Получение керамики. Порошки для изготовления керамики.

  • Вид работы:
    Статья
  • Предмет:
    Технология машиностроения
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    188,03 kb
  • Опубликовано:
    2009-01-12
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Получение керамики. Порошки для изготовления керамики.

Получение керамики. Порошки для изготовления керамики.

А.А Остроушко, Ю.В. Могильников.

Требования к порошкам для получения керамики в зависимости от ее целевых свойств могут быть различными, с другой стороны к наиболее общим из них относятся следующие: заданный химический, фазовый и гранулометрический состав, их однородность, активность и пр.

Методы получения порошков можно разделить принципиально на две большие группы: основанные на диспергировании (измельчении) исходных материалов и наоборот на их конденсации, т.е. выделении твердых веществ из жидкой или газообразной фазы.

Методы первой группы подразделяются в зависимости от принципов, положенных в основу процессов диспергирования: истирание, удар, давление, взрыв, ультразвуковое воздействие, электромагнитный импульс, электроискровое или дуговое диспергирование, электрохимическая или химическая коррозия, лазерное воздействие, разрушение материала за счет последовательных теплосмен и пр.

Ко второй группе относятся, например, разложение металлоорганических соединений (МОС), различные варианты осаждения из растворов, упаривание солевых растворов, осаждение за счет реакций в газовой фазе, конденсация паров, криохимический метод, распылительная сушка и т.д. Особенностью получения порошков таких материалов, как сложные оксиды, является то, что в его ходе часто протекают химические реакции разложения исходных веществ (солей, органических соединений, гидроксидов и т.п. термически непрочных форм), а далее осуществляется твердофазный синтез фаз заданного состава. Методы получения компактных сложнооксидных материалов можно подразделить на собственно керамические и методы с использованием растворных (в частности, солевых) технологий (Таблица 1).

Таблица 1

<>

1. Анализ и подготовка исходного сырья

Важное место при получении керамики занимает анализ и подготовка исходного сырья, в котором, в частности, необходимо определение содержания основного вещества, индифферентных и нежелательных примесей, гранулометрического, фазового состава. Последний часто находится во взаимосвязи с активностью исходных реагентов. Так при получении различных ферритов по керамической технологии наиболее активной формой используемого оксида железа является g-Fe2O3, ее наличие значительно ускоряет протекание синтеза. Определение соотношения количества этой формы и других модификаций проводят методом рентгенофазового анализа или при помощи термического анализа на дериватографе, используя то, что при температуре около 560оС происходит переход g-Fe2O3--> a-Fe2O3, сопровождающийся экзотермическим эффектом, интенсивность которого связана с количеством активной фазы.

2. Дозирование

Дозирование проводят с максимально возможной точностью, как правило применяя весовые формы исходных веществ. Часто требуется предварительное прокаливание реагентов для удаления адсорбированной из окружающей среды влаги, углекислого газа и др., либо необходим учет коэффициента потерь при прокаливании.

3.Смешивание и помол

Смешивание реагентов часто совмещается с их дополнительным измельчением (помолом). Агрегатами, используемыми с этой целью, являются наиболее часто применяемые шаровые или роликовые барабанные и вибрационные мельницы. В чистом виде (без измельчения) операция смешивания осуществляется во вращающихся смесителях разных типов: биконических, V-образных, смесителях “пьяная бочка”

Критерием полноты процесса смешивания является поверхность раздела смешиваемых фаз S. Протекание смешивания описывается уравнением:

dS/dt = -K(Smax - S).

После разделения переменных и интегрирования получим:

-1/kln(Smax-S) = t или S = Smax - e-kt .

Поверхность раздела реагентов, увеличиваясь во времени, асимптотически приближается к максимально возможной, исходя из геометрии частиц.

Еще одним критерием процесса служит коэффициент неоднородности, с использованием закона нормального распределения среднеквадратичного отклонения s случайной величины Ci от средней величины Co:

Vнеодн. = s *100/Co = 100/Co*Ц(е(Ci - Co)2ni/(n-1)).

Проводят, как правило, не менее 25 (n) определений концентрации смешиваемого компонента во взятых от общей массы шихты пробах при помощи какого-либо метода: рентгеноспектральный, химический и т.п. Коэффициент неоднородности в ходе смешивания уменьшается, но затем может возрасти за счет агрегации частиц между собой.

При реализации процессов измельчения, например, после предварительного обжига шихты применяют помимо названных выше мельниц также планетарные (с воздействием на мелющие тела и частицы центробежной силы), струйные и вихревые. Последний тип интересен тем, что соударяются разогнанные до высоких скоростей потоки частиц одного и того же материала. При этом отсутствует намол посторонних примесей, наличие которых приходится учитывать при использовании более традиционных агрегатов. Например, при измельчении ферритовой шихты в стальных шаровых барабанных мельницах дополнительный намол железа составляет до 1-1,5% от общего количества взятого для синтеза, для корректировки состава исходно берут некоторый недостаток оксида железа. Измельчение порошков других составов в аппаратах данного типа требует по возможности использования соответствующих материалов, например ванадиевой футеровки мельниц и таких же мелющих тел при получении ванадатов и т.д.

Иногда используются также аттриторы, представляющие собой барабан, в котором при помощи лопастей приводится во вращение поступающая смесь пульпы измельчаемого материала с мелющими шарами. После прохождения камеры измельчения шары отделяются от суспензии на решетках. Еще одним эффективным измельчающим агрегатом является дезинтегратор.

Порошкообразные вещества поступают из загрузочного бункера с регулирующим шибером в пространство между вращающимися навстречу друг другу с высокими скоростями дисками (угловая скорость с использованием высокочастотных двигателей до 50000 об/мин и более). На этих роторах имеются специальные твердосплавные пальцы или лопасти, образующие относительно друг друга концентрические окружности разных диаметров. Каждая частица соударяется с указанными выступами, последовательно проходя все круги, перед выходом с последнего из них, имеющего максимальную линейную скорость, частицы испытывают наиболее высокоэнергетическое воздействие. Такой способ измельчения приводит не только к увеличению дисперсности системы, но и к дополнительной механохимической активации порошков, проявляющейся в их более интенсивном последующем спекании, либо ускоренном твердофазном синтезе.

Похожие работы на - Получение керамики. Порошки для изготовления керамики.

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!