Экспоненциальный фильтр

  • Вид работы:
    Практическое задание
  • Предмет:
    Математика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    40,75 kb
  • Опубликовано:
    2010-11-19
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Экспоненциальный фильтр

Лабораторная работа № 2

ЭКСПОНЕНЦИАЛЬНЫЙ ФИЛЬТР

Цель работы

Ознакомиться с аналоговым и дискретным вариантами реализации фильтра

Общие сведения

В аналоговом варианте экспоненциальный фильтр представляет собой апериодическое звено и описывается дифференциальным уравнением

,                                                                  (15)

где  и  – параметры настройки фильтра.

Уравнению (15) соответствует амплитудно-фазовая характеристика (АФХ)

,                                                          (16)

где  – постоянная времени фильтра.

Из условия (3)  (математическое ожидание) для статического режима определяют оптимальное значение параметра . Коэффициент усиления

.                                                                                           (17)

Определение оптимального значения параметра  производится из условия (4)  (среднеквадратичная погрешность оценки).

Для этого предварительно рассчитывают спектральную плотность  погрешности экспоненциального фильтра по формуле (7) с учётом (16) и (17).

.                                         (18)

Дисперсия погрешности экспоненциального фильтра, согласно (6), (7), с учётом (16), равна

.     (19)

При вычислении этого интеграла оба слагаемых подынтегрального выражения раскладывают на простые дроби, каждая из которых сводится к табличному интегралу вида

.                                                          (20)

После выполнения соответствующих преобразований получают следующее выражение для дисперсии погрешности фильтрации:

Оптимальное значение параметра настройки  получают из необходимого условия экстремума функции :

.                                    (22)

Откуда оптимальное значение параметра

.                                                                            (23)

Таким образом, функция  имеет единственную точку стационарности, тип которой зависит от знака второй производной при .

Можно показать, что при выполнении условия

,                                                                                          (24)

особая точка является минимумом функции , а при выполнении условия

                                                                                           (25)

в точке , функция  достигает максимума.

Таким образом, если сочетание характеристик полезного сигнала и помехи соответствуют случаю (24), то оптимальное значение параметра настройки  определяется по формуле (23).

Если это условие не выполняется, то оптимальным является наибольшее допустимое значение параметра .

При программной реализации экспоненциального фильтра дифференциальное уравнение (15) заменяют разностным уравнением вида

                                             (26)

где i – номер цикла расчёта

Отсюда получают следующее рекуррентное соотношение для вычисления сглаженного значения  в очередном i-том цикле расчёта:

                                                        (27)

К достоинствам алгоритма экспоненциальной фильтрации относятся: малая трудоёмкость расчётов и малый объём памяти ЭВМ, в которой должны храниться величина  и обновляемая в каждом цикле расчёта величина .

Пример выполнения лабораторной работы с использованием пакета MCAD представлен в Приложении 3 к лабораторной работе №2. Здесь представлен вариант расчёта трёхкратного сглаживания экспериментальных данных, полученных от ИИК технологического процесса, построены графики.

Общая часть заданий

1. Ознакомиться с теоретическим описанием





За начало отсчёта примем следующие допущения:

Расчёт произвести для трёх значений g:

g = 0,4; 0,5; 0,6

3. Провести анализ полученных зависимостей на выполнение фильтрации полезного сигнала от помехи

4. Сделать выводы и дать предложения о возможности применения сглаживающего фильтра для уменьшения помех


Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!