Действительные числа. Иррациональные и тригонометрический уравнения

  • Вид работы:
    Другое
  • Предмет:
    Математика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    1,72 Mb
  • Опубликовано:
    2010-07-02
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Действительные числа. Иррациональные и тригонометрический уравнения

Содержание

 

Иррациональные уравнения

Числовая функция. Способы задания функции

Основные свойства функции

Графики функций. Простейшие преобразования графиков функцией

Обратная функция

Степенная функции, её свойства и графики

Показательная функция, её свойства и графики

Показательные неравенства

Логарифмы и их свойства

Логарифмические уравнения

Тригонометрические функции числового аргумента

Функция y sinx ее свойства и график

Обратные тригонометрические функции, их свойства и графики

Частные случаи тригонометрических уравнений

Тригонометрические уравнения

Аксиомы стереометрии и следствия из них

Взаимное расположение двух прямых в пространстве

Скрещивающиеся прямые. Признак скрещивающихся прямых

Теорема о трех перпендикулярах

Алгебра

Действительные числа. Приближение действительных чисел конечными десятичными дробями.

Веще́ственное, или действи́тельное число - математическая абстракция <#"457111.files/image001.gif">, считается точным, тогда под погрешностью приближенного значения числовой величины (ошибкой) понимают разность между точным и приближенным значением числовой величины:  . Погрешность может принимать как положительное так и отрицательное значение. Величина называется известным приближением к точному значению числовой величины - любое число, которое используется вместо точного значения. Простейшей количественной мерой ошибки является абсолютная погрешность. Абсолютной погрешностью приближенного значения называют величину , про которую известно, что:  Относительная погрешность и её граница.

Качество приближения существенным образом зависит от принятых единиц измерения и масштабов величин, поэтому целесообразно соотнести погрешность величины и ее значение, для чего вводится понятие относительной погрешности. Относительной погрешностью приближенного значения называют величину , про которую известно, что: . Относительную погрешность часто выражают в процентах. Использование относительных погрешностей удобно, в частности, тем, что они не зависят от масштабов величин и единиц измерения.

Иррациональные уравнения


Уравнение, в которых под знаком корня содержится переменная, называют иррациональными. При решении иррациональных уравнений полученные решения требуют проверки, потому, например, что неверное равенство при возведении в квадрат может дать верное равенство. В самом деле, неверное равенство при возведении в квадрат даёт верное равенство 12= (-1) 2, 1=1. Иногда удобнее решать иррациональные уравнения, используя равносильные переходы.

Возведём обе части этого уравнения в квадрат; После преобразований приходим к квадратному уравнению; и подставим.

Комплексные числа. Действия над комплексными числами.

Ко́мпле́ксные чи́сла - расширение множества вещественных чисел <#"457111.files/image009.gif">. Любое комплексное число может быть представлено как формальная сумма x + iy, где x и y - вещественные числа, i - мнимая единица <#"457111.files/image010.gif">

Деление

Числовая функция. Способы задания функции


В математике <#"457111.files/image012.gif"> или множества комплексных чисел <#"457111.files/image009.gif">.

Словесный: С помощью естественного языка Игрек равно целая часть от икс. Аналитический: С помощью аналитической формулы f (x) = x!

Графический С помощью графика  <#"457111.files/image014.gif">.

Табличный: С помощью таблицы значений

x

0

1

2

3

4

5

6

7

8

9

y

1

1

2

3

5

8

13

21

34

55













Основные свойства функции


1) Область определения функции и область значений функции. Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x), при которых функция y = f (x) определена.

Область значений функции - это множество всех действительных значений y, которые принимает функция. В элементарной математике <#"457111.files/image015.gif">Прямая линия - график линейной функции y = ax + b. Функция y монотонно возрастает при a > 0 и убывает при a < 0. При b = 0 прямая линия проходит через начало координат т.0 (y = ax - прямая пропорциональность)

Парабола - график функции квадратного трёхчлена у = ах2 + bх + с. Имеет вертикальную ось симметрии. Если а > 0, имеет минимум, если а < 0 - максимум. Точки пересечения (если они есть) с осью абсцисс - корни соответствующего квадратного уравнения ax2 + bx +с =0

Гипербола - график функции . При а > О расположена в I и III четвертях, при а < 0 - во II и IV. Асимптоты - оси координат. Ось симметрии - прямая у = х (а > 0) или у - х (а < 0).

