Исследование кинематической структуры топ-спинов в теннисе

  • Вид работы:
    Статья
  • Предмет:
    Медицина, физкультура, здравоохранение
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    294,24 kb
  • Опубликовано:
    2009-01-12
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Исследование кинематической структуры топ-спинов в теннисе

Исследование кинематической структуры топ-спинов в теннисе

Кандидат педагогических наук, доцент Л.С. Зайцева , Российская государственная академия физической культуры, Москва

Введение .

Техника ударов в теннисе постоянно меняется, и особенно существенные изменения характерны для последних лет (появление и широкое распространение топ-спинов), поэтому остается актуальным изучение современных сильных крученых ударов справа по отскочившему мячу (топ-спинов) в связи с новыми запросами спортивной и тренерской практики.

Цель данной работы - изучение кинематической структуры сильных крученых ударов - топ-спинов у ведущих теннисистов страны.

Методика . Методика исследования позволяла фиксировать акселерограмму головки ракетки и одновременно проводить стереовидеосъем ку движений игрока. Основные суставы на теле спортсменов отмечались маркерами со светоотражающей поверхностью. Изучали топ-спины, выполняемые теннисистами высокой квалификации на теннисной площадке. Файлы данных записывались на ПЭВМ. Проводилась также специальная видеосъемка на соревнованиях "Кубок Кремля" и "Кубок Девиса". Экспериментальные данные получали на аппаратуре лаборатории "Моделирование двигательной деятельности" ВНИИФКа. Материалы видеосъемки обрабатывались на видеоанализаторе, а затем на компьютере по программам, составленным к.п.н. А.В. Вороновым.

Результаты . При обработке материалов стереовидеосъемки получили графики координат, скоростей и ускорений по осям X, Y, Z для точек на головке ракетки. На графиках рис. 1, 2, 3 представлены изменения скоростей головки ракетки в передне-заднем (X) и вертикальном (Z) направлениях, а также ускорение головки в вертикальном (Z) направлении для теннисиста - мастера спорта, выполняющего сильный крученый удар справа (топ-спин) в полуоткрытой стойке. Анализ изменения скоростей головки ракетки в боковом направлении показывает, что головка движется сначала вправо-назад (0,42 м), затем вперед-вверх-влево (1,75 м), развивая скорость, равную 10,5 м/с. К моменту начала взаимодействия с мячом вертикальная скорость ракетки составляет 7,1 м/с. Мяч улетел, но Vz продолжает расти до 9,24 м/с.

Скорость в передне-заднем направлении достигает наибольшего значения - 16,3 м/с. Перед фазой удара скорость ракетки в передне-заднем направлении уменьшается на 0,62 м/с, а затем к концу IV фазы Vx уменьшается до нуля .

Обращает на себя внимание факт, что во время фазы ударного взаимодействия горизонтальная скорость ракетки Vx уменьшается незначительно, боковая скорость Vy начинает заметно уменьшаться, а вот вертикальная скорость ракетки Vz продолжает увеличиваться до 9,24 м/с (рис. 2). Максимальное ускорение ракетки в вертикальном направлении наблюдается примерно за 0,04 с до фазы удара. Далее оно быстро уменьшается, но фаза удара протекает при наличии значительного положительного вертикального ускорения - 61,2 м/с2 (рис. 3). Видимо, этот факт и является характерной особенностью механизма, позволяющего игроку придать мячу большую угловую скорость.

Анализ полученных результатов показал, что скорость прилетающего мяча при ударах по отскочившему мячу изменяется в значительных пределах - от 8,75 до 17,4 м/с. Причем наибольшие значения скорости мяча до удара (20,25-24,25 м/с) отмечены при приеме подачи. Поэтому, видимо, не случайно наблюдается большая вариативность кинематических характеристик ударных действий. В таблице представлены средние, минимальные и максимальные значения указанных характеристик и их стандартные отклонения. Например, продолжительность отдельных фаз ударного действия может отличаться в два-три раза (фаза замаха min-max = 0,24-0,64 с; фаза разгона - 0,2-0,4 с). Существенно изменяется продолжительность и всего ударного действия. Так, у К-ва размах значений продолжительности ударного действия составляет T = 0,76-1,34 с, у В-ва T = 0,76-0,96 с. Столь значительная вариативность характеристик движений квалифицированных теннисистов говорит о том, что в условиях современной острокомбинационной игры двигательные действия теннисиста должны обладать адекватной приспособительной изменчивостью. На что же реагирует теннисист и что служит ориентиром при программиро вании им особенностей своих движений?

