Скрининг биологически активных веществ из почвенных микроорганизмов

  • Вид работы:
    Реферат
  • Предмет:
    Другое
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    17,86 kb
  • Опубликовано:
    2010-01-24
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Скрининг биологически активных веществ из почвенных микроорганизмов

Содержание

Введение. 2

1. Типы и виды почвенных микроорганизмов и их свойства. 2

2. Скрининг продуцентов биологически активных веществ. 2

Заключение. 2

Список литературы.. 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Микроорганизмы – наиболее древняя и самая распространенная форма организации жизни на земле, что свидетельствует об их значительной роли в природе и жизни человека. Эти мельчайшие существа могут быть как растительного, так и животного происхождения. К ним относятся бактерии, вирусы, грибы, простейшие и микроводоросли.

Микроорганизмы обуславливают круговорот веществ и энергии в природе, осуществляют расщепление органических веществ и синтез белка, обеспечивает плодородие почв и поддерживают газовый состав атмосферы и других природных процессов[3].

Наиболее богаты микроорганизмами верхние слои почвы. Так, на глубине  5-15см их  содержится 10000000 в 1мм3, но с увеличением глубины число их снижается, и на глубине 1,5м и более можно встретить единичные особи. Плотность микрофлоры особенно высока в черноземных, каштановых почвах, а также в хорошо удобряемых сероземах. Всего лишь 1г плодородной почвы содержит несколько миллионов бактерий большинства известных к настоящему времени видов, миллион спор грибов, полсотни тысяч водорослей и четверть сотни тысяч простейших.

Микрофлора плодородной почвы представлена микробными популяциями водорослей, актиномицетов, нитрофицирующих, денитрофицирующих, целлюлозоразлагающих бактерий, пигментных микробов, грибов, простейших, серобактерий, азотофиксирующих бактерий.

Вместе с растениями и животными они составляют сложные и многообразные биогеноцинозы, плотность и состав которых, а также функциональная активность и другие важные характеристики зависят прежде всего от типа и структуры почвы, от ее физико-химических показателей, в том числе от влажности и интенсивности инсоляции.

 

 

1. Типы и виды почвенных микроорганизмов и их свойства

Почвенные животные по их размерам обычно подразделяются на 5 групп: нано-, микро-, мезо-, макрофауну и мегафауну [1].

Нанофауна объединяет самые мелкие животные организмы, размер которых менее 0,16 мм. Это одноклеточные простейшие, живущие в воде, заполняющей почвенные поры.

Микрофауна представлена мельчайшими многоклеточными организмами, преимущественно также живущими в почвенной воде (ногохвостки, клещи, нематоды, тихоходки, коловратки). Их размер от 0,16 до 1,28 мм.

Мезофауна самая многочисленная часть почвенных животных. Их размер от 1,28 до 10,2 мм. Мезофауна представлена мокрицами, энхитреидами, насекомыми, многоножками, пауками, моллюсками и др.

Менее разнообразен состав макрофауны (размер животных от 10,2 до 81,6 мм). В этой группе наиболее распространены крупные личинки насекомых и дождевые черви.

К мегафауне (размер более 81,6 мм) относят роющих позвоночных животных (змеи, ящерицы, кроты, слепыши, слепушонки, цокоры, мыши и проч). Почвенные животные заселяют, в основном, верхние (глубиной до 20–40 см) горизонты почвы, в сухих местностях лишь отдельные виды проникают на глубину нескольких метров.

Чем меньше размеры организмов, тем больше их содержится в почве. Как и растения, животные накапливают в своих организмах определенные химические элементы. Особенно характерно концентрирование кальция почвенными беспозвоночными.

Почвенные микроорганизмы разнообразны по составу и биологической деятельности. Это бактерии, актиномицеты, грибы, водоросли и простейшие.

Бактерии – это одноклеточные организмы размерами в несколько сот мкм (1 мкм = 0,001 мм). Роль бактерий разнообразна. Одна из функций бактерий – усвоение ими легкоподвижных соединений, что способствует закреплению этих соединений в почве. Особенно следует отметить способность некоторых групп бактерий поглощать из воздуха молекулярный азот и переводить его в доступную для усвоения растений форму – этот процесс получил название фиксации азота.