Логарифмическая функция y = logax (a > 0)

Тригонометрические функции. При построении тригонометрических функций мы используем радианную меру измерения углов. Тогда функция y = sin x представляется графиком (рис. 19). Эта кривая называется синусоидой.

График функции y = cos x представлен на рис. 20; это также синусоида, полученная в результате перемещения графика y = sin x вдоль оси Х влево на /2.


Основные свойства функций. Монотонность, четность, нечетность, периодичность функций.

Область определения функции и область значений функции. Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x), при которых функция y = f (x) определена.

Область значений функции - это множество всех действительных значений y, которые принимает функция.

В элементарной математике <#"457111.files/image024.gif">0) и рис.14 (n < 0). Отрицательные значения x здесь не рассматриваются, так как тогда некоторые функции:

.

Обратная функция


Обра́тная фу́нкция - функция <#"457111.files/image027.gif">является обратной к функции , если выполнены следующие тождества: для всех  для всех

Корень n-ой степени и его свойства.

Корнем n-ой степени из числа a называется такое число, n-ая степень которого равна a.

Определение: Арифметическим корнем n-ой степени из числа a называют неотрицательное число, n-ая степень которого равна a.

Основные свойства корней:


Степень с произвольным действительным показателем и его свойства.

Пусть дано положительное число и произвольное действительное число . Число называется степенью, число  - основанием степени, число  - показателем степени.

По определению полагают:

.

.

, .

Если и  - положительные числа, и  - любые действительные числа, то справедливы следующие свойства:

.

.

.

.

.

     .

    

Степенная функции, её свойства и графики

Степенная функция комплексного переменного f (z) = zn с целочисленным показателем определяется с помощью аналитического продолжения <#"457111.files/image050.gif">, . Рассматриваются такие случаи:

а). Если , то . Тогда , ; если число  - чётное, то и функция  - чётная (то есть при всех ); если число  - нечётное, то и функция  - нечётная (то есть при всех ).


Показательная функция, её свойства и графики


Показательная функция - математическая функция <#"457111.files/image062.gif">.

В вещественном случае основание степени  - некоторое неотрицательное вещественное число <#"457111.files/image064.gif">; ; .

Показательные уравнения.

Перейдем непосредственно к показательным уравнениям. Для того чтобы решить показательное уравнение необходимо воспользоваться следующей теоремой: Если степени равны и основания равны, положительны и отличны от единицы, то равны и их показатели степеней. Докажем эту теорему: Пусть a>1 и aх=ay.

Докажем, что в этом случае х=y. Допустим противное тому, что требуется доказать, т.е. допустим, что x>у или что x<у. Тогда получим по свойству показательной функции, что либо aх<ay либо aх>ay. Оба эти результата противоречат условию теоремы. Следовательно, x=у, что и требовалось доказать.

Также доказывается теорема и для случая, когда 0<a<1. Замечание. Из равенства aх=ay не обязательно следует что x=у. Из равенства 1х=1y также не обязательно вытекает равенство x=у. Самым простым показательным уравнением является уравнения вида aх=ay, где a>0 и a≠1.

Показательные неравенства


Неравенства вида (или меньше) при а (х) >0 и решаются на основании свойств показательной функции: для 0 < а (х) < 1 при сравнении f (x) и g (x) знак неравенства меняется, а при а (х) > 1 - сохраняется. Самый сложный случай при а (х) < 0. Здесь можно дать только общее указание: определить, при каких значениях х показатели f (x) и g (x) будут целыми числами, и выбрать из них те, которые удовлетворяют условию. Наконец, если исходное неравенство будет выполняться при а (х) = 0 или а (х) = 1 (например, когда неравенства нестрогие), то нужно рассмотреть и эти случаи.

Логарифмы и их свойства


Логарифм числа b по основанию a (от греч.  <#"457111.files/image067.gif">. Из определения следует, что записи и равносильны. Пример: , потому что . Свойства

Основное логарифмическое тождество:


Логарифмическая функция, её свойства и графики.