Для изучения количественных показателей взаимосвязи между полученными эксперимен тальными данными был проведен корреляционный анализ.

Обращает на себя внимание сильная обратная взаимосвязь продолжительности всего ударного действия (T) и скорости прилетающего мяча (Vмд) (рис. 4). Коэффициент корреляции между этими показателями r = - 0,93 (см. рис. 4). Наличие сильной отрицательной взаимосвязи обнаружено также между скоростью прилетающего мяча и продолжительностью (t1, t2) подготовительных фаз (замаха и разгона ). Это говорит о том, что при увеличении скорости прилетающего мяча игроки вынуждены существенно уменьшить продолжительность подготовительных фаз, чтобы суметь эффективно отразить мяч.

Экспериментальные данные показывают, что теннисисты убыстряют замах благодаря уменьшению вертикальной амплитуды движения ракетки (Lyy). Причем между скоростью прилетающего мяча и вертикальной амплитудой головки ракетки при замахе наблюдается сильная отрицательная взаимосвязь, коэффициент корреляции между этими показателями r = - 0,88.

Таким образом, игроки высокой квалификации адаптируют ударное действие к изменению скорости прилетающего мяча, изменяя продолжительность подготовительных фаз (замаха и разгона). При увеличении скорости мяча игрок уменьшает их продолжительность, быстрее подготавливая ракетку к удару благодаря уменьшению амплитуды движения ракетки в вертикальном направлении. И наоборот, при уменьшении скорости прилетающего мяча продолжительность фаз и амплитуда ракетки увеличиваются, что подтверждается наличием сильной отрицательной взаимосвязи между этими показателями.

Как следует из полученных результатов, скорость прилетающего мяча - препрограммирующий фактор, то есть прежде всего она определяет продолжительность подготовительных фаз (t1, t2) двигательных действий теннисиста (чем больше Vмд, тем меньше продолжительность фаз), а также T и Ly; она сильно влияет также на скорость ракетки перед ударом (Vрд) r = 0,93; оказывает влияние на уменьшение угла выноса ракетки на мяч (s1) r = - 0,43 и средне влияет на амплитуду движения ракетки в горизонтальной плоскости (Lxx) r = 0,43.

Видимо, скорость прилетающего снаряда является препрограммирующим фактором и в других видах спорта, в основе двигательной программы которых лежат ударные действия.

Для спортсменов высокой квалификации характерен сравнительно небольшой разброс углов выноса ракетки на мяч - 19-29 о.

Наибольшие скорости вылета мяча наблюдались при выполнении спортсменами ударов в условиях эксперимента: 32,3-58,25 м/с. Причем среднее значение скорости составляло 42,3 м/с. Однако следует подчеркнуть, что при ударах в нижней (до уровня коленей) и средней (до уровня груди) точках скорость вылета мяча не очень велика - 32,3-36,5 м/с. В высокой же точке теннисист придает мячу максимально возможную скорость вылета - 54,2-58,25 м/с. Подобные скорости вылета мяча при ударах по отскочившему мячу впечатляют, так как они приближаются к скоростям, демонстрируемым ведущими теннисистами мира при выполнении подачи (более 70 м/с). Не случайно максимальные скорости вылета мяча спортсмены демонстрируют при ударах в высокой точке. Как правило, они выполняются в безопорном положении, в движении на мяч, значительно выше уровня сетки, и при этом создаются наиболее благоприятные как с биомеханической, так и с психологической точки зрения условия для придания мячу наибольшей скорости вылета.

Кинематические характеристики топ-спинов

Похожие работы на - Исследование кинематической структуры топ-спинов в теннисе

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!