В почве есть две группы азотофиксирующих бактерий. Одни из них, так называемые клубеньковыми, могут развиваться только на корнях различных бобовых растений, другие же свободно живут в почвенной среде. Наиболее важным представителем свободноживущих азотофиксирующих бактерий является Azotobacter, связывающий за одно лето в умеренных широтах до 30 кг азота на 1 га почвы. Деятельность клубеньковых бактерий гораздо эффективнее – в умеренных широтах при благоприятных условиях количество азота, связываемого этими бактериями, может достигать 200–300 кг на 1 га почвы.

Кроме бактерий азотофиксация осуществляется и некоторыми другими микроорганизмами (актиномицетами, грибами, сине-зелеными водорослями и др.), обитающими в почвах, пресных водоемах, морях и океанах.

Еще одна не менее важная роль бактерий – разложение колоссального количества мертвого органического вещества, поступающего в почву, и освобождение химических элементов, прочно связанных в составе органических остатков. В результате деятельности бактерий эти химические элементы снова становятся доступными для усвоения их растениями.

К актиномицетам относятся одноклеточные микроорганизмы, палочковидные клетки которых обладают способностью ветвиться. Содержание актиномицетов в почве весьма велико и часто измеряется миллиардами в 1 г почвы. Деятельность актиномицетов направлена на разложение различных органических веществ, некоторые актиномицеты выделяют антибиотики, подавляющие деятельность бактерий  [7].

Среди почвенных микроорганизмов важны грибы. Большая часть грибов состоит из ветвящихся нитей (гиф), образующих тело гриба (мицелий). Содержание грибов в почве измеряется десятками тысяч в 1 г почвы. Наиболее распространены плесневые грибы, а в лесных почвах – гриб мукор [9].

 Грибы разрушают различные органические вещества, повышают почвенную кислотность. Мицелий грибов часто развивается на корнях и даже в клетках высших растений. Подобный симбиоз высших растений с грибами называется микоризой. Микориза выполняет функции всасывающего аппарата корневой системы, обеспечивая растения водой и пищей. Так как грибы усваивают питательные вещества непосредственно из органических соединений, микориза обеспечивает развитие растений в почвах, богатых слаборазложившимися растительными остатками.

Водоросли являются существенным биологическим компонентом почвы, количество их достигает многих сотен тысяч в 1 г почвенной массы. В почве содержатся сине-зеленые, желто-зеленые и диатомовые водоросли. Водоросли развиваются на поверхности почвы, причем наибольшее их количество наблюдается во влажные сезоны.

Помимо растительных микроорганизмов в почве широко распространены простейшие животные микроорганизмы. Это преимущественно корненожки, жгутиковые и реснитчатые инфузории. Их роль в почвообразовании еще не достаточно выяснена.

Многие  виды почвенных микроорганизмов используются в микробиологическом синтезе антибиотиков, витаминов, ферментов и других белков, аминокислот, гиббереллинов и др. (например, большинство антибиотиков получают при культивировании почвенных актиномицетов).

 

 

 

 

 

 

 

2. Скрининг продуцентов биологически активных веществ

 

На этапе планирования биологических испытаний синтезированных соединений разработчик выбирает между двумя принципиальными стратегиями тестирования. В рамках первой стратегии новые соединения испытываются на одной или нескольких выделенных белковых биомишенях, функционирование которых связано с определенными патологическими состояниями [2].

Важно, что результаты первичных испытаний на индивидуальной биомишени позволяют обнаруживать закономерности зависимости между структурными особенностями молекул и их активностью (зависимости «структура-свойство» или SAR, от англ. structure-activity relationships), что в свою очередь позволяет направленно отбирать соединения для последующих циклов тестирования. Было показано, что несколько раундов такого скрининга, усиливаемых SAR-зависимостями, являются чрезвычайно эффективным средством поиска высокоактивных молекул.