Логарифмической функцией называется функция вида f (x) = logax, определённая при

Область определения:

Область значения:

График любой логарифмической функции проходит через точку (1; 0)

Производная логарифмической функции равна:


Логарифмические уравнения


Уравнение, содержащее переменную под знаком логарифма, называется логарифмическим. Простейшим примером логарифмического уравнения служит уравнение loga х = b (где а > 0, а 1). Его решение x = ab.

Решение уравнений на основании определения логарифма, например, уравнение loga х = b (а > 0, а 1) имеет решение х = аb.

Метод потенцирования. Под потенцированием понимается переход от равенства, содержащего логарифмы, к равенству, не содержащему их:

если loga f (х) = loga g (х), то f (х) = g (х), f (х) >0, g (х) >0, а > 0, а 1.

Метод приведения логарифмического уравнения к квадратному.

Метод логарифмирования обеих частей уравнения.

Метод приведения логарифмов к одному и тому же основанию.

Логарифмические неравенства.

Неравенство, содержащее переменную только под знаком логарифма, называется логарифмическим: loga f (х) > loga g (х).

При решении логарифмических неравенств следует учитывать общие свойства неравенств, свойство монотонности логарифмической функции и область ее определения. Неравенство loga f (х) > loga g (х) равносильно системе f (x) > g (x) > 0 при a > 1 и системе 0 < f (x) < g (x) при 0 < а < 1.

Радианное измерение углов и дуг. Синус, косинус, тангенс, котангенс.

Градусная мера. Здесь единицей измерения является градус (обозначение ) - это поворот луча на 1/360 часть одного полного оборота. Таким образом, полный оборот луча равен 360. Один градус состоит из 60 минут (их обозначение ‘); одна минута - соответственно из 60 секунд (обозначаются “).

Радианная мера. Как мы знаем из планиметрии (см. параграф "Длина дуги" в разделе "Геометрическое место точек. Круг и окружность"), длина дуги l, радиус r и соответствующий центральный угол  связаны соотношением: = l / r.

Эта формула лежит в основе определения радианной меры измерения углов. Так, если l = r, то = 1, и мы говорим, что угол равен 1 радиану, что обозначается: = 1 рад. Таким образом, мы имеем следующее определение радианной меры измерения:

Радиан есть центральный угол, у которого длина дуги и радиус равны (AmB = AO, рис.1). Итак, радианная мера измерения угла есть отношение длины дуги, проведенной произвольным радиусом и заключённой между сторонами этого угла, к радиусу дуги.

 


Тригонометрические функции острых углов можно определить как отношение длин сторон прямоугольного треугольника.

Синус:

 

Косинус:

 

Тангенс:

 

Котангенс:



Тригонометрические функции числового аргумента


Определение.


Формулы сложения. Формулы двойного и половинного аргумента.

Двойного.

;  

(; .

Тригонометрические функции и их графики. Основные свойства тригонометрических функций.

Тригонометрические функции - вид элементарных функций <#"457111.files/image097.gif">

5. Точки пересечения с осями координат:

с осью Ох: sinx = 0; х = pn, nÎZ;

с осью Oy: если х = 0, то у = 0,6. Промежутки знакопостоянства:

sinx > 0, если xÎ (2pn; p + 2pn), nÎZ;

sinx < 0, если хÎ (p + 2pn; 2p+pn), nÎZ.

Знаки синуса в четвертях

у > 0 для углов а первой и второй четвертей.

у < 0 для углов ее третьей и четвертой четвертей.

7. Промежутки монотонноти:

y = sinx возрастает на каждом из промежутков [-p/2 + 2pn; p/2 + 2pn],

nÎz и убывает на каждом из промежутков [p/2 + 2pn; 3p/2 + 2pn], nÎz.

8. Точки экстремума и экстремумы функции:

xmax = p/2 + 2pn, nÎz; ymax = 1;

ymax = - p/2 + 2pn, nÎz; ymin = - 1.

Свойства функции у = cosx и ее график:

Свойства:

1. D (y) = R.

2. Е (у) = [-1; 1].

