Заказ дипломной. Заказать реферат. Курсовые на заказ.
Бесплатные рефераты, курсовые и дипломные работы на сайте БИБЛИОФОНД.РУ
Электронная библиотека студента





Курсовой проект


"Очистной комбайн"



Задание:


∑Р1=65 кН,

Р2=35 Кн,

S1=450 мм,

S2=350 мм,

Т1=13 сек,

Т2=8 сек,

Т 0С=+15

Lн=4 м,

Lсл=2,5 м,

Нвс=0,2 м,

Е=кН·м.

Схема №1.




Введение


Под гидроприводом понимают совокупность устройств (в число которых входит один или несколько объемных гидродвигателей), предназначенную для приведения в движение механизмов и машин посредством рабочей жидкости под давлением. В качестве рабочей жидкости в станочных гидроприводах используется минеральное масло.

Широкое применение гидроприводов в станкостроении определяется рядом их существенных преимуществ перед другими типами приводов и, прежде всего возможностью получения больших усилий и мощностей при ограниченных размерах гидродвигателей. Гидроприводы обеспечивают широкий диапазон бесступенчатого регулирования скорости, возможность работ в динамических режимах с требуемым качеством переходных процессов, защиту системы от перегрузки и точный контроль действующих усилий.

К основным преимуществам гидропривода следует отнести также высокое значение коэффициента полезного действия, повышенную жесткость и долговечность.

Гидроприводы имеют и недостатки, которые ограничивают их использование в станкостроении. Это потери на трение и утечки, снижающие коэффициент полезного действия гидропривода и вызывающие разогрев рабочей жидкости. Внутренние утечки через зазоры подвижных элементов в допустимых пределах полезны, поскольку улучшают условия смазывания и теплоотвода, в то время как наружные утечки приводят к повышенному расходу масла, загрязнению гидросистемы и рабочего места. Необходимость применения фильтров тонкой очистки для обеспечения надежности гидроприводов повышает стоимость последних и усложняет техническое обслуживание.

Наиболее эффективно применение гидропривода в станках с возвратно-поступательным движением рабочего органа, в высокоавтоматизированных многоцелевых станках и т.п. Гидроприводы используются в механизмах подач, смены инструмента, зажима, копировальных суппортах, уравновешивания и т.д.




1. Выбор рабочей жидкости

Учитывая климатические условия работы очистного комбайна (+150С) выбираем минеральное масло Индустриальное 20 с плотностью 881–901 кг/м3, вязкостью при 500С 17–23 сСт, температурой вспышки 1700С, температурой застывания -200С.


2. Определение основных параметров гидросистемы

1. Устанавливаем расчетное усилие в цилиндре с учетом потерь давления и снижения производительности насоса



где Кз.у. – коэффициент запаса по условию, Кз.у.=1,15–1,25;

Р – усилие на штоке гидроцилиндра, необходимое для привода в движение исполнительного механизма.

 кН

 кН

2. По полученной расчетной назгрузке Рр и давлению рном=10 (для гидроцилиндров с усилием на штоке 30–60 кН), с учетом механического КПД гидроцилиндра ηмц= 0,87–0,97 определяем диаметр поршня исполнительного механизма.



м;  м.

Полученное D округляем до ближайшего стандартного в соответствии с ГОСТ 6540–64 принимаем =100 мм, D2=100 мм и одновременно находим dшт.

3. Устанавливаем диаметр штока из условия прочности



где nз=2,0 коэффициент запаса прочности;

E=2·106 МПа – модуль упругости материала штока;

S – ход поршня, м.

 м

 м

Округляем диаметр штока до стандартного значения и принимаем диаметр штока 25 мм и 25 мм

5. Вычисляем отношение φ поршня к штоковой площади поршня



 

6. Определяем среднюю рабочую скорость поршня в гидроцилиндре при движении в сторону штоковой полости



где T – время двойного хода поршня при рабочем и обратном ходе,

включая паузу;

∆t=0,1с – длительность срабатывания распределителя.