В последнее десятилетие, особенно в связи с появлением высокопроизводительных автоматизированных систем биологического скрининга, она стала базовой стратегией поиска активных соединений на ранних этапах разработки лекарств.

При всей своей привлекательности эта стратегия имеет ряд весьма существенных недостатков. Главным из них является то, что при переходе к испытаниям на более комплексных объектах (клетки, ткани или целые организмы) результаты испытаний часто оказываются неадекватными по той причине, что на активность лекарства в реальной физиологической ситуации влияет большое число факторов, которые упрощенная тест-система не способна воспроизвести [6].

Стратегия биологических испытаний – это та, при которой химические соединения тестируются с использованием модельных систем, более приближенных к живым организмам объектам терапевтического воздействия. Примерами могут служить культуры клеток или тканей, патогенные организмы (например, бактерии) и даже животные. Соединения, активные по отношению к таким объектам, являются гораздо более ценными кандидатами в лекарства, чем вещества, проявившие активность в пробирочных тестах на выделенных белках. Однако здесь существуют препятствия:

 - стоимость испытаний на животных во много раз превышает стоимость in vitro испытаний. Это приводит к невозможности испытаний больших библиотек соединений.

 - на активность соединений в подобных экспериментах влияет множество факторов, таких как природа молекулярной биомишени, эффективность проникновения соединений через биологические мембраны, скорость метаболитической деградации  соединений в тестируемых объектах и другие.

Поэтому  на основании подобного тестирования сложно создать адекватные модели связи структуры с активностью, которые являются ценным подспорьем при оптимизации активных молекул. Пробирочные испытания на выделенных биомишенях также не позволяют адекватно судить о мишень-специфичной фармакологии лекарственного кандидата [5].

Производственные штаммы микроорганизмов должны соответствовать определенным требованиям: способность к росту на дешевых питательных средах, высокая скорость роста и образования целевого продукта, минимальное образование побочных продуктов, стабильность продуцента в отношении производственных свойств, безвредность продуцента и целевого продукта для человека и окружающей среды. В связи с этим все микроорганизмы, используемые в промышленности проходят длительные испытания на безвредность для людей, животных и окружающей среды. Важным свойством продуцента является устойчивость к инфекции, что важно для поддержания стерильности, и фагоустойчивость [4].

Разработчики лекарственных средств оказываются в непростой ситуации: пробирочные испытания на выделенных биомишенях оказываются чрезмерно упрощенной моделью, а более приближенные к реальности эксперименты отличаются высокой стоимостью и малой производительностью. В обоих случаях полученные результаты слабо поддаются интерпретации с точки зрения механизма действия активных соединений.

Экспериментальным подходом, позволяющим существенно повысить эффективность создания лекарственных средств, является «обратный» скрининг. В отличие от прямого биологического скрининга больших библиотек химических соединений на одной или нескольких биологических мишенях, в рамках концепции «обратного» скрининга одно или несколько соединений, обладающих доказанными фармакологическими эффектами, но неизвестными (или не до конца понятными) механизмами действия, тестируются на большой панели биомишеней, соответствующих типу фармакологической активности.

В результате обнаруживаются биомишени для действия исследуемого вещества, что является ключевым шагом к оценке его мишень-специфичной фармакологии. Если тестируемое вещество является разрешенным лекарственным препаратом, уточнение профиля мишень-специфической активности может позволить найти новые потенциальные области его терапевтического применения. В этом случае возможно создание препарата причем со значительно меньшими затратами.

Следует отметить, что на практике все стратегии являются не конкурирующими, а взаимодополняющими,  и выбор оптимальной концепции исследований зависит от терапевтической области, характера исследуемых молекулярных объектов, доступных ресурсов и прочих [8].

Для практической реализации «обратного» скрининга требуется применение целого комплекса передовых научно-исследовательских технологий, относящихся к дисциплинам геномики, протеомики, робототехники, молекулярной биологии, компьютерного анализа данных.