3. Функция у = cosx - четная, так как по определению косинуса тригонометрического угла cos (-a) = x/R = cosa на тригонометрическом круге (рис)


4. Т = 2p - наименьший положительный период. Действительно,

cos (x+2pn) = cosx.

5. Точки пересечения с осями координат:

с осью Ох: cosx = 0;

х = p/2 + pn, nÎZ;

с осью Оу: если х = 0,то у = 1.

6. Промежутки знакопостоянства:

cosx > 0, если хÎ (-p/2+2pn; p/2 + 2pn), nÎZ;

cosx < 0, если хÎ (p/2 + 2pn; 3p/2 + 2pn), nÎZ.

Доказывается это на тригонометрическом круге (рис). Знаки косинуса в четвертях:

x > 0 для углов a первой и четвертой четвертей.

x < 0 для углов a второй и третей четвертей.

7. Промежутки монотонноти:

y = cosx возрастает на каждом из промежутков [-p + 2pn; 2pn],

nÎz и убывает на каждом из промежутков [2pn; p + 2pn], nÎz.

Свойства функции у = tgx и ее график: свойства -

1. D (y) = (xÎR, x ¹ p/2 + pn, nÎZ).

2. E (y) =R.

3. Функция y = tgx - нечетная

4. Т = p - наименьший положительный период.

5. Промежутки знакопостоянства:

tgx > 0 при хÎ (pn; p/2 + pn;), nÎZ;

tgx < 0 при xÎ (-p/2 + pn; pn), nÎZ.

Знаки тангенса по четвертям смотри на рисунке.


6. Промежутки монотонности:

y = tgx возрастает на каждом из промежутков

(-p/2 + pn; p/2 + pn),

nÎz.

7. Точки экстремума и экстремумы функции:

нет.

8. x = p/2 + pn, nÎz - вертикальные асимптоты

Свойства функции у = ctgx и ее график:

Свойства:

1. D (y) = (xÎR, x ¹ pn, nÎZ). 2. E (y) =R.

3. Функция y = ctgx - нечетная.

4. Т = p - наименьший положительный период.

5. Промежутки знакопостоянства:

ctgx > 0 при хÎ (pn; p/2 + pn;), nÎZ;

ctgx < 0 при хÎ (-p/2 + pn; pn), nÎZ.

Знаки котангенса по четвертям смотри на рисунке.

7. Точек экстремума и экстремумов у функции у = ctgx нет.

8. Графиком функции у = ctgx является тангенсоида, полученная сдвигом графика y= tgx вдоль оси Ох влево на p/2 и умножением на (-1) (рис)


Обратные тригонометрические функции, их свойства и графики


Обра́тные тригонометри́ческие фу́нкции (круговые функции, аркфункции) - математические функции <#"457111.files/image101.gif">

Функция y=arcsinX, её свойства и графики.

Арксинусом числа m называется такой угол x, для которогоФункция y = sinx непрерывна и ограничена на всей своей числовой прямой. Функция y = arcsinx является строго возрастающей.  (функция является нечётной <#"457111.files/image105.gif">

Функция y=arccosX, её свойства и графики.

Арккосинусом числа m называется такой угол x, для которого

Функция y = cosx непрерывна и ограничена на всей своей числовой прямой. Функция y = arccosx является строго убывающей. cos (arccosx) = x при  arccos (cosy) = y при  D (arccosx) = [− 1; 1], (область определения), E (arccosx) = [0; π]. (область значений). Свойства функции arccos (функция центрально-симметрична относительно точки


Функция y=arctgX, её свойства и графики.

Арктангенсом числа m называется такой угол α, для которого  Функция непрерывна и ограничена на всей своей числовой прямой. Функция является строго возрастающей.

при

     при

Свойства функции arctg

,

.

 

Функция y=arcctg, её свойства и графики.

Арккотангенсом числа m называется такой угол x, для которого  

Функция непрерывна и ограничена на всей своей числовой прямой.

Функция является строго убывающей. при  при 0 < y < π  Свойства функции arcctg (график функции центрально-симметричен относительно точки  при любых x.

.


Простейшие тригонометрические уравнения.

Определение. Уравнения вада sin x = a; cos x = a; tg x = a; ctg x = a, где x - переменная, aR, называются простейшими тригонометрическими уравнениями.