 м/с м/с

Расчетная скорость поршня при рабочем ходе с учетом запаздывания вследствие утечек между поршнем и цилиндрической поверхностью гидроцилиндра равна



где kv=1,1–1,2 – коэффициент, учитывающий утечки в гидроцилиндре.

м/с; м/с

7. Необходимая подача насоса в гидроцилиндр



где nц-число гидроцилиндров, в которые насос одновременно подает масло;

ηобн-объемный КПД насоса, средние его значения принимаем в соответствии с рабочим давлением и типом насоса;

ηц= объемный КПД гидроцилиндра, ηц=0,99–1,0 при резиновых манжетах на поршне;

ηзол= 0,96–0,98 – объемный КПД золотника.

 м3/с,

м3

 м3/с=132 л/мин

По величине Qн и p выбираем по технической характеристике шестеренный насос типа НШ‑140 с Q=154 л/мин и рном=10 МПа.

8. Определяем расход гидроцилиндров во время рабочего хода:



 м3

Выбираем реверсивный золотник типа Г74–24 с Q=70 л/мин и р=20 МПа, обратный клапан 2БГ52–14 с Q=5–70 л/мин и р=5–20 МПа и фильтр ФП‑7 с тонкостью фильтрации 25 Q=100 л/мин, р=20 МПа,

9. Определяем диаметр всасывающего трубопровода к насосу, м:


,


где Vвс – средняя скорость масла во всасывающем трубопроводе, Vвс=0,8–1,2 м/с в трубопроводах диаметром до 25 мм и 1.2–1.5 м/с при диаметрах свыше 25 мм.

Qн-количество жидкости,

 м

Диаметр нагнетательного трубопровода, м, принимая Vнаг=3 м/с:

м

Подсчитываем толщину стенки трубы:


,


где [σ] – допускаемое напряжение в материале труб, [σ] =(0,3–0,5)σв, σв – предел прочности труб на разрыв: сталь 20–40 кН/см2;

Определим толщину стенки всасывающей трубы, м:

м

В соответствии со стандартными диаметрами труб по ГОСТ 8732–58 dвс=50 мм, dнаг=24 мм, определяем истинные средние скорости течения рабочей жидкости в них по формуле, м/с:



 м/с

 м/с

На основании схемы разводки трубопроводов производим подсчет

потерь напора на прямых участках и местных сопротивлениях, раздельно для всасывающей, нагнетательной и сливной магистралей. Для чего предварительно устанавливаем число Рейнольдса для каждой из них, которое характеризует режим движения жидкости. Число Рейнольдса на линиях подвода и слива рабочей жидкости определяем по формуле:



где Vi – средняя скорость соответственно в линии подвода или слива;

di – внутренний диаметр труб подвода или слива.

Определим число Рейнольдса для подводящего трубопровода:

Определим число Рейнольдса для нагнетательного трубопровода:

Режима течения жидкости ламинарный Re <2300, коэффициент сопротивления λ подсчитывается для круглых труб по формуле .

Считаем потерю давления на трение по длине нагнетательной, всасывающей и линии слива магистрали:


,


где λi – коэффициент сопротивления на линии подвода и слива;

p‑плотность рабочей жидкости;

li – длина трубопровода на подводе и сливе одинакового диаметра di.

 кПа

Расчитываем суммарные потери в нагнетательном трубопроводе:


 кПА


Во всасывающем трубопроводе:



 кПа



кПа


Считаем слив жидкости:



 кПа



 кПа

Рабочее давление для выбора напорного золотника и насоса:



МПа

Необходимая проверка всасывающей магистрали гидронасоса на неразрывность потока:


,


где Hвс-геометрическая высота всасывания;

∑ξ – сумма коэффициентов местных сопративлений на линии всасывания насоса;

Vвс – скорость движения рабочей жидкости во всасывающей магистрали.

Условие соблюдается, диаметр всасывающего трубопровода определен правильно.