Технология обратного скрининга позволяет решать целый ряд различных задач, среди которых наибольший интерес представляет анализ механизмов действия лекарственных соединений с использованием панели биологических мишеней. Один из наиболее популярных подходов связан с применением специальных тест-систем на основе белковых микрочипов. Микрочип состоит из определенного количества микроячеек, каждая из которых содержит индивидуальную белковую биомишень, ковалентно привязанную к микроячейке при помощи специальной химической линкерной системы. Анализируемое лекарственное соединение добавляют к каждой микроячейке, после чего определяют наличие взаимодействия между биомишенью и соединением при помощи различных методов детекции.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение

Современные системы ВПС способны проанализировать более 100 тыс. индивидуальных образцов в день на индивидуальной биомишени, что обычно позволяет выявить 10-100 активных соединений, так называемых «хитов». Информация, полученная в процессе ВПС, используется на последующих стадиях оптимизации хитов. Обнаруженные при этом соединения-«лидеры» затем подвергаются всесторонним испытаниям специализированными научно-исследовательскими и клиническими организациями. Результатом является идентификация биообъектов, которые после прохождения клинических испытаний могут стать лекарствами.

Успешное внедрение такой высокотехнологичной и наукоемкой системы как ВПС требует создания определенных условий. Прежде всего, это наличие технологической линии для ВПС, включающей в себя все необходимые автоматизированные системы хранения веществ, дозирования реагентов, инкубации, детекции, а также компьютерное оснащение со специализированным программным обеспечением.

Необходимо также наличие научно-исследовательской базы, мощностей для высокопроизводительного синтеза соединений – будущих объектов испытаний, высококвалифицированного и обученного персонала. Все указанные выше условия сегодня созданы в Исследовательском Институте Химического Разнообразия (ИИХР). Мощный интеллектуальный потенциал и научно-техническая база ИИХР служат основой для реализации одного из самых инновационных проектов в сфере биотехнологической и химико-фармацевтической индустрии: этосоздание Национального биоскринингового центра. Это позволит организациям, занимающимся разработкой лекарственных средств, получить мощный источник активных соединений для углубленных доклинических и клинических испытаний, что обеспечит в средне- и долгосрочной перспективе создание конкурентоспособной индустрии высокоэффективных лекарственных средств [10].

Список литературы

1.   Биотехнология лекарственных средств / под ред. В.А. Быкова, М.В. Данилина.-М.: Медбиоэкономика, 1991, стр.105-108.

2.   Биотехнология: Принципы и применение / под редакцией И. Хиггинса, Д. Беста, Дж. Джойса; пер. с англ.- М.: Мир, 1998, стр.45-82.

3.   Биотехнология: Учебное пособие для ВУЗов  /Под ред. Н.С. Егорова, В.Д. Самуилова.- М.: Высшая школа, 1987, стр. 15-25.

4.   Егоров Н.С. Основы учения об антибиотиках: М.: Изд-во МГУ, 1994, стр. 73-78.

5.   Елинов Н.П. Основы биотехнологии. Издательская фирма «Наука», СПБ, 1995, стр. 61-73.

6.   Иващенко А. «Обратный скрининг» и перспективы разработки инновационных лекарственных брендов //

7.   8.   Микробная биотехнология: Методическое пособие к лабораторным работам для студентов факультета промышленной технологии лекарств / Составители: Е.П.Яковлева и другие; С.-Петербург. Гос.Хим-фармац.акад. - СПб. : Издательство СПХФА, 2000, стр. 32-39.

9.   Николаев В. Биотехнология – приоритетное направление // Фармацевти-  ческий вестник. 10. Промышленная микробиология / под. ред. Н.С. Егорова.-М.: Высш. шк., 1989, стр.45-56.

11. Фармацевтический скрининг в России: прямой или обратный? [Электронный ресурс]. – REMEDIUM, 2007. - №12. – Режим доступа: #"Times New Roman"> 

 

 

 

 

Похожие работы на - Скрининг биологически активных веществ из почвенных микроорганизмов

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!