНиП 2.03.01-84* Бетонные и железобетонные конструкции. М, 1989г.

2.   СНиП 2.01.07-85 Нагрузки и воздействия.; М, 1986.

3.   Улицкий И,И, Железобетонные конструкции. Киев, 1973г.

4.   Методические указания по применению ЭВМ в курсовом проекте.

Похожие работы на - Проектирование колонн и стропильных балок одноэтажного производственного здания

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!