Усилие, создаваемое гидроцилиндром при рабочем ходе, равно


,


 кН

где p – рабочее давление в жидкости;

F – площадь поршня при рабочем ходе ;

Rшт – сопротивление уплотнения штока;

Rп – сопротивление уплотнения поршня;

Rс – сопротивление от вытекания масла из штоковый полости гидроцилиндра.

Определяем усилие трения Rшт


,


где μ=0,10–0,13 – коэффициент трения манжет о рабочую поверхность штока;

b – высота активной части манжеты.

кН

Усилие трения Rп для манжетных уплотнений поршня:



Н

Расчет сопротивления Rс – от вытекания масла со стороны штоковой полости.


,


Н,

где pс – давление в штоковой полости.

Сопоставляем усилие Pф развиваемое в гидроцилиндре, с требуемым по условиям работы механизма Pр и находим коэффициент kзу


.


;

Определяем толщину стенок силового гидроцилиндра


,


где pпроб – пробное давление, с которым осуществляется гидравлическое испытание цилиндра;

σт – предел текучести материала: для стали 35 σт=300МПа,

ψ – коэффициент прочности для цельнотянутой трубы, ψ=1;

n – коэффициент запаса прочности при давлениях до 30МПа, n≥3;

с – прибавка к толщине стенки на коррозию наружной поверхности цилиндра; с=2–3 мм.

 мм;

Толщина плоского донышка гидроцилиндра



 мм;

где σр – допускаемое напряжение для материала донышка гидроцилиндра.

Под рабочим давлением pp понимают наибольшее давление в гидросистеме

в условиях эксплуатации, т.е. при наличии толчков и гидравлических ударов. Условное давление pу соответствует отсутствию гидравлических ударов в гидросистеме и на него настраивают предохранительные клапаны. Пробное давление pпроб соответствует условиям проверки корпусов элементов гидросистемы на прочность.

Напорный трубопровод подлежит проверке на гидравлический удар в случае внезапного его перекрытия, для чего определяем величину ударного давления


,


 МПа

По величине pуд проверяется толщина стенки труб и гидроцилиндра.

Определение объемных потерь рабочей жидкости в гидросистеме


,


где ∆Qн, ∆Qгц, ∆Qзол – объемные утечки рабочей жидкости в насосе, гидроцилиндре и золотнике, численное значение последних определяем по их техническим характеристикам;

nц – число гидроцилиндров, питаемых от насоса одновременно.

Поэтому:


,


где ηобн – объемный КПД насоса; pн – давление создаваемое насосом.

∆Qзол=200 см3/мин=0,2 л/мин,

 л/мин,



 м3/с=0,37 л/мин

 м3/с=0,04 л/мин

л/мин

Определение КПД гидросистемы

Объемный КПД гидропривода


;


Гидравлический КПД гидропривода



;


Механический КПД гидропривода


,



где ηмех.н – механический КПД насоса, принимается по его характеристике.

Общий КПД гидропривода


,


Устанавливаем средние скорости перемещения поршня в гидроцилиндре:

Рабочий ход



м/мин

Холостой ход

м/мин


Общее время цикла за один ход


.


Мощность, сообщенная рабочей жидкости насоса


,


 кВт

Полезная мощность гидроцилиндров


,


кВт

Общий КПД гидропривода




3. Тепловой расчет гидросистемы


Тепловой расчет гидросистемы на отдачу выделяемого в ней тепла в период устойчивого состояния, т.е. когда количество тепла выделяется в системе и отводится из нее:


,


где Qн-подача насоса, л/мин;

pн – давление насоса, кгс/см2;

kв-коэффициент, учитывающий непрерывность работы гидропривода, для гидроцилиндра


;


Fб – наружная поверхность бака, м2;

t1-t0=450С;

α1=10–15 ккал/м2ч·гр – коэффициент теплоотдачи наружных поверхностей в окружающую среду.