Частные случаи тригонометрических уравнений

Определение. Уравнения вада sin x = a; cos x = a; tg x = a; ctg x = a, где x - переменная, aR, называются простейшими тригонометрическими уравнениями.


Тригонометрические уравнения


 


Аксиомы стереометрии и следствия из них


Основные фигуры в пространстве: точки, прямые и плоскости. Основные свойства точек, прямых и плоскостей, касающиеся их взаимного расположения, выражены в аксиомах.

А1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна. А2. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости

АB  Прямая АВ лежит в плоскости

рис.5


Замечание. Если прямая и плоскость имеют только одну общую точку, то говорят, что они пересекаются.

а = М Прямая а и плоскость пересекаются в точке М.

Рис.6


А3. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

= a и пересекаются по прямой а.

рис.7


Следствие 1. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна. Следствие 2. Через две пересекающиеся прямые проходит плоскость, и притом только одна.

Взаимное расположение двух прямых в пространстве


Две прямые, заданные уравнениями

или

пересекаются в точке.

Параллельность прямой и плоскости.

Определение 2.3 Прямая и плоскость называются параллельными, если они не имеют общих точек. Если прямая a параллельна плоскости α, то пишут a || α. Теорема 2.4 Признак параллельности прямой и плоскости. Если прямая вне плоскости параллельна какой-нибудь прямой на плоскости, то эта прямая параллельна и самой плоскости. Доказательство Пусть b  α, a || b и a  α (чертеж 2.2.1). Доказательство проведем от противного. Пусть a не параллельна α, тогда прямая a пересекает плоскость α в некоторой точке A. Причем A  b, так как a || b. Согласно признаку скрещивающихся прямых прямые a и b скрещивающиеся. Мы пришли к противоречию. Теорема 2.5 Если плоскость β проходит через прямую a, параллельную плоскости α, и пересекает эту плоскость по прямой b, то b || a. Доказательство Действительно, прямые a и b не являются скрещивающимися, так как они лежат в плоскости β. Кроме того, эти прямые не имеют общих точек, так как a || α. Определение 2.4 Прямую b иногда называют следом плоскости β на плоскости α.

 

Скрещивающиеся прямые. Признак скрещивающихся прямых


Прямые называются скрещивающимися при выполнении следующего условия: Если представить, что одна из прямых принадлежит произвольной плоскости, то другая прямая будет пересекать эту плоскость в точке, не принадлежащей первой прямой. Иными словами, две прямые в трёхмерном евклидовом пространстве скрещиваются, если не существует плоскости, их содержащей. Проще говоря, две прямые в пространстве, не имеющие общих точек, но не являющиеся параллельными.

Теорема (1): Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.

Теорема (2): Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.

Теорема (3): Если стороны двух углов соответственно сонаправлены, то такие углы равны.

Параллельность прямых. Свойства параллельных плоскостей.

Параллельными (иногда - равнобежными) прямыми называются прямые <#"457111.files/image155.gif"> <#"457111.files/image156.gif"> <#"457111.files/image157.gif"> AB - перпендикуляр к плоскости α.

AC - наклонная, CB - проекция.

С - основание наклонной, B - основание перпендикуляра.

Угол между прямой и плоскостью.

Углом между прямой и плоскостью называется любой угол между прямой и ее проекцией на эту плоскость.

Двугранный угол.

Двугранный угол - пространственная геометрическая фигура, образованная двумя полуплоскостями, исходящими из одной прямой, а также часть пространства, ограниченная этими полуплоскостями. Полуплоскости называются гранями двугранного угла, а их общая прямая - ребром. Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру. У всякого многогранника, правильного или неправильного, выпуклого или вогнутого, есть двугранный угол на каждом ребре.

Перпендикулярность двух плоскостей.

ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПЛОСКОСТЕЙ.

Если плоскость проходит через прямую перпендикулярную другой плоскости <http://schools.keldysh.ru/sch1905/Geom_perpendikularnost/prpl.htm>, то эти плоскости перпендикулярны.

Похожие работы на - Действительные числа. Иррациональные и тригонометрический уравнения

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!