 м2


 м2

Отсюда объем бака для питания гидросистемы при заполнении маслом на 80% равен


,


м3

Принимаем по стандартному ряду бак объемом 630 л.

4. Выбор способа регулирования скорости объемного гидродвигателя


1. Дроссель установлен на входе. Жидкость подается насосом через регулируемый дроссель и распределитель в одну из полостей силового цилиндра. Необходимо давление в системе поддерживается педохранительным клапаном.

Скорость поршня в силовом гидроцилиндре определяется по уравнению:


,


где ƒдр-максимальное проходное сечение дросселя, см2;


fдр=см2;


Qн – производительность насоса см3/с;

pдр – настройка предохранительного клапана, кг/см2;

Uдр – степень открытия проходного сечения дросселя или параметр регулирования;

Fп – площадь поршня, см2;

P – нагрузка на поршень, H;

pн – давление насоса, H/см2.

При этом способе регулирования с ростом нагрузки падает скорость Vп.

Задавая различные значения Uдр от 1 до 0, а также полагая P1=P/Fп находим

Vп=0, а при P=0, при Uдр=1

см/мин,

При Uдр=0,5

см/мин

Vп-максимум, строим механическую характеристику гидропривода с дросселем на входе.

2. Дроссель установлен на выходе. Скорость поршня в силовом гидроцилиндре


,


где Fс=Fп·φ-1=

см/мин

Механическая характеристика с дросселем на выходе имеет тот же вид, как и на входе.

5. Сроки службы гидросистемы


В процессе расчета гидропривода и выбора элементов гидросистемы необходимо уметь оценить наработку до первого отказа всей системы в целом на основе знания интенсивности отказов каждого элемента и их числа


,


1/час

где ni – число однотипных элементов системы; λI – средняя интенсивность отказов элементов, 1/час.

Наработка гидросистемы до первого отказа, час.

 

.


час.


Библиографический список


1. Гидропривод Башта Т.М. Гидравлика, гидравлические машины и гидравлические приводы. М.: Машиностроение, 1970

2. Ковалевский В.Ф., Железняков Н.Г. Справочник по гидроприводам горных машин. М.: Недра, 1978, с. 504

3. Коваль П.В. Гидравлика и гидропривод горных машин. – М.: Машиностроение, 1979, с. 319

4. Хорин В.Н. Объемный забойного оборудования. М.: Недра, 1968, с. 169

Размещено на


Похожие работы

Технико-экономическое обоснование разработки и применения очистного комбайна
Комбайн очистной является одной из основных машин для подземной добычи калийных руд, внедрение которых положило начало коренному техническому перевооружению калийных предприятий.
Очистные комбайны и струговые установки
...производительности комбайна , рассчитать нагрузку на очистной забой. Данные: 1. мощность пласта, м – 2,4 (m); 2. угол наклона, град – 12(?)
Комбайн КШ1КГ (рис. 17.14) предназначен для механизации выемки угля из пологих (до 25°) пластов...
... для обработки основания гидрораспределителя очистного комбайна 2РКУ10
«Проект автоматической системы технологического оборудования для обработки основания гидрораспределителя очистного комбайна 2РКУ10»
Технология отработки пласта выемочного участка шахты
Эксплуатировать очистной комбайн следует только в технически безупречном состоянии и по назначению; с соблюдением правил техники безопасности, руководствуясь инструкцией по эксплуатации.
Электрооборудование и электроснабжение выемочного комплекса
Очистной комбайн 2ГШ68Б Техническая характеристика: Производительность – 4 т/мин.
ОГД билеты + все лекции по углю
1 горизонтальный гидродомкрат, 2 механ.крепь, 3 скребковый конвейер, 4 очистной комбайн . Технология, механизация и организация очистных работ в комплексно механизированном забое.
Себестоимость продукции в угольной промышленности. Повышение эфективности ...
2.2.1. Расчет суточной нагрузки на очистной забой 612-ю. (комплекс КМ-144 с комбайном "Кузбасс-500") Теоретическая производительность комбайна К-500.